Uniform Driver Interface

UDI Core Specification
Version 1.01

Volume |
(Chapters 19-33)

http://www.project-UDI.org/specs.html

|

“\U DI "
UDI Core Specification

Abstract

The UDI Core Specification defines the core set of interfaces and semantics that are available to all
UDI drivers and that are required to be provided in all UDI environment implementations. This
book also defines the fundamental UDI architecture and interface requirements, and is the
normative specification upon which all other UDI specifications depend. Additional UDI
specification books are or will be defined as outlined in Chapter 2Document Organization’, as
optional extensions to this specification.

UDI drivers and libraries must be written to conform to this specification, and can assume that all
services described herein are available.

The intended audience for this book includes UDI driver writers, environment implementors, and
metalanguage implementors, as well as developers of additional UDI definitions such as bus
bindings and ABI bindings.

The UDI Core Specification is divided into two volumes for ease of handling. Volume | contains
Chapters 1-19. Volume Il contains Chapters 20-34 and the Appendices.

Status of This Document

This document has been reviewed by Project UDI Members and other interested parties and has
been endorsed as a Final Specification. It is a stable document and may be used as reference
material or cited as a normative reference from another document. This version of the
specification is intended to be ready for use in product design and implementation. Every attempt
has been made to ensure a consistent and implementable specification. Implementations should
ensure compliance with this version.

UDI Core Specification - Version 1.01 - 2/2/01 i

Preface

Copyright Notice

Copyright © 1999-2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard
Company; International Business Machines Corporation; Interphase Corporation; Lockheed
Martin Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All
Rights Reserved.

This document and other documents on the Project UDI webwsiter.project-UDI.org) are

provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the followingAlrn_ copies of the document, or portions

thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn't exist, a Project
UDI copyright notice of the form shown above.

3. If it exists the STATUS of the Project UDI document.

When space permits, inclusion of the full text of tRI®TICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

ii UDI Core Specification - Version 1.01 - 2/2/01

http://www.project-UDI.org

Preface

Acknowledgements

The authors would like to thank everyone who reviewed working drafts of the specification and
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in
support of the development of this specification or in working on the prototype implementations which
helped us validate the specification:

Richard Arndt (IBM) Man Fai Lau (SCO)

Bob Barned (Lockheed Martin) John Lee (Sun)

Mark Bradley (Adaptec) Robert Lipe (SCO)

Darren Busing (Adaptec) Mike Lyons (IBM)

Steve Bytnar (STG) Alex Malone (DEC)

Thomas Clark (Sun) Lynne McCue (IBM)

Deven Corzine Bill Nicholls

Jack Craig (SCO) Guru Pangal (Starcom)

Betty Dall (HP) Mark Parenti (DEC)

Tim Damron (IBM) James Partridge (IBM)
Burkhard Daniel (STG) Scott Popp (SCO)

Don Dugger (Intel) Hiremane Radhakrishna (Intel)
Mark Evenson (HP) John Ronciak (Intel)

Barry Feild (SCO) Kevin Quick (Interphase)
Scott Feldman (Intel) Larry Robinson (Adaptec)
Mike Firman (STG) Andrew Schweig (STG)

Kurt Gollhardt (SCO) Sam Shteingart (HP)

Bob Goudreau (Data General) Ajmer Singh (SCO)

James Hall (SCO/Sun) James Smart (Compaq)

Jim Heidbrink (Lockheed Martin) Pete Smoot (HP)

Chris Herzog (STG) David Stoft (HP)

Chris llnicki (HP) Rob Tarte (Pacific Codeworks)
Bret Indrelee (SBS Technologies) Wolfgang Thaler (Sun)

David Kahn (Sun) Ramaswamy Tummala (Starcom)
Matt Kaufmann (SCO) Linda Wang (Sun)

Andrew Knutsen (SCO) Kevin Van Maren (Unisys)
Ahuva Kroizer (Intel) Mike Wenzel (HP)

Countless people have helped in one way or another and any omissions or errors on our part in the list
above are just that: omissions or errors on our part.

Thanks to Kevin Quick and the folks at Interphase for hosting the Interoperability events which have
provided a great venue for validating both prototype and production UDI products.

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.

UDI Core Specification - Version 1.01 - 2/2/01 ili

Preface

UDI Core Specification - Version 1.01 - 2/2/01

proj ecy

“{UDJ

Table of Contents

o

Volume |

ADSITACT ... e i
(@707 0) V¢ o |1 A\ (o] 1[0l P i
ACKNOWIEAQEMENTS....ceeiie e e e e e e aes ii
Table Of CONIENLS. ... e aaas v
List of Reference Pages by Chapter........coooviiiiiii i XV
Alphabetical List of SymbOIS........ccooiiiiiiiii XXI

Section 1: Overview

1 Introductory Materialoieiiiiiiiiiie e 1-1
I R [01 1o Yo [0 o 1o] T 1-1
o o] o1 PP 1-1
1.3 NOrmMatiVe REFEIENCESovniii e e e e e e 1-1
A O 0T {01 1 4= o [1-2

1.4.1 Environment CONfOrMANCEoivvviiiiiiieiiee e 1-2
1.4.2 Device Driver CoNfOrMAaNCEcoouniiieiii e 1-3

2 Document Organizationcceuueeiieiiiiiiiineee et 2-1
2.1 Overview of UDI DOCUMENTALIONcovvniiiiiiii e 2-1
2.2 Overview of the UDI Core SPecCifiCatioNccouviieieeiiiiiiiiiiiiiiiiiiieeeee 2-2

2.2.1 Core Specification SECHONSuuuuiiiiiiiieie e 2-2
2.2.2 Core SpecCifiCation TOPICSuuuuriiriiiiiiiiiieiaee s 2-2

I I =Y 11 011 o] (oo Y 3-1
G 70 A 1 1o Yo [T3 1 o T 3-1
G T B 1< i 011 (o 3-1

T R B 11 (=Tox (A V=T =T T 3-1
3.2.2 COMIMON TEIMS it e e e e e e e e e et s e e e e st e eaneens 3-2

UDI Core Specification - Version 1.01 - 2/2/01 v

Table of Contents

Section 2: Architecture

4 EXECULION MOEL.......oooiiiiiiiiiiiie e 4-1
g R 1 11 o T [o 1 o o 1R 4-1
4.2 Driver ODJeCt MOUUIESuiiiiii i 4-1
G T B 1Y gl [15 = Vg o =T SRR 4-1
N <o [0] 0 I S PP PP P PR PPN 4-1

4.4.1 Driver Partitioningccooiooeieoei e 4-2
45 MUlti-MOAUIE DIIVEIS ..o a e e e e e 4-2
I O o -1 | =] 4-2
4.7 Driver Execution ENVIFONMENLSccciiiiiiiiiiiiiieiiiieeeee e e e e e 4-2

4.7.1 NoON-BlocKing MOAElcoeeiiiiiiiiiiiiii e 4-3
4.8 Function Call ClasSifiCatioNScccooueiiiiiiiiiiieere e 4-4

4.8.1 SErIVICE CallSuiiiiiiiiiiiiiiiiiiieie e 4-4

4.8.1.1 Synchronous Service Callscccociiiiiiiiiiii s 4-5
4.8.1.2 Asynchronous Service CallSccccuiiiiiiiiiiiiiiii, 4-5

4.8.2 Channel OPEerationNSuuuuiiiiiiiiieeee e eeeeeee et s e e e e e e e e aaaeeeeeaannan 4-5
4.9 Location INdePENdENCEccooiiiiiiiiiiiit et 4-6
4.10 Driver FAUIS/RECOVEIYuuiiiiiiiiiiiiee ettt e e e e e e 4-6

4.10.1 Overview of Region-Killcoovriiiiiiiiiiii e 4-6

4.10.2 Improper Channel Operation USAQEeeeeeeiiiiiiieeieiiniiiiiiiiiiineeeee 4-7
4.11 Metalanguage MOUEIeeiiiiiiiiiiiee e 4-7

4.11.1 Metalanguage ROIESuuueiiiiiiiiii e 4-7

4.11.1.1 Management Metalanguage ROIEScccooviiiiiiiiiiiiiiiiiiiie 4-8

5 Data MOEL.....ccooiiiiii 5-1
o0 R © 1V = V11 PSPPSR 5-1
5.2 DAta ODJECLS ...eeeiiiiiiiiiiiiiee et 5-2

5.21 Memory ODJECIS ...cccoiiiiieeeeeee et 5-2

5211 Using Memory Pointers with Asynchronous Service Calls 5-2
5.2.2 CONIOI BIOCKS ... 5-3
5.2.2.1 SCratCh SPACEcceiiiiiiie e 5-3
5.2.2.2 1] T[S B - U 5-3
5.2.2.3 Control BIOCK GrOUPScccoiiiiiiiiiiiiiiiiiiii ettt 5-3
5.2.2.4 Control Block Synchronizationccccovviiiiiiiiciiieeeeeeeeeee 5-4
5.2.2.5 Control BlIock RECYCIINGcooiiiiiiiiiiiiiiiee e 5-4
5.2.2.6 Control Block Pointer INvarianceccccceeeeeeeeeeiiiveeeiiiiiinennn 5-4

5.2.3 REQION DAtAccoeiiiiiieeeee it e e e 5-5
5.3 Channel CONEXL ...cccoeii e e e e e e e e e e e e eeeeas 5-5
5.4 Transferable ODJECIScccooiiiiiiiiii e 5-5
5.5 Implicit MP SyNchronizationccccceooiiiiiiieee i 5-5

Vi UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

6 Configuration MOAEloouuuiiiiiii e 6-1
B.1 OVEBIVIEW .ttt e e e e e e e e e e e e e s sttt ettt et e e e e e e e e eeeeeeaaaaannnnnnerbrenees 6-1
6.2 Static CONfIGQUIALIONcooiiiiiiiiiiii e 6-1

6.2.1 StatiC Driver PrOPEITIESooiiiiiiiieiiiiii et e e 6-1
6.2.2 INitialization SITUCIUIEScooeeiiiiii i 6-1
6.2.3 BUIlAING UDI DIIVEIS ...coiiiiiiiiiiiieeei ettt 6-2
6.2.4 UDI PACKAGINGuuiiiiiiiiiiiiiiiiiee ettt e e 6-2
6.2.5 UDI Package Installationccoooiiiiiiiiiiiiiicicee e 6-2
6.3 DynamiC CONfIQUIALIONooiiiiiiiiiiiiiiiiiiie e 6-3
6.3.1 DEVICE TIEE ...oeeeiiiiiiiiie ettt e e e e e e e e e e e e e e e 6-3
6.3.2 Driver INSTantiationceoeiiiiiiiiiiiii e 6-3
6.3.3 Device Node Enumeration and Attributesccccoiiiiiiiiiiiiiiiiee, 6-3
6.3.4 Driver Inter-Instance BiNdINGeuueiiiiiiiiiiiiieaaeaeeeiieeeeeeeee 6-3

7 Calling Sequence and Naming ConventionsS.........ccccccveevveviiiieeeceevnnnnn. 7-1
4% R © Y oV = P 7-1
7.2 Channel OPEeratiONScccoiiiiiiiiiieeee e e e e e e e e e aaeaaees 7-2

7.2.1 Channel Operation INVOCALIONSccoeiiiiiiiiiiiiiiiiiiiiieeee e 7-2
7.2.2 Channel Operation Entry POINtScoooiiiiiiiiiiiiiiieeeeeeee e 7-2
7.3 Asynchronous Service CallSoooovviiiiiiiiiiiiee e 7-4
7.3.1 Asynchronous Service Call INVOCAtIONSccceeviiieiiiiiiiiiiiiiiiiiieee, 7-4
7.3.2 Associated Callback FUNCLIONSoeiiiiiiiiiiiiiiiiie 7-4
7.3.3 Control Block Type CONVEISIONcuuuiiiiiiiiiieieeeeeeeeeeeeee e 7-5
7.4 Channel Operations VECIOISccooiiiiiiiiiiiiiiiiiiiti et e e e 7-6
7.5 CONtrol BIOCK GIOUPSutiiiiiiiiiiiiieeee ittt e e 7-6

Section 3: Core Services

8 General ReQUINEMENTS......coiiiiiiii ettt e eaaa 8-1
S TNt R V= €1 o] o1 o P PPPPUPPRR 8-1
8.2 HeEAUEr FIlES ..o 8-1
8.3 C Language ReQUIFEMENEScccoceeeiiiiiiiiieeeiies s e e e e e e 8-2
8.4 ENndianness REQUIFEMENLScoovviiiiiiiiiiiiii e e e e e e ee e e e et e e e e e e e e aaaeeees 8-2

9 Fundamental TYPEScoovuuiiiiiiieece e 9-1
S R N O 1 =T V1= P UPPPPUPPPRPRRR 9-1
9.2 Usage of Standard ISO C Data Types and Macrosceeeeeeeeeeieeeeeannnnnnns 9-2

9.2.1 ISO CCNAI TYPE wereeiiieiiiiiiiiee ettt e e e e e e e e e e e e e e e e annees 9-2

S 2 1510 @ Vo] (o B Y/ o 1= TP EPP 9-2
9.2.2.1 NUITPOINTEIS it e e e e e e e e e e e eeeeeeeeenne 9-2

9.2.3 ISO Gsizeof andoffsetof operatorsccccccvvvveiiiiiiiiiiieeeeeeeee, 9-3

UDI Core Specification - Version 1.01 - 2/2/01 Vi

Table of Contents

0.2.4 VArargs TYPES .eeeeiiiiiiiiiei ettt e e e 9-3
9.3 Notation for Implementation-Dependent Types and Constants 9-3
9.4 SPeECIfiC-LeNGtN TYPES ..oiii it 9-4
0.5 ADSITACT TYPES it a e e e 9-6
0.5, SHZE TY P ittt e e e e e e e e e e e e 9-6
0.5.2 INAEX TYPE orriiiiiii i ettt e e e e e e e e e et aaaaas 9-6
9.5.2.1 Control BIoCK INAEeXccoeeiiiiieee e 9-6
9.5.2.2 Metalanguage INUEXccuuuuiiiiiiiiiiiieieee e 9-7
9.5.2.3 OPS INUEX .oevviiiiiiiii i 9-7
9.5.2.4 RegION INUEX .ooiiiiiiiiieit e 9-7
0.6 OPAQUE TYPES ittt ettt e e e e et e e 9-8
9.6.1 Opaque HaNdIESoooriiiieic e 9-8
9.6.2 Self-Contained OPagUE TYPESeeeiiiiiiiiiiiiieeeeeee s 9-13
9.6.2.1 TIMESIAMP TYPE ittt 9-13
9.7 SEeMI-OPAGUE TYPES ..oeeeeeieerruiiiiiaseaaaeeeaaeeeeeeeeeteeeearaasaa e e aaaaaaaaaeereeernrnn 9-13
9.7.1 CONMrOl BIOCKS ...t e e 9-13
9.7.1.1 BUI IS e 9-13
9.8 Structures Requiring a Fixed Binary Representationcccoevvevvvvvvvnnnnne 9-14
9.9 CommMON DENVEA TYPES ..oeveiieiieiiiieeee ettt e e e e e e e 9-15
9.9.1 UDI SEALUS ..ccoiiiiiieieee ettt ettt e e e et e e e e e e e e e e nnnees 9-15
9.9.1.1 CommON StatuS COUEScevriiiiiiiiiieieieeiieieireee e 9-18
9.9.2 Data Layout SPECITIErcoii i 9-21
9.10 Implementation-Dependent MACIOScccccuuiiiiiiiiiiiiiiieee e 9-27
10 INIHANZALION ...uueiiiiiee e 10-1
L1O.1 OVEBIVIEW .ttt ettt e e e e e e e e e eeeeeaeeeeeensnnennnnns 10-1
10.1.1 Per-Driver INitIaliZationcccoiiiiiiiiiiiiiceeeceeee e 10-1
10.1.2 Per-Instance INItIaliZationcccoooiiiiiiiiiiiii e 10-1
10.1.3 Per-Region INitializationcccccuiiiiiiiiiiie e 10-1
10.2 Per-Driver Initialization SIrUCIUIeccooveiiiiiiiiiiiiiiieeeee e 10-2
10.3 Initial Region Data StrUCLUIESeeeiiiiiiiiiiiiieeee e 10-16
11 Control Block Managementc.uuiiiiiiiiiiiiiee e 11-1
I3 R O 1Y = V1 R URRURPRT 11-1
11.2 Control Block Service Calls and MacrOSoouvvuviiiiiiiiineeeeeeeeeeeeeeeeeinnenns 11-2
12 Memory ManagemMeNnt........oovuu i e 12-1
12,1 OVEBIVIEW ..ottt et e aaaa e e e e e e e e eeeeeeaeeeeeeennnennnnns 12-1
12.2 Memory Management Service Callsoooovvviviiiiiiiiiiii e, 12-2
13 Buffer Managementcooeuuiiiiiiiiiiin et 13-1
13,1 OVEIVIEW ooiiiiiieeeeei ettt e e e e e e e e e e e e e e e ettt e e e e e e e e aaaeaeaaeeeeenanns 13-1

viii UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

13.2 BUI B TY P it 13-2
13.3 Transfer CONSIIAINTSoeuuuiiiiiiiiiiiaas e e e e e e et e e e e e e e e e e e e aeeeeeeanneees 13-4
13.4 Buffer Management MAcCIOScceiiiieieeeeiiiieeeeeeiiiiiis e e s e e e e e e e eeeeeeeeannnnns 13-7
13.5 Buffer Management Service CallSccccciiiiiiiiiiiiiiieee e 13-12
13.5.1 Buffer Usage MOAEISooiiiiiiiiiiiiiiiiii e 13-12
13.5.2 Buffer Recovery Mechanismccccccceiiiiiiiiiiiccceee e, 13-13
13.6 BUfEr PAthSeeeiiiieeeeeec e 13-21
13.6.1 Buffer Path MUItpIEXINGuvviiiiiiiiiiiiii e 13-21
IR R U (=T g =T 13-26
13.7.1 Buffer Tag Cat@QOrIEScciiiiiieieiiiiiiaaiieiiie et e e e e 13-26
13.7.2 Buffer Tag ULIITIESoeeiiiiiiiiiieiiee e 13-35
14 Time ManNagemEeNtuii i i e e et e e e e e e eraa e e e e e 14-1
I R T 4 1= Y= Y o] L PSP 14-2
14.1.1 TiMed DEIAYSccooiiieeieeeeeee et e e e e e e e e e e aaaaaaes 14-2
I I 10 0 T=T G O]] (=)« S 14-2
14.2 TIMESIAMP SEIVICES ...oooiiiiiiiiiiiii ittt ettt e e e e e e e e e e 14-7
15 Instance Attribute Management............coouueiieeiieiiiii e 15-1
15,1 OVEIVIEW ..ottt s e e e e e e e e e e e e e e e e e e et e aa e e e e e e e e eeeeeeaeeeeeensnnnnnnnns 15-1
15.2 Instance ALrbUe NAMESuuiiiiiiiiiiiiiiiieee e 15-1
15.3 Persistence of AUMDULESccoooiiii i 15-1
15.4 Classes Of AtHDULIESuuiiiiiiie e 15-2
15.4.1 Instance-Private AUINDULESoovviiiiiiiiiiiii e 15-2
15.4.2 Enumeration AttrDULEScooiiiiiiiieeee e 15-2
15.4.2.1 Generic Enumeration AttribUteScccoevviiiieeeiiiiiiieei e 15-2
15.4.2.1.1 identifier attributecccoiiiiiiiiiiie e 15-3
15.4.2.1.2 address_locator attributeoooeviiiiiiiiiiiiies 15-3
15.4.2.1.3 physical_locator attributecccceeeeiiiiiiiiiiiiie 15-3
15.4.2.1.4 physical_label attributecccoooiiiiiiiicc e 15-3
15.4.2.1.5 Generic Enumeration Attribute Exampleccccccceeeeen. 15-3
15.4.3 Sibling Group ALDULESuuiiiiiiiiiiiiiee e 154
15.4.4 Parent-Visible AtriDULES ... 15-5
15.4.5 Attribute ClasSifiCatioNeeiiiiiiiiieeee e 15-5
15.5 Instance AHrDULE SEIVICESuuuiiiiiiiiiii e 15-6
16 Inter-Module CommUNICALIONccovviiiiiiie e e 16-1
L16.1 OVEIVIEW ..ottt e e e e e e e e e e e e e e e e e e et taasss e e e e e e e e e eeeeeeeeeeeeesnnennnnns 16-1
16.2 SEIVICE CallS ...uiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e 16-1
16.3 Channel Event Indication OPerationcccccceeiieeeaiiininiiniiiiiveeeeeee 16-9

UDI Core Specification - Version 1.01 - 2/2/01 iX

Table of Contents

17 Tracing and LOQQINGcccuuuuiieiiiiiiiiie et eeeiie e eeeeatan e eeeeenee 17-1
L17.1 OVEIVIEW ...eiiiiiiieeeeiite ettt e e et e e e ek e e e e s s e e e e e e e anbneeeas 17-1
17.2 Tracing and Logging Service Calls ..o 17-1

17.2.1 Tracing CallScooeiiiiiiiiiiiii e 17-1
17.2.2 Logging CallSuuiiiiei i 17-1
17.2.3 Trace EVENE TYPES ..ot 17-2

18 DebUQQING SEIVICESoiiiiiiiiiiii et eeeeaenes 18-1
L18.1 OVEIVIEW ittt e e e et e e bbb e e ettt e e e e e eeeaeeeanaaann 18-1
18.2 Debugging Service CallS ... 18-2

Volume ll

Section 4: Core Utility Functions

19 Introduction to Utility FUNCLONS..........ccoiiiiiiiiiii e 19-1
191 OVEIVIEW oiiiiiiieieee ettt e e e e e e e e e e e e e e e et e e e e e e e e e aaaeaeaeeeseenaans 19-1
20 String/Memory Utility FUNCLIONS.........cooviiiiiiiiiiccc e 20-1
20,1 OVEIVIEW ..eieiiieiiiiiie ettt et e e e e e e e e e e e e e e s s s bbbttt e e e e e e eaeeeeeas 20-1
20.2 General String/Memory FUNCLIONSooooiiiiiiiiiiiiieie e 20-1
20.3 String Formatting FUNCLIONScccooiiiiiiiiiieeeeeeee e 20-10
21 Queue Management Utility FUNCLIONSccoovviiiiiiiiiiii e, 21-1
21,1 OVEIVIEW ittt et e e e e e e e e e e e e e e e s s s bbbt e e e e e e e aaeaeeas 21-1
21.2 QUEUE MANAGEMENTiiii ittt e e e e e e e e e e e e eaaaaees 21-2
21.2.1 Queue Element StrUCIUIEoooiiiiiiiiiiiiiiiee e 21-2
21.2.2 QUEUING FUNCLIONSccoiiiiiieeeee e e e e e e e e e 21-4
21.2.3 QUEUING MACIOScceeeiiiiiiieeeiiit e e e e e e e e e e e e s e e e e e e e aaeeeeees 21-7
22 Endianness Management Utility FUNCHIONScc.coiviiiiiiiiiiieeeennn, 22-1
22. 1 OVEIVIEW ..ottt ettt e e e e e e e e e e e e e e s s sttt e e e e e e e e aeeaeeas 22-1
22.2 ENdianness ManagemENToueiiiiiiiaiiiiieieiii e e e e e 22-2
22.2.1 Rules for C Structure DefinitioNSeeeeiiiiiiiiiiieeiiiiiiiiiiieeee, 22-2
22.2.1.1 Byte-by-byte structure layoutccccceeieiiiiiiiieeeeeeeceeees 22-2
22.2.2 HEIPEI MACIOSooiiiiiiiieeeeee ettt 22-4
22.2.2.1 Bit-field MACIOSuuuiiiiiiiiiiiiiieiee e 22-4
22.2.3 Endian-Swapping ULIlILIEScoovviiiiiiiiiiie e 22-11

X UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

Section 5: Core Metalanguages

23 Introduction to UDI Metalanguagesccccovvvvviiiieeeeviiiiieeeeeiineeee, 23-1
P2 TR R O VT YT S 23-1
23.2 Standard Metalanguage Functions and Parametersccccceeeeeeeiviiiiennnnnns 23-1
23.3 Channel Operation SUfIXESccooiiiiiiiiiiii e 23-2
23.4 General Rules for Handling Channel Operationsccccccviiiiieeieieiiineeenn. 23-3
23.4.1 Normal Operation Handlingccoovviiiiiiiiiiiiiiii e 23-3
23.4.2 Operations That Are Not Understoodcccccooviimiiiiieniiiiiiieeec e 23-3
23.4.3 Operations That Are NOt SUPPOIEAeureimiieiiiiiiiiiiieeeeeaaeees 23-3
23.4.4 Operations Received In An Invalid Stateccccceeeiiieiiiiieieiiiieeeeeeen, 23-3
23.4.5 Operations With Mistaken 1dentitycccccooerieeriiiininiiiiiieeee 23-4
23.4.6 Extended Channel Error Handlingooooiiiiiiiiiiiiiieeeeeeeeee 23-4
24 Management Metalanguage...........ccovuvviieiiiiiiiiin e 24-1
2 R O VT YT S 24-1
24.2 ManagemMEeNT AQENT ...uuiiiii e 24-1
24.2.1 Driver INStantiationccooeeeiiiiiieeeeeeeiir e 24-2
24.3 Management Metalanguage Considerationsccccccoeeriiiiiiiiiiiiiiinnnnennne 24-5
p [o1 F= 1172 U1 o] o PP PP PP 24-6
24.4.1 Tracing Control OPErationSccccuuuviiiiiiiiiiiiiiieeea e 24-6
24.4.2 Resource ManagemeNntcouviiiiuiiiiiiiiieee e 24-6
24.5 ENnumeration OPEratiONSuueuiieiiiiieeeeeeeieeieeeeeiiesrisss s s e e e e eeeaaaeeaeeeennnn 24-13
24.5.1 Enumeration AtribDULESooiiii e 24-13
24.5.2 Child ID oo 24-13
24.5.3 ENUMEration FiltersS ... 24-13
24.5.4 PArentID ... 24-14
24.5.5 Dynamic Enumeration (HOt PIUQ)cuuvmmiiimiiiiiiiiiiiiieeeeeee 24-14
24.5.6 UNENUMETALIONuiiiiiiiiiiiiiiiieiee e e s e e e e e e e e e e e e e e e e e neanns 24-15
24.5.7 Directed ENUMEIAtIONoovuuuiiiiiiiiiaeeee e e e e e e 24-15
24.6 Device Management OPEratioNSeeeeeeiiiiiieeeaaaainiaiaaeiiiereeeeeeeeees 24-27
24.6.1 Prepare TO SUSPENAcoooviiiiiiiiiiieee e e e e e e e 24-27
24.6.2 SUSPENA ..ottt e e e e e e e e e e e 24-28
24.6.3 SRULHOWN ..t a e e e 24-28
24.6.4 Parent SUSPENAEMccoooiiiiiiiieeeeeee e 24-29
24.6.5 RESUIME ..ottt e e e e et e e e e e e b e e e e e eneaans 24-29
24.6.6 ADrUpt UNDINGoooiiiiiiiiiiii e 24-29
24.7 Metalanguage-Specific Trace EVENLSovvvvviiiiiiiiiiieeeiieeeeeee 24-36
24.8 Management Metalanguage Statesccccuuviiiiiiiiiiiiieiieee e 24-37
24.8.1 Management Metalanguage Statesccccooeieiiiiiiiiiiiiiiiiieee 24-39
24.8.1.1 Operational SUb-Statesoiiiiiiiiiiiiii e 24-39

UDI Core Specification - Version 1.01 - 2/2/01 Xi

Table of Contents

25 Generic I/O Metalanguageccuuuiiiiiiiiiiiiieee e 25-1
25. 1 OVEIVIEW ..ottt e e e e e e e e e e e e e e s e sttt e e e e e e e eeaeeeas 25-1
25.1.1 VEISIONING eeeeiiiiiiiiiiieae ettt e e e e e e e e e e e e e e e e e e e 25-2
25.1.2 ROIES o a e e e e e e 25-2
25.2 Metalanguage BindINGScccoooiiiiiiiicccceeeeer e 25-2
25.2.1 Bindings for Static Driver Propertiesccccoooviiiiiiiiiiiiiiiiiieeeeeeeeeeen 25-2
25.2.2 Bindings for Instance ANbULESccooiiiiiiiiiiiieeeeeeeee e 25-2
25.2.2.1 Enumeration AtINDULEScoooiiiiiiiiiiiiiiiieeeeeee e 25-3
25.2.2.2 Filter AUMNDULESoooiiiiiii e 25-3
25.2.2.3 Generic Enumeration Attributes ... 25-3
25.2.3 Enumeration Attribute Rankingccccooviiieiiiiiiiiieecs e 25-4
25.2.4 Bindings for Trace EVENLS ... 25-4
25.3 Metalanguage State DIiagramcceeceiiiioeeioiiiiie e 25-5
25.3.1 GIO Metalanguage StateSceevvviiiiiiiiiiiiiiieeeeeee e 25-5
25.4 Channel OPS VECIOIScoiiiiiiiiiiiiiieii ettt 25-7
25.5 Binding and Unbinding Operations ... 25-10
25.6 Data Transfer and Control Operationsccccvvvvviviiiiiiiiiiiee e, 25-16
25.7 Event Handling OPerationsccccuuuuiiiiiiiiiiiiiieieee e 25-24
26 DIagNOSHICS SUPPOIT ..cvueiiiieieiiie ettt e e e 26-1
26.1 DiagNOSLICS SEALEuuiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e s 26-1

Section 6: MEI Services

27 Introduction t0 MEL..........oooiiiiiiiiiiiiii e 27-1
27. 1 OVEIVIEW ..ottt ettt e e e e e e e e e e e e e e s s s bbb ettt e e e e e e e e eaeaeeas 27-1
27.2 Requirements on Metalanguage Specificationscccccvvvviiviiiiciciieee e, 27-2

27.2.1 General Requirements & CONVENLIONSuuviiiiiiiiiiiiiiiiaeaaeeeaaeaaannns 27-2
27.2.2 Bindings to the Core Specificationcccccooviiiiiiiiiiiciciieee e 27-2
27.2.2.1 Bindings for Static Driver Propertiescccccceeeeeiiieiiieeeiiiiinnnnnn, 27-2
27.2.2.2 Bindings for Instance AttribUtesccccooiiiiiiiii 27-2
27.2.2.3 Bindings for Custom Parameterscccceeeeeiieiieeeeeeeeeeeeeeeiiiinnns 27-3
27.2.2.4 Bindings for Trace EVENLSouvvvviiiiiiiiieieeeeeeeeeeeee 27-3
27.2.2.5 ADOMADIE OPS ...oiiiiiiiiiiiiiie e 27-3
27.2.2.6 Recoverable OPSccccooeeiiieiiieeeeeee e 27-3
27.2.3 Operation Ordering ReqUIreMENtScccoeeeeeeeiiiiiiiiiiier e 27-3
27.2.4 StAte DIAQIaMoooiiiiiiiiiiie e 27-4

28 Metalanguage-to-Environment Interfacecccccoeeeveiiiiiiiniieeeenn, 28-1

p2 S TR R O VT T 28-1
P T N R V=T €3 o1 T ISR 28-1

Xii UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

28.2 INItIAliZAtION SITUCTUIESceiiiiiiiiiieiee e 28-2
28.3 MarsShallingcoeiiiiiiiiiiiiiie e 28-12
28.4 MEI STUDS ... 28-13
28.5 MEI Stub Implementation ... 28-19

Section 7: Packaging and Distribution

29 Introduction to Packaging and Distributioncccccceeevveevevnnnnnn. 29-1
P24 0 A [o1 o o [Fox 1 o] o PP PPPPPPPPTUPPR 29-1
30 StatiC Driver Properties..........uuii i 30-1
0.1 OVEIVIEW ..eeiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e s s s bbbttt ettt e e e aaeaeeaeaeaassasaannnnssneeeeeees 30-1
30.1.1 UDI MOUUIES ..ottt ettt s et e e e e e e 30-1
30.2 BASIC SYNTAX ettiiiiiiiiieieeiiii ittt e e e e e e e e e e e e a e e e e s 30-3
30.3 Property Declaration SYNTAXeceeiiiiiiieeeeeeieeeeeeieiiviins s e e e e e e e eaaeeeees 30-4
30.4 Common Property Declarationsooovviiiiiiiiiiiiiei e 30-5
30.5 Property Declarations for LiDrariesccccouiiiiiiiiiiiiieeeeeeeee e 30-10
30.6 Property Declarations for DIVEIScccoiiiiieeeiiiiieeeeeeees e 30-13
30.7 BUIild-Only Propertiesccccoiiiiiieiiiieeeeeeeeeie s 30-23
30.8 Sample Static Driver Properties File ... 30-25
31 Packaging & Distribution Format.............cccovviiiiiiiiiiiiii e, 31-1
31 00 R O YT = S 31-1
31.2 Packaging FOrMaALtcooooiiiiiiiice e e e e e e e e 31-1
31.2.1 DIreCtory StIUCIUIEcovviieiiiiiiiiiieee e e e e e ee et a e e e e e e e e eees 31-1
31 G T N o o AV o 1 - S 31-2
31.4 Distribution FOIMALccooiiiiiiiiiiiiiiieecieeee et e e e e 31-3
31.4.1 Floppy Storage FOrMALceeiiiiiiiieeeiiieieieeeeies e e e e e e e e e e eeeeeaeeenes 31-3
31.4.2 CD-ROM Storage FOrmatcooooiiiiimimiiiiiii e 31-3
32 Build & Packaging Utility Programsccoeuiiiiiiiiiiiiieeeeeeeeeee 32-1
N R @ Y =SSP 32-1
32.2 The udibuild ULIlILYoovvrieeiiiieieee e e e e e e e e e eeeaeeenns 32-1
32.3 The udimKpKg ULIIILYcooeeieieeeeeeeeeeeeeeeeee e 32-1
32.4 The udiSetup ULIILYoeeiiiiiiiiee e 32-2

UDI Core Specification - Version 1.01 - 2/2/01 Xiii

Table of Contents

Section 8: ABI Bindings

33 Introduction to ABI BindiNgScccuviiiiiiiiiiiiii e 33-1

G 700 R | 01 1o Yo [1 [£ T o IR 33-1

33.2 Processor ArChItECIUIEccoveiiiiiiiiiiii ettt e e 33-1

33.3 RUNME ArChItECIUIE ... 33-2

33.4 Binary Bindings to the Source-Level Specificationsccccccccceeieieeeennn. 33-2
33.4.1 Sizes of UDI Data TYPES ..ccoevviiiiiieeeeeeiiiie e 33-2
33.4.2 Implementation-Dependent MacCroSeeeeeeeeiiiiiiiiiieniaaaaaaeiieens 33-3
33.4.3 UDI Functions implemented as MaCrOSccccuuuriiimiriiiieeeieeaeeaaaaaaannns 33-4
33.4.4 Miscellaneous Binary BindingScccooiiiiiiiiiiiiiiiiiiiee e 33-4

33.5 Building the Driver ODJECTcooiii e 33-4
33.5.1 ODbject File FOrMALccooiiiiiiieei e 33-4
33.5.2 Static Driver Properties Encapsulationcccccceeeviiiiiiiiiiiiiiiiicieeeen, 33-4

Section 9: Appendices

Xiv UDI Core Specification - Version 1.01 - 2/2/01

proj ecy

L ;U D E -y

List of Reference Pages by Chapter

Volume |

Chapter 9 Fundamental Types

udi_channel t ----------------- UDI inter-module communications handle........... 9-10
udi_buf path t--------mmmmmo--- Buffer path routing handle.............cccccceeiviiiiinnnnn. 9-11
udi_origin t -----------mmmmaa- Request origination handle...............ccocivvveeinennnns 9-12
udi_status t ------------------- UDI status Code.........coooeeiiiiiiieiieee e 9-16
udi_layout t --------comeeaa o Data layout SpecCifier.........coovvviiiiiiiiiiiiiiieieeee e 9-22
UDI_HANDLE_ IS NULL ---------- Determine whether a handle value is null............ 9-28
UDI HANDLE ID ---------mmn--- Get identification value for specified handle......... 9-29
UDI. VA ARG ------------------ Varargs macro for UDI data types..........ccccuvveeennn. 9-30

Chapter 10 Initialization

udi_init_info == --------ccm-- Module initialization structure.....................coeeeeenn. 10-3
udi_primary_init_ t -------------- Primary region initialization structure.................... 10-5
udi_secondary_init t ------------ Secondary region initialization structure............... 10-7
udi_ops_init t -----------aao o Ops vector initialization structure............c.cevvveeee.. 10-9
udi_cb init t --------me o Control block initialization structure..................... 10-11
udi_cb select t ---------------- Control block selections for incoming channel diis14
udi_geb_init t ----------aaa oo Generic control block initialization properties....10-15
udi_init_context t -------------- Initial context for new regions.............cooeeeeeeeiennns 10-17
udi_limits_ t - -------c-eeaao o Platform-specific allocation and access limits....10-18
udi_chan_context t ------------- Initial context for bind channels............................ 10-20
udi_child_chan_context t -------- Initial channel context for child-bind channels...10-21

Chapter 11 Control Block Management

udi cb t - --- e Generic, least-common-denominator control blo@i -3
udi_cb alloc ------------------ Allocate a new control blocK............ccccvvvieninenn 11-5
udi_cb_alloc_dynamic ----------- Allocate a control block with variable inline layout1-7
udi_cb_alloc_batch ------------- Allocate a batch of control blocks with buffers.....11-8
udi_cbh free ------------------- Deallocates a previously obtained control block11-10
UDIL.GCB ----------------om- - Convert any control block to generic udi_cb..£..11-11
UDI_MCB ----------mmmmmmm oo - Convert a generic control block to a specific ong1-12
udi_cancel -------------------- Cancel a pending asynchronous service.call.....11-13

Chapter 12 Memory Management
udi_mem_alloc ---------------- Allocate memory for a virtually-contiguous objeci2-3

UDI Core Specification - Version 1.01 - 2/2/01 XV

List of Reference Pages by Chapter

udi_mem_free - ---------------- Free amemory Object...........cccccveeiiiiiiiiie s 12-5

Chapter 13 Buffer Management

udi buf t ----mm s Logical buffer type.........ccccoviiiiieiiiiieiiieee e 13-3
udi_xfer_constraints t - ---------- Transfer constraints structure................................. 13-5
UDI BUF_ALLOC --------------- Allocate and initialize a new buffer........................ 13-8
UDI_BUF_INSERT ---------mm--- Insert bytes into a logical buffer..............ccccccoee 13-9
UDI_BUF _DELETE -------------- Delete bytes from a logical buffer....................... 13-10
UDI BUF DUP ------mmemeee e o - Copy a logical buffer in its entirety..............c........ 13-11
udi_buf copy ------------------ Copy data from one logical buffer to another.....13-14
udi_buf write - - - - - - - - - - oo oo Write data bytes into a logical buffer................... 13-17
udi_buf read ------------------ Read data bytes from a logical buffer................. 13-19
udi_buf free ---------coo-- Free a logical buffer....................... 13-20
udi_buf _best path ------------- Select best path(s) for a data buffer.................... 13-23
udi_buf _path_alloc ------------- Buffer path handle allocation................ccccoecnnnnnes 13-24
udi_buf_path_free -------------- Buffer path handle deallocation...................ccc...... 13-25
udi_tagtype t------------------ Buffer tag type......cooo oo 13-27
udi_buf tag t------------------ Buffer tag StrUCtUre........cooeeevvieeiiiiiiie e, 13-31
udi_buf tag set ---------------- Sets a tag for a portion of buffer data.................. 13-33
udi_buf tag get---------------- Gets one or more tags from a buffer................... 13-34
udi_buf tag_compute ----------- Compute values from tagged buffer data........... 13-36
udi_buf tag_apply -------------- Apply modifications to tagged buffer data.......... 13-37

Chapter 14 Time Management

udi_time_t ------------oo - Time value StrUCtULE..........ccuueeeieiiiiiiiiiiiiiiiieeeeeeeeeee 14-3
udi_timer_start ---------------- Start a callback timer............cooo i 14-4
udi_timer_start_repeating -------- Start a repeating timer........cccccvvvvieviiieiiiiiieeieeeeeeee 14-5
udi_timer_cancel --------------- Cancel a pending timer..........cccccooeeieee e, 14-6
udi_time_current - - - - - - - - - - - - - - - Return indication of the current relative time........ 14-8
udi_time_between - - ------------ Return time interval between two points............... 14-9
udi_time_since ---------------- Return time interval since a starting paint.......... 14-10

Chapter 15 Instance Attribute Management

udi_instance_attr_type t --------- Instance attribute data-type type..........ccceeeeeeeeeenn. 15-7
udi_instance_attr get ----------- Read an attribute value for a driver instance....... 15-8
udi_instance_attr set ----------- Set a driver instance attribute value.................... 15-10
UDI_INSTANCE_ATTR_DELETE - - - - Driver instance attribute delete macra................ 15-12
udi_instance_attr_list_ t---------- Enumeration instance attribute list..................... 15-13
UDI_ATTR32_SET/GET/INIT ------- Instance attribute encoding/decoding utilities....15-14

Chapter 16 Inter-Module Communication

udi_channel_anchor ------------ Anchor a channel to the current region................. 16-2
udi_channel_spawn - ------------ Spawn a new channel...........cccocviiieeeniiiiniiiieeeeen, 16-4
udi_channel_set_context - - - - - - - - - Attach a new context to a channel endpaint........ 16-6
udi_channel_op_abort - ---------- Abort a previously issued channel operatian....... 16-7
udi_channel close -------------- Close a channel............ccccccviiviiiiiiiiiiiiiieeeee e, 16-8
udi_channel_event cb t --------- Channel event control block............................. 16-10
udi_channel_event_ind ---------- Channel event notification (env-to-driver,)........... 16-13

XVi UDI Core Specification - Version 1.01 - 2/2/01

List of Reference Pages by Chapter

udi_channel_event_complete - - - - - - Complete a channel event (driver-to-env).......... 16-14

Chapter 17 Tracing and Logging

udi_trevent t ---------ooooooo- Trace event type definition...........cccccovviiiiiieeennnnnns 17-3
udi_trace_write - --------------- Record trace data..................coooe e, 17-6
udi_log_write - ----------mmmaan- Record 10g data..........cccvveeiiieeiiiiiiieiieee e 17-7

Chapter 18 Debugging Services

udi_assert -------------------- Perform driver internal consistency check........... 18-3
udi_debug_break - - - ------------ Request a debug breakpoint at the current locatibé+4
udi_debug_printf --------------- Output a debugging message..........coooevveeeeeeeenennnns 18-5

Volumelll

Chapter 20 String/Memory Utility Functions

udi_strlen - ---------------- - Determine string length.............cooiie 20-2
udi_strcat, udi_strncat - ---------- String concatenation..............oooeee e 20-3
udi_strcmp, udi_strncmp,

udi_memecmp --------------- String/memory CompariSon...........cceeeeeeeeieeceeeeieennns 20-4
udi_strcpy, udi_strncpy,

udi_memcpy, udi_memmove --- String/Memory COPY........cceveeieieeeeeeeeiieieeeeeeeeeee e 20-5
udi_strncpy_rtrim - ------------- Copy char array to string, removing trailing spac28-6
udi_strchr, udi_strrchr,

udi_memchr - - - ------------- String/memory searching..........ccoooeceeeieeinieneinninnns 20-7
udi_memset ------------------- Memory initialization.............cccccoeiiiiiiiiiie e, 20-8
udi_strtou32 - - - ------------ - Convert string to unsigned 32-bit value................ 20-9
udi_snprintf - -----------oo---o Format printable String........cccccccvvveeiiiee 20-11
udi_vsnprintf - ----------oooo--- Format printable string with varargs.................... 20-14

Chapter 21 Queue Management Utility Functions

udi_queue t ------------------ Queue element StruCtUre..........cooevvveieeiieiieeeeeeeee, 21-3
udi_enqueue ------------------ Insert a queue element into a quele..................... 21-5
udi_dequeue ------------------ Dequeue a queue element.........ccoccvvvvveeeeeeesininnee 21-6
UDI_QUEUE_INIT,

UDI_QUEUE_EMPTY --------- Initialize queue; check if it's empty.......c.ccoeevvnneen. 21-8
UDI_ENQUEUE_XXX,

UDI_QUEUE_INSERT XXX ----- Insert an element into a qUEUE...............coeeeeeeeenn. 21-9
UDI_DEQUEUE_XXX,

UDI_QUEUE_REMOVE -------- Remove an element from a queue...................... 21-11
UDI_FIRST/ LAST/

NEXT/ PREV_ELEMENT ------- Get first/last/next/previous element in queue.....21-12
UDI_QUEUE_FOREACH ---------- Safe mechanism to walk a queue.............c...u...... 21-13
UDI_BASE STRUCT ------------ Find base of structure from pointer to member.21-14

UDI Core Specification - Version 1.01 - 2/2/01 XVii

List of Reference Pages by Chapter

Chapter 22 Endianness Management Utility Functions

UDI_BFMASK,

UDI_BFGET, UDI_BFSET ------ Bit-field helper macros...............ccocceeeiee e, 22-5
UDI_MBGET, UDI_MBGET_2/3/4 - - - Multi-byte extract helper macros..............ccccccuvvnnns 22-8
UDI_MBSET, UDI_MBSET_2/3/4 - - - - Multi-byte deposit helper macros............ccccccceeenee 22-9
UDI_ENDIAN_SWAP_16/32 ------- Byte-swap 16 or 32-bit integers..........oecvvveeeennn. 22-12
udi_endian_swap - - ------------- Byte-swap multiple data items...........ccccccceeeeiinnne 22-13
UDI_ENDIAN_SWAP_ARRAY ------ Byte-swap each element in an array................... 22-14

Chapter 24 Management Metalanguage

udi_mgmt_ ops_ t--------------- Management Meta channel ops vectar................. 24-7
udi mgmt cb t ---------------- Common Management Control Block................... 24-8
udi_usage cb t --------------- Resource indication and trace level control block4-9
udi_usage ind ----------------- Indicate desired resource usage and trace levets1-10
udi_static_usage --------------- Proxy for udi_usage_ind............ccoooeiiiiiiiiiiiiinninns 24-10
udi_usage res ----------------- Resource usage and trace level response operadici?
udi_filter_element_t ------------ Enumeration filter element structure................... 24-16
udi_enumerate_cb t ------------ Enumeration operation control block................... 24-18
udi_enumerate_req ------------- Request information regarding a child instance.24-21
udi_enumerate_no_children ------ Proxy for udi_enumerate_req........ccccceeeveveeeennnnn. 24-21
udi_enumerate_ack - ------------ Provide child instance information....................... 24-24
udi_devmgmt_req -------------- Device Management reqUest...........cccceeeeeeeeeeeennn. 24-30
udi_devmgmt_ack - ------------- Acknowledge a device management request....24-32
udi_final_cleanup_req ----------- Release final resources prior to instance unloa®4-34
udi_final_cleanup_ack ---------- Acknowledge completion of a final cleanup reqlés35

Chapter 25 Generic I/O Metalanguage

udi_gio_provider_ops_t ---------- Provider entry point 0ps VECtOr............cceeeeveeeeeeenns 25-8
udi_gio_client_ops_t ------------ Client entry point 0ps VeCtar..............evvvevevveeeeeeennen. 25-9
udi_gio bind cb t -------------- Control block for GIO binding operations........... 25-11
udi_gio_bind req --------------- Request a binding to a GIO provider................... 25-12
udi_gio_bind_ack -------------- Acknowledge a GIO binding..........ccccceeeeiieeienninnn, 25-13
udi_gio_unbind_req ------------- Request to unbind from a GIO provider.............. 25-14
udi_gio_unbind_ack ------------ Acknowledge a GIO unbind request.................... 25-15
udi_gio xfer cb t -------------- Control block for GIO transfer operations........... 25-17
udi_gio op_t ------------------ GIO operation type.........cooeveeeeeiiieeeeeee s 25-18
udi_gio_rw_params t ----------- Parameters for standard GIO read/write ops.....25-20
udi_gio xfer req --------------- Request a Generic I/O transfer..........ccoeeeivinnnnnns 25-21
udi_gio xfer ack --------------- Acknowledge a GIO transfer request.................. 25-22
udi_gio_xfer nak - -------------- Abnormal completion of a GIO transfer request25-23
udi_gio event cb t ------------- Control block for GIO event operations.............. 25-25
udi_gio_event_ind -------------- GIO event indication...........ccccceeveeeeeeeeeiiee, 25-26
udi_gio_event_ind_unused ------- Proxy for udi_gio_event_ind.........................oo. 25-26
udi_gio_event res -------------- GIO event reSPONSE.......ccoueuiiiiiiiiee et 25-27
udi_gio_event res_unused ------- Proxy for udi_gio_event_res...........cccccceeeeeeeeennnnn. 25-27

Chapter 26 Diagnostics Support
udi_gio_op_t (Diagnostics) ------- Diagnostics control operations...........ccccooovvvvvvenen. 26-3
udi_gio_diag_params_t ---------- Parameters for standard GIO diagnostic ops....... 26-5

Xviii UDI Core Specification - Version 1.01 - 2/2/01

List of Reference Pages by Chapter

Chapter 28 Metalanguage-to-Environment Interface

udi_meta_info ----------------- Metalanguage initialization structure..................... 28-3
udi_mei_ops_vec_template t - - - - - - Metalanguage ops vector template....................... 28-4
udi_mei_op_template_t ---------- Metalanguage channel op template.............c........ 28-6
udi_mei_direct_stub_t ----------- Metalanguage direct-call stub type..............cc........ 28-9
udi_mei_backend_stub_t - -------- Metalanguage back-end stub type.............ccc...... 28-10
udi_mei_enumeration_rank_func_t - Metalanguage library device enumeration ranki2@r11

UDI_MEI_STUBS --------------- Metalanguage stub generator macra.................. 28-14
udi_mei call - -------cemmoaaaon- Channel operation invocation................cc.c.evvvvneee. 28-16
udi_mei_driver_error ------------ Metalanguage violation by the driver.................. 28-18

UDI Core Specification - Version 1.01 - 2/2/01 XixX

List of Reference Pages by Chapter

XX

UDI Core Specification - Version 1.01 - 2/2/01

R

pro

“\UD g o

UDI Core Specification

Volumelll

Section 4: Core Utility Functions

UDI Core Specification - Version 1.01

r
"L (]

By U D [.'1IU

Introduction to Utility Functions 19

19.1 Overview

This section defines general utility functions (library functions) and macros available to UDI drivers.
UDI utility functions, whether defined in this section or elsewhere, are functions that are not in any way
platform or environment implementation dependent, and therefore could have been coded in the driver
itself, but are provided by the environment for driver writers’ convenience. Placing these functions in the
environment instead of each individual device driver also improves the degree of code sharing.

All environments shall provide utility functions for binary portability of drivers, even if they implement
those utilities as macros as well.

Because UDI utilities have no platform dependencies (they may be implemented differently in different
environments, but not in a way that affects cross-platform portability), the UDI utility functions may be
implemented as macros without affecting binary portability. In other words, the utility can be
implemented in various ways in the C language, but the functionality provided by the utility is in no way
platform dependent and will therefore not break binary portability if implemented as a macro.

Note, however, that for utilities defined as functions, all environments must provide external function
versions of these utilities even if they provide macro-ized versions of them. The function versions are
needed for example if a driver is compiled in an environment in which the utilities are environment
functions (external function declarationsudi.h), and then loaded into an environment in which the
utilities (in itsudi.h) are macros.

Note —Unless otherwise stated, the results of passing a NULL or other invalid pointer to a utility
function are unspecified.

The utility functions in this section are divided into three categories:
1. String/Memory Utility Functions
2. Queue Management Utility Functions
3. Endianness Management Utility Functions

Non-utility functions can have platform dependencies and therefore must generally be implemented as
external function calls. However, an ABI may specify that some functional interfaces may be partially
implemented as macros. Such macros would in turn call ABI-specified external functions to perfom any
environment-specific functionality that would not be portable across UDI environments that support this
ABI. For example, ABIs might specifydi_assert as a macro that performs the assertion check and
calls an ABI-specified function if the assertion fails.

See Section 33.4, “Binary Bindings to the Source-Level Specifications”, for additional information.

UDI Core Specification - Version 1.01 - 2/2/01 19-1
Section 4: Core Utility Functions

Overview Utilities

19-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

projecy

‘J'E‘IJ'\ U D !! [..'1IU

String/Memory Utility Functions 20

20.1 Overview

This chapter defines string and memory utility functions. The first section lists general string/memory
functions. The second section listdi_snprintf and related formatting functions.

20.2 General String/Memory Functions

UDI defines several string and memory operator functions. These functions parallel their ISO 9899 (ISO
C) counterparts but are specifically designed to be used from a UDI driver perspective. Most of these
routines are chosen and optimized for processing speed and are fully reentrant (i.e. no global writable
storage is involved).

UDI Core Specification - Version 1.01 - 2/2/01 20-1
Section 4: Core Utility Functions

udi_strlen String/Memory Utilities
NAME udi_strlen Determine string length
SYNOPSIS | #include <udi.h>
udi_size t udi_strlen (const char * s)
ARGUMENTS S is a pointer to a null-terminated string.
DESCRIPTION Theudi_strlen function scans the specified string to locate the null-

RETURN VALUES

terminator and returns the number of bytes in the string (not including the
terminator).

The udi_strlen function returns the number of bytes in the string

20-2

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities

udi_strcat, udi_strncat

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES

udi_strcat, udi_strncat String concatenation

#include <udi.h>

char * udi_strcat (
char * s1,

const char * s2),

char * udi_strncat (
char * s1,
const char * s2,
udi_size t n);
si is a pointer to the destination string.
s2 is a pointer to the source string.
n is the destination string maximum length (in bytes).

The udi_strcat andudi_strncat functions are used to append the
contents of string2 to the end of the existing strirgf , overwriting the null-
terminator character at the endsff and ending with a new null-terminator
character. The strings must not overlap andsthestring must have enough
space for the result.

The udi_strncat form may be used to limit the size of the result: this
function will stop copying bytes frora2 to s1 once the length a1 has
reachedn-1 bytes; a null-terminator will be supplied as théh byte if the
end ofs2 has not been reached.

The udi_strcat andudi_strncat
resulting null-terminated stringZ.

functions return a pointer to the

UDI Core Specification - Version 1.01 - 2/2/01 20-3

Section 4: Core Utility Functions

udi_strcmp, udi_strncmp, udi_memcmp

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES

udi_strcmp, udi_strncmp,

udi_memcmp String/memory comparison

#include <udi.h>

udi_shit8 t udi_strcmp (
const char * s1,
const char * s2),

udi_shit8 t udi_strncmp (
const char * s1,
const char * s2,
udi_size t n);

udi_shit8 t udi_memcmp (
const void * s1,
const void * s2,
udi_size t n);

s1 is a pointer to the first character string or memory area.
s2 is a pointer to the second character string or memory area.
n is the maximum size to be compared (in bytes).

Theudi_strcmp andudi_strncmp functions are used to compare the
contents of two null-terminated character strings. The strings are compared on
a byte-by-byte basis and a comparison value is returned when the first
differing character or the end of the strings is reached.

For theudi_strncmp function, comparison halts after comparimg
characters unless the end of either string has already been reached. If both
strings are identical throughout the firsicharacters, thadi_strncmp

function return value indicates that the strings are equal, regardless of any
remaining content.

The udi_memcmp function operates in a similar mannerual_strncmp

except that null characters do not terminate the comparison, which will always
continue until the specified bytes have been compared or a difference has
been reached.

These functions return an integer value less than, equal to, or greater than zero
if s1 (or the firstn bytes thereof) is lexicographically less than, equal, to, or
greater thars2. This comparison is made by comparing each unsigned byte
value until there is a mismatch or all bytes compare equal.

20-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities

udi_strepy, udi_strncpy,

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES

udi_strcpy, udi_strncpy,

udi_memcpy, udi_memmove String/memory copy

#include <udi.h>

char * udi_strcpy (
char * s1,

const char * s2);

char * udi_strncpy (
char * s1,
const char * s2,
udi_size t n);
void * udi_memcpy (

void * s1,

const void * s2,

udi_size t n);
void * udi_memmove (
void * s1,
const void * s2,
udi_size t n);

s1 is a pointer to the destination string or memory area.
s2 is a pointer to the source string or memory area.
n is the number of bytes to copy fros® to s1.

Theudi_strcpy andudi_strncpy functions copy the character array
string pointed to bys2 (including the null-terminator character) to the
character array string pointed to by. The strings must not overlap and the
destination stringsI must be large enough to receive the copy.

Theudi_strncpy function will stop copying once the specifiachumber

of bytes has been copied or when a null terminator is encountered in the s2
string, whichever comes first. If there is no null byte encountered among the
first n bytes of thes2 string, the result i1 will not be null terminated. In

the case where the length &2 is less tham, the remainder o$1 will be
padded with null characters.

Theudi_memcpy function will operate in the same manner as the
udi_strncpy function except that null characters (\0’) will be ignored and
n bytes will always be copied into tisd string. The memory areas must not
overlap.

The udi_memmove function is similar toudi_memcpy but allows
overlapping regions; it operates as if the contents o6tharea were first
copied to a temporary area and then copied back tetharea.

These functions return a pointer to the destination ssihg

UDI Core Specification - Version 1.01 - 2/2/01 20-5

Section 4: Core Utility Functions

udi_strncpy _rtrim String/Memory Utilities

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

udi_strncpy_rtrim Copy char array to string, removing
trailing spaces

#include <udi.h>

char * udi_strncpy_rtrim (
char * s1,
const char * s2,
udi_size t n);
si is a pointer to the destination character array string.
s2 is a pointer to the source character array, which must be at least

n-bytes in size.

n is the number of bytes i82 to be operated on (i.e., trailing
spaces removed and the remaining bytes copied).

Theudi_strncpy_rtrim function copies the first bytes of the character
array pointed to by2, with trailing spaces removed, to the character array
string pointed to bys1. The resultings1 will be null terminated, with a null
character (\0’) appended if necessary. The character arrays pointedsio by
ands2 must not overlap and the destination arsdymust be large enough to
receive the copy (i.e., up tot1 bytes in size).

The source array pointed to by is operated on as anbyte character array;
any embedded null characters will be copied along with other non-trailing
blank characters. For examplesi® is a 10-byte array containing the 4
characters “abcd”, followed by \0’, followed by “efghi”, the resultiag will
contain the same 10 characters with an additional \0’ appended at the end.
Similarly, if s2 is a 10-byte array containing the 9 characters “abcdefghi”
followed by “\0’, the resultings1 will contain these 10 characters followed by
an additional \0'.

20-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities udi_strchr, udi_strrchr,

NAME udi_strchr, udi_strrchr,
udi_memchr String/memory searching

SYNOPSIS | #include <udi.h>

char * udi_strchr (
const char * S,

char c¢);

char * udi_strrchr (
const char * s,
char ¢);

void * udi_memchr (
const void * s,
udi_ubit8 t c,
udi_size t n);

ARGUMENTS s is a pointer to the string or memory area to be searched.
c is the character to search for.
n is the maximum number of bytes to search.

DESCRIPTION The udi_strchr function returns a pointer to the first occurrence of the
characterc in the null-terminated string.

The udi_strrchr function return a pointer to the last occurrence of the
characterc in the null-terminated string.

Theudi_memchr function returns a pointer to the first occurrence of the
(unsigned character) bytein the specified memory region, regardless of null
bytes.

RETURN VALUES These functions return a pointer to the matched character or NULL if the
character is not found.

UDI Core Specification - Version 1.01 - 2/2/01 20-7
Section 4: Core Utility Functions

udi_memset String/Memory Utilities

NAME udi_memset Memory initialization
SYNOPSIS | #include <udi.h>

void * udi_memset (

void * s,
udi_ubit8 t c,
udi_size t n);
ARGUMENTS S is a pointer to the memory area to be initialized.
c is the unsigned 8-bit value to use for initialization.
n is the size of the memory area (in bytes).

DESCRIPTION Theudi_memset function is used to fill in the first bytes of the memory
area pointed to by the argument with the unsigned byte valuecof

RETURN VALUES This function returns a pointer to the memory asea

20-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities udi_strtou32

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUE

udi_strtou32 Convert string to unsigned 32-bit
value

#include <udi.h>

udi_ubit32_t udi_strtou32 (
const char * s,
char ** endptr
int base);

s is a pointer to the null-terminated string to be converted.

endptr optionally points to a character pointer in which a pointer to the
first unconverted character is stored.

base is the base radix for interpretation of the numeric string.

The udi_strtou32 function is similar to its ISO C strtoul counterpart in
that it converts the string pointed to byto an unsigned 32-bit integer value
according to the givebase radix which must be between 2 and 36 inclusive,
or be the special value of 0.

The string must begin with an arbitrary amount of whitespace (zero or more
space, tab, carriage-return, or line-feed characters in any order) followed by a
single optional ‘+’ or ‘-’ sign.

If base is between 2 and 36, inclusive, it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and “0Ox” or “0X” is
ignored if base is 16.

If base is zero, the string itself determines the base as follows: After an
optional leading sign, one or more leading zeros indicates octal conversion,
and a leadingOx” or “0X" indicates hexadecimal conversion. Otherwise,
decimal conversion is used.

The remainder of the string is converted to an unsigned 32-bit integer value in
the obvious manner, stopping at the first character that is not a valid digit in
the given base. (In bases above 10, the letter ‘A’ in either upper or lower case
represents 10, ‘B’ represents 11, and so forth, with ‘Z’ representing 35.)

If endptr is not NULL, udi_strtoul stores a pointer to the first invalid
character into &ndptr . (Thus, if *s is not \0’ but **endptr is \0’ on
return, the entire string was a valid numeric.)

Theudi_strtoul function returns the result of the conversion as an
unsigned 32-bit value. If the input string contained a leading minus sign (*-"),
the result will be as the appropriate negative number cast to a

udi_ubit32_t unsigned type.

If the numeric string would cause a 32-bit integer overflow then the resulting
value is unspecified.

UDI Core Specification - Version 1.01 - 2/2/01 20-9
Section 4: Core Utility Functions

String Formatting Functions String/Memory Utilities

20.3 String Formatting Functions

The functions described in this section assist in formatting strings with embedded parameters. The
functions described here parallel their ISO C counterparts, but are not identical.

20-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities udi_snprintf

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

udi_snprintf Format printable string
#include <udi.h>

udi_size t udi_snprintf (
char *s,
udi_size t max_bytes
const char * format

-);

s is a pointer to the target buffer for the formatted output, which is
a null-terminated printable string.

max_bytes is the maximum number of bytes to be writtes tincluding the
null terminator.

format is the format string, which controls the formatting of the output
string.

are the remaining arguments, which provide the values used for
the formatting codes.

The udi_snprintf routine is used to generate a formatted string from a set
of input arguments and values. The operation of this utility is comparable to
the ISOsnprintf function with the exceptions noted and supporting only
the format codes and modifiers documented below.

All format specifications are of the foredmfwherem is an optional modifier
of the form [[0,-] nn] andf is one or more format codes.

The following format modifiers are defined:

Format
Modifier Output Control

nn minimum field width as an unsigned decimal number. (e.g.
%4x prints a hexadecimal number taking up 4 or more digits).
By default, the output is preceded by spaces to meet the
minimum field width unless changed by other format
modifiers.
This modifier applies to the %c format code as well; in this
case the single character is preceded by the necessary number
of spaces (or otherwise adjusted according to any other
modifiers present).

0 leading characters needed for minimum field width
compliance will be padded with zeros instead of spaces when
used with numeric formats (e.g. %04x for a value of 12 will
output ‘000c).

- left-justify within field width (e.g. %-4x for a value of 12 will
output ‘c’ followed by 3 spaces. It is not valid to use the *
and ‘0’ modifiers together.

UDI Core Specification - Version 1.01 - 2/2/01 20-11
Section 4: Core Utility Functions

udi_snprintf

String/Memory Utilities

The udi_snprintf

function supports the following format codes chosen to

provide fast execution and common utility:

Format Code Output generated

%X, %X

unsigned hexadecimal udi_ubit32_t. The alphanumeric
characters output as a result of this format will be shown in
either lower or upper case as specified by the case of the
format code.

%d, %u

signed and unsigned decimal udi_shit32_t and udi_ubit32_t

%hx, %hX

unsigned hexadecimal udi_ubit16_t

%hd, %hu

signed and unsigned decimal udi_shit16_t and udi_ubit16_t

%bx, %bX

unsigned hexadecimal udi_ubit8_t

%bd, %bu

signed and unsigned decimal udi_shit8_t and udi_ubit8_t

%p, %P

hexadecimal pointer value, size as appropriate for the host
machine

%a, %A

64-bit bus address value (DMA address type
udi_busaddr64_t; see the description of the udi_scgth_t
structure in the UDI Physical I/O Specification) printed as a
hexadecimal value in lower or upper case, respectively. Not
supported in environments that do not support the Physical
I/O Services.

%cC

single printable character

%s

null-terminated string

%<istring>

Value bitmask formatter. This format code outputs a
formatted string interpretation of a bitmask. The argument
for this format code is a udi_ubit32_t value; the bitmask
interpretation of that value is based on igteing

information as described here, where bit number 0 is the
least-significant bit in the value:

istring := [,] bitspec{, bitspeg [,]

bitspec:= [~] bithum = <string> |

bitnum - bitnum = <string> fieldspec...]
bitnum:= <decimal number 0-31>
fieldspec:= : <unsigned decimal number><string>

The output is delimited by ‘<* and ‘>’ characters. If bitspec
is specified as a singldtnum (the first form) then the
associated string is printed if the specified bit is set (or
printed if the bit is not set if ~ is specified); otherwise
nothing is printed.

If bitspec is specified as a range of bits (the second form)
then the associated string will be output followed by ‘=’
and then the hexadecimal value of the specified range of
bits; if the value also matches any of the optional fieldspec
values, the fieldspec string is printed instead of the value.

Once formatting has reached the specifiealx_bytes output length fors,

20-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities udi_snprintf

RETURN VALUES
EXAMPLES

this function returns without processing the remainder ofdheat or other
arguments. A null terminator character will always be placed at the end of the
generated string is.

The number of bytes ig, not including the null terminator.
The following code segment:

udi_snprintf(s, 256, “%s %-2¢ %d: 0x%08x "
“0p<15=Active,14=DMA Ready,13=XMIT,”
“~13=RCV,0-2=Mode:0=HDX:1=FDX"
“:2=Sync HDX:3=Sync FDX:4=Coded,”
“3-6=TX Threshold,7-10=RX Threshold>",
“Register”, ‘#, 0, 0xc093, 0xc093);

would result in the following contents of strisg(without line breaks):

“Register # 0: 0x0000c093 <Active, DMA Ready, RCV,
Mode=Sync FDX, TX Threshold=2, RX Threshold=1>"

The following code segment will produce different output based on the
architecture on which it is run:

udi_snprintf(s, 256, “Stored at 0x%p”, &var);
will produce one of the following output strings, depending on pointer size:

16-bit (e.9.8086): “Stored at 0x801c”
32-bit (e.g. PA-RISC):“Stored at 0x505d806f"
64-bit (e.g.Alpha): “Stored at 0x300040cc6069f0c0”

UDI Core Specification - Version 1.01 - 2/2/01 20-13
Section 4: Core Utility Functions

udi_vsnprintf

String/Memory Utilities

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES
EXAMPLE

udi_vsnprintf Format printable string with varargs
#include <udi.h>

udi_size t udi_vsnprintf (
char *s,
udi_size t max_bytes
const char * format |
va_list ap);

s is a pointer to the target buffer for the formatted output, which is
a null-terminated printable string.

max_bytes is the maximum number of bytes to be writtes tincluding the
null terminator.

format is the format string, which controls the formatting of the output
string.
ap is the varags argument list. (Thkea_list type definition is

provided by theudi.h header file.)

The udi_vsnprintf routine is used to generate a formatted string from a

set of input varargs arguments. This utility operates in the same manner as the
udi_snprintf utility routine except that it uses a previously obtained

varargs argument list instead of a sequence of actual arguments as parameters
to this routine.

This routine is useful if the string formatting is to be done from within a
routine that has already been passed the actual sequence of arguments and can
only refer to those arguments via the varargs functionality.

The number of bytes ig, not including the null terminator.

#include <udi.h>

udi_size_t mydriver_snprintf(char *s,
udi_size_t max_bytes, const char *format, ...)

{

static char prefix_str[] = “From MYDRIVER: “;
#define PREFIX_LEN (sizeof(prefix_str)-1)

va_list arglist;

udi_size_t retval;

va_start(arglist, format);

udi_assert(max_bytes > PREFIX_LEN);

udi_strcpy(s, prefix_str);

retval = udi_vsnprintf(s + PREFIX_LEN,
max_bytes - PREFIX_LEN,
format, arglist);

va_end(arglist);

return retval;

}

| = mydriver_snprintf(“Byte 1 = %02bX, “
“pktlen = %hu\n”, *pkt->data, pkt->len);

20-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

String/Memory Utilities udi_vsnprintf

REFERENCES | udi_snprintf

UDI Core Specification - Version 1.01 - 2/2/01 20-15
Section 4: Core Utility Functions

udi_vsnprintf String/Memory Utilities

20-16 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

R A

Queue Management Utility Functions 21

21.1 Overview

This chapter defines queue management utility functions.

UDI Core Specification - Version 1.01 - 2/2/01 21-1
Section 4: Core Utility Functions

Queue Management Queue Utilities

21.2 Queue Management

The queuing interfaces are designed using macros built on top of two basic functional interfaces in order
to provide a high-performance and fully functional set of queue management interfaces. The interfaces
are provided for the convenience of the UDI driver writer for driver-internal queuing. The driver may
design its own internal queuing routines and algorithms, but it is recommended that, where applicable,
the driver use these interfaces as a high-performance standard queuing interface. It is expected that the
interfaces provided here will serve several common queuing needs in UDI drivers, helping ease driver
development effort.

21.2.1 Queue Element Structure

The queuedefined in UDI are circular doubly-linked lists that are linked togetheodiaqueue_t
structures (known agueue elemen)ss depicted in Figure 21-1.

list head elementl element2 e elementN
next — p next ——p next ——p ... —p next
[47 prev 4—— prev 4——— prev 44— - - 4—— prev 41
Figure 21-1

A UDI queueis composed of hst headelementand zero or morgueueelementsThe queue is referred

to via the list head, which is the only permanent piece of memory associated with a given queue: an
empty queue is composed of a list head linked to itself. UDI drivers will typically instantiate internal
queues in their region data area or channel contexts by pladingueue_t list head structures in

their region contexts, and calling UDI_QUEUE_INIT on each queue before operating on it.

Additional UDI queue terminology: “head of queue” and “first element in queue” are equivalent and
refer to the element immediately following the list head. Similarly for “tail of queue” and “last element
in queue,” which refer to the element immediately preceding the list head.

21-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities udi_queue t

NAME udi_queue_t Queue element structure

SYNOPSIS | #include <udi.h>

typedef struct udi_queue {
struct udi_queuerfext ;
struct udi_queueprev ;
} udi_queue_t ;

MEMBERS next is a pointer to the next element in the queue.
prev is a pointer to the previous element in the queue.

DESCRIPTION Theudi_queue_t structure is the queue element structure. UDI queues are
linked together via these structures. The list head used to reference a
particular queue is also a structure of this type, and is the only permanent
piece of memory associated with a given queue.

UDI Core Specification - Version 1.01 - 2/2/01 21-3
Section 4: Core Utility Functions

Queuing Functions Queue Utilities

21.2.2 Queuing Functions

There are two queuing functions defined in UDI that provide high-performance basic queuing and
dequeuing functionalityudi_enqueue , which inserts a specified element at the head of the specified
gueue, andidi_dequeue , which removes the specified element from the queue. The macros that
follow build on top of these two functions to provide a rich set of queue management utilities.

21-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities udi_enqueue

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_enqueue Insert a queue element into a queue
#include <udi.h>

void udi_enqueue (
udi_queue_tnew el ,
udi_queue_told el);

new_el is a pointer to a queue element.
old_el is a pointer to the queue’s list head or an element already on the
queue.

udi_enqueue insertsnew_el afterold el in the queue to which
old_el belongs.

udi_enqueue shall be equivalent to the following implementation:

void udi_enqueue(
udi_queue_t *new_el,
udi_queue_t *old_el)

{
new_el->next = old_el->next;
new_el->prev = old_el;
old_el->next->prev = new_el;
old_el->next = new_el,

}

udi_dequeue, udi_queue _t

UDI Core Specification - Version 1.01 - 2/2/01 21-5
Section 4: Core Utility Functions

udi_dequeue Queue Utilities

NAME udi_dequeue Dequeue a queue element
SYNOPSIS | #include <udi.h>

udi_queue_t adi_dequeue (
udi_queue_telement);

ARGUMENTS element is a pointer to a queue element

DESCRIPTION udi_dequeue removeselement from its queue and returns it in the
function return. The specifiedlement must be linked into a UDI queue at
the timeudi_dequeue is called, and must not be the list head.

The next andprev fields of element are not modified.
udi_dequeue shall be equivalent to the following implementation:

udi_queue_t *udi_dequeue(
udi_queue_t *element)

element->next->prev = element->prev;
element->prev->next = element->next;
return element;

RETURN VALUES The element passed in is returned.
REFERENCES | udi_enqueue, udi_queue_t

21-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities Queuing Macros

21.2.3 Queuing Macros

The macros defined in this section are general queue management macros used for the queuing of
arbitrary structures linked together via embedddd queue_t structures. The behavior is
indeterminate if thdisthead passed to any of these macros other than UDI_QUEUE_INIT has not
been previously initialized with UDI_QUEUE_INIT, or if ttedement orold_el parameter passed to
any of the macros other than UDI_ENQUEUE_HEAD/TAIL and UDI_QUEUE_FOREACH is not
currently linked into a UDI queue.

UDI Core Specification - Version 1.01 - 2/2/01 21-7
Section 4: Core Utility Functions

UDI_QUEUE_INIT, UDI_QUEUE _EMPTY Queue

NAME UDI_QUEUE_INIT,
UDI_QUEUE_EMPTY Initialize queue; check if it's empty

SYNOPSIS | #include <udi.h>

#define UDI_QUEUE_INIT(listhead)\
((listhead)->next = (listhead)->prev =(listhead))

#define UDI_QUEUE_EMPTVisthead)\
((listhead)->next == (listhead))

ARGUMENTS listhead is a pointer to a list head element.

DESCRIPTION UDI_QUEUE_INIT initializes the queue’s list head and must be called before
any other operations are performed on the queue.

UDI_QUEUE_EMPTYs used to determine if the queue specified by
listhead is empty, based on the boolean return value (nhon-zero if empty;
zero if non-empty).

These macros must be called as if they, respectively, had the following
functional interfaces:

void UDI_QUEUE_INIT (
udi_queue_t * listhead),

udi_boolean_t UDI_QUEUE_EMPTY(
udi_queue_t * listhead)

REFERENCES | udi_queue_t

21-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities UDI_ENQUEUE XXX,

NAME UDI_ENQUEUE_ XXX,
UDI_QUEUE_INSERT_XXX Insert an element into a queue

SYNOPSIS | #include <udi.h>

#define UDI_ENQUEUE_HEADisthead , element)\
udi_enqueue(element, listhead)

#define UDI_ENQUEUE_TAIL listhead , element)\
udi_enqueue(element, (listhead)->prev)

#define UDI_QUEUE_INSERT_AFTERoI/d el , new el)\
udi_enqueue(new_el, old_el)

#define UDI_QUEUE_INSERT_BEFOR®oId el , new_ el)\
udi_enqueue(new_el, (old_el)->prev)
ARGUMENTS listhead is a pointer to a list head element.

element is a pointer to a queue element.

old_el is a pointer to a queue element that is currently linked into a UDI
queue.

new_el is a pointer to a queue element that is not currently linked into a
UDI queue.

DESCRIPTION UDI_ENQUEUE_HEAInsertselement at the head of the queue specified
by listhead . This macro is equivalent to theli_enqueue function.

UDI_ENQUEUE_TAILappendslement to the tail of the queue specified
by listhead

UDI_QUEUE_INSERT_AFTERnserts the queue elememew_el after the
elementold el

UDI_QUEUE_INSERT_BEFORIhserts the queue elememéw el in front
of the elemenbld_el

These macros must be called as if they, respectively, had the following
functional interfaces:

void UDI_ENQUEUE_HEADX
udi_queue_t * listhead
udi_queue_t * element),

void UDI_ENQUEUE_TAIL (
udi_queue_t * listhead
udi_queue_t* element),

void UDI_QUEUE_INSERT_AFTER(
udi_queue_t* old el ,
udi_queue_t* new el);

UDI Core Specification - Version 1.01 - 2/2/01 21-9
Section 4: Core Utility Functions

UDI_ ENQUEUE_XXX, UDI_ QUEUE_INSERT XXX

void UDI_QUEUE_INSERT_BEFORK
udi_queue_t* old el ,
udi_queue_t* new el);

REFERENCES | udi_enqueue

21-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities UDI_ DEQUEUE XXX,

NAME UDI_DEQUEUE_ XXX,
UDI_QUEUE_REMOVE Remove an element from a queue

SYNOPSIS | #include <udi.h>

#define UDI_DEQUEUE_HEADiIsthead)\
udi_dequeue((listhead)->next)

#define UDI_DEQUEUE_TAIL listhead)\
udi_dequeue((listhead)->prev)

#define UDI_QUEUE_REMOVYE/ement) \
((void)udi_dequeue(element))

ARGUMENTS listhead is a pointer to a list head element.
element is a pointer to a queue element.

DESCRIPTION UDI_DEQUEUE_HEABemoves theelement at the head of the queue
specified bylisthead , and returns it to the caller.

UDI_DEQUEUE_TAILremoves theelement at the tail of the queue
specified bylisthead , and returns it to the caller.

UDI_QUEUE_REMOWEmMoveslement from its queue. With the exception
that there is no return value, this macro is equivalent tadhedequeue
function. Since the caller is specifying the element to remove, it is expected
that normal usage would be to call this macro without expecting a return
value, so the function return is voided out.

These macros must be called as if they, respectively, had the following
functional interfaces:

udi_queue_t * UDI_DEQUEUE_HEAD
udi_queue_t * listhead)

udi_queue_t * UDI_DEQUEUE_TAIL(
udi_queue_t * listhead)

void UDI_QUEUE_REMOVE
udi_queue_t * element),

REFERENCES | udi_dequeue

UDI Core Specification - Version 1.01 - 2/2/01 21-11
Section 4: Core Utility Functions

UDI_FIRST/LAST/NEXT/PREV_ELEMENT Queue

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_FIRST/ LAST/
NEXT/ PREV_ELEMENT Get first/last/next/previous element
in queue

#include <udi.h>

#define UDI_FIRST_ELEMENT listhead)\
((listhead)->next)

#define UDI_LAST_ELEMENT listhead)\
((listhead)->prev)

#define UDI_NEXT_ELEMEN{element) \
((element)->next)

#define UDI_PREV_ELEMEN{Telement) \
((element)->prev)

listhead is a pointer to a list head element.
element is a pointer to a queue element.

UDI_FIRST_ELEMENTTreturns a pointer to the first element in the queue
specified bylisthead

UDI_LAST_ELEMENTreturns a pointer to the last element in the queue
specified bylisthead

UDI_NEXT_ELEMENTeturns a pointer to the next queue element
immediately afterelement .

UDI_PREV_ELEMENTeturns a pointer to the queue element immediately
precedingelement .

These macros must be called as if they, respectively, had the following
functional interface:

udi_queue_t * UDI_FIRST_ELEMENT (
udi_queue_t * listhead)

udi_queue_t* UDI_LAST ELEMENT(
udi_queue_t * listhead)

udi_queue_t* UDI_NEXT_ELEMENT{
udi_queue_t * element),

udi_queue_t * UDI_PREV_ELEMENT
udi_queue_t* element),

udi_queue_t

21-12

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Queue Utilities UDI QUEUE FOREACH

NAME UDI_QUEUE_FOREACH Safe mechanism to walk a queue
SYNOPSIS | #include <udi.h>
#define UDI_QUEUE_FOREAQHisthead , element , tmp)\
for ((element) = UDI_FIRST_ELEMENT((listhead); \
((tmp) = UDI_NEXT_ELEMENT (element)), \
((element) != (listhead)); \
(element) = (tmp)))
ARGUMENTS listhead is a pointer to a list head element.
element is a queue element pointer variable that may be uninitialized on
entry, and is set successively to each element in the queue.
tmp is a queue element pointer variable for temporary storage in the
loop.
DESCRIPTION UDI_QUEUE_FOREACWalks through the elements in the queue specified by
listhead , settingelement successively to each element in the queue,
beginning at the head and continuing to the tail of the queue. This provides a
safe mechanism to walk through each element in a queue, and do operations
on each element (including removing it from the queue and re-queuing it in
another queue) without affecting the traversal to the next element in the queue.
The UDI_QUEUE_FOREACHacro produces an iteration (loop) statement
and hence must be followed by a C statement which is the action to take for
each iteration through the loop (e.g., an action on each element in the queue).
The parameters to this macro must have the following type definitions:
UDI_QUEUE_FOREACH
udi_queue_t * listhead
udi_queue_t * element ,
udi_queue_t* tmp);
EXAMPLES The following code reverses the elements in a queue:
{
udi_queue_t *elem, *tmp;
udi_queue_t *head = ®ion_data->my_queue;
UDI_QUEUE_FOREACH(head,elem,tmp) {
UDI_ENQUEUE_HEAD(udi_dequeue(elem))
}
}
REFERENCES | udi_queue_t
UDI Core Specification - Version 1.01 - 2/2/01 21-13

Section 4: Core Utility Functions

UDI BASE STRUCT Queue Utilities

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUE

UDI_BASE_STRUCT Find base of structure from pointer
to member

#include <udi.h>

#define UDI_BASE_STRUC[\
memberp, struct_type, member_name)\
((struct_type *)((char *)(memberp) - \
offsetof(struct_type, member_name)))

memberp is a pointer to a member of a structure.
struct_type is the ISO C data type of the structure.

member_name is the name of the member within the structure.

UDI_BASE_STRUCTtakes a pointer to a structure memhbeemberp, and
returns a point to the base of the structure.

This has general utility beyond queueing, but is particularly useful with the
gueueing utilities, when adi_queue_t is embedded beyond the first
member of a structure.

This macro returns a pointer to the base of the structure, of type
(struct_type *).

21-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

R

pro

“\UD g i

Endianness Management Utility Functions 22

22.1 Overview

This chapter defines endianness management utility functions.

UDI Core Specification - Version 1.01 - 2/2/01 22-1
Section 4: Core Utility Functions

Endianness Management Endianness Utilities

22.2 Endianness Management

UDI drivers are portable across big- and little-endian platforms. Endianness of data must be managed in
any structure that requires a specific endianness which is potentially different from the driver’s
endianness. This includes hardware protocol-defined structures such as SCSI commands (which are big
endian) or networking headers (which are generally big endian), shared control structures (DMA-able
structures which are shared between the driver and the device, are typically in system memory and in the
endianness of the device), or device memory (registers, card RAM, etc.).

UDI physical I/O drivers access device memory using an access handle with which the driver associates
its device endianness, allowing the environment to implicitly take care of any needed endian conversions
(see the Physical I/O Specification). The other two cases (protocol structures and shared control
structures) are directly accessed by the driver using a pointer and therefore require direct involvement of
the driver in the managing of the structure endianness.

Protocol structures and shared control structures have different characteristcs with respect to endianness
handling in UDI. First, protocol structures have a required endianness that is known at compile time,
whereas shared control structures have a required endianness which in general is only known at runtime
(due to the impacts of intervening bus bridges). Second, the relationship between driver endianness and
protocol structure endianness is not indicated in any UDI-defined manner, whereas a shared control
structure has a must_swap flag associated with it when it is allocated.

These characteristics lead to different approaches in the construction of the corresponding C structure
definitions, as described below.

22.2.1 Rules for C Structure Definitions

As specified in Section 9.8, “Structures Requiring a Fixed Binary Representation,” on page 9-14, any C
structure definitions used to represent hardware structures must be constructed at least according to the
following rules:

1. Must use only UDI specific-length types on naturally aligned boundaries within (offsets
from the beginning of) the structure. Bit fields are not allowed (see the warning in Section
9.8 for details).

2. Every byte in the structure must be accounted for.

These rules should generally be sufficient for the needs of shared control structures, combined with
appropriate byte-swapping based on the must_swap flag. However, since protocol structures have no
associated must_swap flag or other UDI-defined swapping indication, protocol structures should be
handled by the driver using the further rules defined in the byte-by-byte layout method below.

22.2.1.1 Byte-by-byte structure layout

In this method, the C structure definition for a hardware-defined structure is laid out byte-by-byte,
splitting up multi-byte integer quantities and combining adjoining integer quantities that share a byte.
This means that each field in the structure must be either exactly one byte in size or an array of byte-
sized elements.

To help the driver deal with these structures, bit-field, multi-byte, and other helper utilities are provided
in Section 22.2.2 below. The multi-byte helper utilities impose a rule on the naming of fields making up
a multi-byte quantity in these structures: the fields must all be named with a common name followed by

22-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Utilities Endianness Management

a digit 0..N, where myfieldO is the least significant byte of the multi-byte quantity, myfield1 the next
most significant byte, and myfieldN is the most significant byte. See “Multi-Byte Macros” below for
details.

For example, a 10-byte SCSI command might look like the following when defined naturally in SCSI’s
big endian format, using non-portable bit fields for a particular compiler. This structure would only work
correctly on a big-endian platform, with ISO C compilers that make appropriate assumptions about bit
field order, and on platforms that don’t require natural alignment and in whiait @ 32 bits.

typedef struct {
udi_ubit32_t c10_opcode:8; /* command code */
udi_ubit32_t ¢10 lun:3; /* LUN */
udi_ubit32_t ¢10_dpo:1; /* Disable Page Out */
udi_ubit32_t ¢10_fua:l; [* Force Unit Access */
udi_ubit32_t ¢10_rsvd1:2; /* Reserved: must be zero */
udi_ubit32_t ¢10_reladr:1; /* Addr Relative to prev linked cmd */
udi_ubit32_t c10 [ba3:8; /* LBA - high order byte */
udi_ubit32_t c10 |ba2:8; /* LBA - next order byte */

udi_ubitl6 t c¢10_Ibao; /* LBA - low order two bytes */
udi_ubit8_t c10_rsvd2; [* Reserved: must be zero */
udi_ubitl6_t ¢10_len; [* transfer length */

udi_ubit8 t c10_ctrl; [* control byte */

}udi_scsi_cdb_10 _t;

When converted using the byte-by-byte layout rules this becomes:

typedef struct {
udi_ubit8 t c¢10_opcode; /[* Command code */
udi_ubit8 t c10_flags; /* Flags */
udi_ubit8 t c10 Iba3; /* LBA - high order byte */
udi_ubit8_t ¢10_Iba2; /* LBA - next order byte */
udi_ubit8_t ¢10_Ibal; /* LBA - next order byte */
udi_ubit8_t ¢10_IbaO; /* LBA - low order byte */
udi_ubit8 t c10 rsvdi, /* Reserved: must be zero */
udi_ubit8 t c¢10_leni,; [* Transfer length - high order byte */
udi_ubit8 t ¢10_lenO; [* Transfer length - low order byte */
udi_ubit8_t ¢10_ctrl; [* Control byte */
}udi_scsi_cdb_10_t;

which is completely portable, across any platform, big or little endian, with or without natural
alignment, with any ISO C compiler, etc. Using the helper macros, the following “build cdb” macro
could be defined:

#define UDI_SCSI_BUILD_CDB_10(cdb, opcode, data_len, block_num, \
lun,dpo, fua, reladr) \
{ \
(cdb)->c10_opcode = opcode; \
(cdb)->c10_flags = ((lun)<<5) | (((dpo)<<4) | ((fua)<<3) |\
(reladr)); \
UDI_MBSET(4, cdb, c10_lba, block_num);\
UDI_MBSET(2, cdb, c10_len, data_len);\
(cdb)->c10_ctrl = 0; \

UDI Core Specification - Version 1.01 - 2/2/01 22-3
Section 4: Core Utility Functions

Helper Macros Endianness Utilities

22.2.2 Helper Macros

These macros are provided for use in the handling of hardware structures built using the byte-by-byte
structure layout, which typically is only used with hardware protocol structures. However these macros
should be useful in general with any hardware structures that have non-naturally-aligned multi-byte
guantities (or in general any multi-bit quantity that isn’t naturally aligned on a power-of-two byte
boundary) because such quantities will need to be split up to meet the general requirements on the
definition of hardware structures as given in Section 9.8.

22.2.2.1 Bit-field Macros

The bit-field macrosuUDI_BFMASK UDI_BFGET, andUDI_BFSET, are used to perform basic operations
on bit-fields within audi_ubit8 t variable or valueuDI_BFMASKIs used to create a bit mask (all 1's
in the bit field, zeroes elsewher&)Dl_BFGET extracts a bit field; andDI_BFGET deposits a value into
a bit field.

22-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Ultilities UDI BFMASK, UDI BFGET,

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

UDI_BFMASK,
UDI_BFGET, UDI_BFSET Bit-field helper macros

#include <udi.h>

#define UDI_BFMASKp, len)\
((AU<<(len))-1) << (p))

#define UDI_BFGET(val , p, len)\
(((udi_ubit8_t)(val) >> (p)) & ((AU<<(len))-1))

#define UDI_BFSET(val , p, len, dst)\
((dst) = ((dst) & ~UDI_BFMASK(p,len)) | \
(((udi_ubit8_t)(val) << (p)) &\
UDI_BFMASK(p,len)))

p is the bit position in the byte of the least significant bit in the bit
field. The bit position p is O for the least significant bit in the
byte, 7 for the most significant bib.< p < 7.

len is the size in bits of the bit field. <len < 8-p.

val is audi_ubit8 t variable or value.

dst is audi_ubit8 t variable into which a value will be
deposited.

Bit-fields in these macros refer to sub-divisions of a byte and are defined by a
2-tuple p,len) wherep is the bit position in the byte of the least significant
bit in the bit field, anden is the size in bits of the bit field. The bit position

p is 0O for the least significant bit in the byte, 7 for the most significant bit.
Note that0 < p<7 andl <len < 8-p.

UDI_BFMASKCcreates @,/len bit mask containing all 1's in the
corresponding bit field, zeroes elsewhere.

UDI_BFGET extracts an unsignegd,/en bit-field from val .
UDI_BFSET deposits val into thg,/len bit-field in dst .

These macros must be called as if they, respectively, had the following
functional interfaces:

udi_ubit8_t UDI_BFMASK (
udi_ubit8 t p,
udi_ubit8 t len);

udi_ubit8_t UDI_BFGET (
udi_ubit8 t val ,
udi_ubit8 t p,
udi_ubit8 t len);

UDI Core Specification - Version 1.01 - 2/2/01 22-5
Section 4: Core Utility Functions

UDI_ BFMASK, UDI BFGET, UDI BFSET Endianness

void UDI_BFSET (
udi_ubit8 t val ,
udi_ubit8 t p,
udi_ubit8 t len ,
udi_ubit8 t dst);

Note thatuUDI_BFSET modifiesdst , anddst must be an Ivalue (assignable
on the left side of an assignment statement).

22-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Utilites UDI BFMASK, UDI BFGET,

22.2.2.2 Multi-Byte Macros

The multi-byte helper macrosDI_MBGETandUDI_MBSETand their variants, are used to extract and
deposit multi-byte quantities from a structure which has been constructed according to the byte-by-byte
layout rules given in Section 22.2.1.1 on page 22-2.

These macros have arguments called “structp” and “field”. The structp argument is a pointer to a
structure that contains N single-byte (and byte-aligned) members whose names are “field"0, “field"1, ...
“field”"N, which together represent a multi-byte quantity in the structure. “field”0 is the least significant
byte; “field”N is the most significant.

For example, a structure that has a 3-byte “sum” field might have field narsam6f sum1, and
sum2, and the complete 24-bit field could be extracted from the structure into a vangbkeum,
using theUDI_MBGETmacro as follows:

my_sum = UDI_MBGET(3, &my_struct, sum);
To write a value into this 3-byte field, use t®l_MBSETmacro as follows:
UDI_MBSET(3, &my_struct, sum, my_sum);

UDI Core Specification - Version 1.01 - 2/2/01 22-7
Section 4: Core Utility Functions

UDI_ MBGET, UDI_MBGET 2/3/4 Endianness Utilities

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

UDI_MBGET, UDI_MBGET_2/3/4 Multi-byte extract helper macros
#include <udi.h>

#define UDI_MBGETN, structp , field)\
UDI_MBGET_##N (structp, field)

#define UDI_MBGET 2structp , field)\
((structp)->field##0 | ((structp)->field##1<<8))

#define UDI_MBGET B8structp , field)\
((structp)->field##0 | ((structp)->field##1<<8) | \
((structp)->field##2<<16))

#define UDI_MBGET 4 structp , field)\
((structp)->field##0 | ((structp)->field##1<<8) | \
((structp)->field##2<<16)|((structp)->field##3<<24))

N is the number of bytes in the corresponding multi-byte quantity.
N must be 2, 3, or 4.

structp is a pointer to a structure that contaisingle-byte (and byte-
aligned) members whose names fie&d O, field 1, ...
field n (n=N1), which together represent Arbyte quantity in
the structure.

field is the base name of a sequence of membesgimtp . The
name of each member in the sequencieis followed by a
decimal number in the range &1; this number represents the
byte number in a multi-byte quantity, with byte 0 being the least
significant byte. Each of these structure members must be of type
udi_ubit8 t

These macros are used to extract multi-byte quantities from a structure which
has been constructed according to the byte-by-byte layout rules given in
Section 22.2.1.1 on page 22-2. The structure is pointed to bstrinetp

argument, and the multi-byte quantities are represented by a sequence of fields
in the structure whose names are based orfiel® argument.

As described above, ttsgructp argument is a pointer to a structure that
containsN'single-byte (and byte-aligned) members whose namefiedde O,
field 1, ...field n (n=N1), which together represent akbyte quantity in
the structurefield 0 is the least significant bytéie/d n is the most
significant.

UDI_MBGETextracts an\tbyte unsigned quantity from the structure pointed
to by structp . UDI_MBGET 2, UDI_MBGET 3, andUDI_MBGET4,
extract 2, 3, and 4-byte quantities, respectively.

These macros don't translate well into functional interfaces, so no
corresponding functional interfaces are given.

22-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Utilities UDI_MBSET, UDI MBSET 2/3/4

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

UDI_MBSET, UDI_MBSET_2/3/4 Multi-byte deposit helper macros
#include <udi.h>

#define UDI_MBSET(N, structp , field , val)\
UDI_MBSET_##N (structp, field, val)

#define UDI_MBSET_2(structp , field , wval)\
((structp)->field##0 = (val) & Oxff, \
(structp)->field##1 = ((val) >> 8) & 0xff)

#define UDI_MBSET_3(structp , field , wval)\
((structp)->field##0 (val) & Oxff, \
(structp)->field##1 ((val) >> 8) & Oxff, \
(structp)->field##2 = ((val) >> 16) & 0xff)

#define UDI_MBSET 4(structp , field , val)\
((structp)->field##0 = (val) & Oxff, \
(structp)->field##1 = ((val) >> 8) & Oxff, \
(structp)->field##2 ((val) >> 16) & 0Oxff, \
(structp)->field##3 = ((val) >> 24) & 0xff)

N is the number of bytes in the corresponding multi-byte quantity.

structp is a pointer to a structure that contaisingle-byte (and byte-
aligned) members whose names fie&d O, field 1, ...
field n (n=N1), which together represent Arbyte quantity in
the structure.

field is the base name of a sequence of membesgimtp . The
name of each member in the sequencieis followed by a
decimal number in the range &1; this number represents the
byte number in a multi-byte quantity, with byte 0 being the least
significant byte. Each of these structure members must be of type
udi_ubit8 t

val is the value to deposit into the multi-byte quantity in the structure
pointed to bystructp and corresponding theld . This
value must be of an unsigned data type, such as
udi_ubitl6 t

These macros are used to deposit a value into a multi-byte quantity in a
structure which has been constructed according to the byte-by-byte layout
rules given in Section 22.2.1.1 on page 22-2. The structure is pointed to by the
structp argument, and the multi-byte quantities are represented by a
sequence of fields in the structure whose names are based f#ldhe

argument.

As described above, theructp argument is a pointer to a structure that
containsN single-byte (and byte-aligned) members whose nameféeéde 0,
field 1, ...field n (n=N1), which together represent arbyte quantity in
the structurefield 0 is the least significant bytéie/d n is the most
significant.

UDI Core Specification - Version 1.01 - 2/2/01 22-9
Section 4: Core Utility Functions

UDI_ MBSET, UDI MBSET 2/3/4 Endianness Utilities

UDI_MBSETdeposits val into th&tbyte unsigned quantity represented by
field in the structure pointed to tstructp . UDI_MBSET 2,
UDI_MBSET 3, andUDI_MBSET 4, deposit into 2, 3, and 4-byte quantities,
respectively.

These macros don't translate well into functional interfaces, so no
corresponding functional interfaces are given.

22-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Utilities Endian-Swapping Utilities

22.2.3 Endian-Swapping Utilities

UDI provides two basic macros for endian translation of a single 16-bit or 32-bit integer:
UDI_ENDIAN_SWAP16andUDI_ENDIAN_SWAP32 respectively. The utility function
udi_endian_swap provides for the endian conversion of greater than 32-bit integers; this function
has arep_count andstride parameter, allowing for multiple byte-swaps of a given size in a single
call. This can be used to byte-swap each element in an array (as shown by the
UDI_ENDIAN_SWAP_ARRA¥hacro), or to perform more complex sequences of byte-swaps across
sub-elements of an array of structures.

Note —Except for use with DMA-able shared control structures (described in the UDI Physical 1/0
Specification), drivers should use the byte-by-byte structure layout rather than using these
utilities, since the relationship between driver and device endianness is not indicated in any UDI-
specified fashion, either at compile time or at run time.

UDI Core Specification - Version 1.01 - 2/2/01 22-11
Section 4: Core Utility Functions

UDI_ENDIAN._SWAP_16/32 Endianness Utilities

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_ENDIAN_SWAP_16/32 Byte-swap 16 or 32-bit integers
#include <udi.h>

#define UDI_ENDIAN_SWAP_16 datal6) \
((((data16) & 0x00ff) << 8) | \
(((data16) >> 8) & 0x00ff))

#define UDI_ENDIAN_SWAP_32 data32) \
((((data32) & 0x000000ff) << 24) |\
(((data32) & 0x0000ff00) << 8) |\
(((data32) >> 8) & 0x0000ff00) |\
(((data32) >> 24) & 0x000000ff))

datalé is a 16-bit data value.
data32 is a 32-bit data value.

UDI_ENDIAN_SWAP_16byte-swaps a single 16-bit data value;
UDI_ENDIAN_SWAP_32byte-swaps a single 32-bit data value. These two
macros provide basic endian translation of an individual data item. See
udi_endian_swap on page 22-13 for information on an endian utility that
provides for larger than 32-bit endian translation and that allows for multiple
byte-swaps in a single call.

These macros must be called as if they, respectively, had the following
functional interface:

udi_ubit16_t UDI_ENDIAN_SWAP_16(
udi_ubitl6 t datalé);

udi_ubit32_t UDI_ENDIAN_SWAP_32(
udi_ubit32_t data32),

udi_endian_swap

22-12

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

Endianness Utilities

udi_endian_swap

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

EXAMPLES

REFERENCES

udi_endian_swap Byte-swap multiple data items

#include <udi.h>

void udi_endian_swap (
const void * src
void * dst ,
udi_ubit8 t swap_size ,
udi_ubit8 t stride
udi_ubitl6 t rep_count);
src points to a memory area across which byte swapping will be
performed, as defined below.
dst points to a memory area into which the results of the byte-swap
will be placed. This memory area must be at least the size of the
memory area pointed to ¢ . src anddst may be the same,
but if not, the memory areas must be non-overlapping.
swap_size is the size, in bytes, of each element to be byte-swapped.
swap_size must be a power-of-two which is less than or equal
to stride
stride is the number of bytes by which to increment between
repetitions.
rep_count is the number ofwap_size byte-swaps to perform.

Theudi_endian_swap function generatesep_count byte-swapping
copies fromsrc to dst , of swap_size bytes each. Between each repetition
src is incremented bygtride to obtain the next element to be swapped.
Only the memory actually byte-swapped imtst will be changed as a result
of this call.

If swap_size
swap_size

is 1, andsrc is equal tadst , this function acts as a no-op. If
is 1, andsrc is not equal talst , this function performs a copy.

If the driver has an array of structures that need to be endian translated, it can
call udi_endian_swap once for each type of multi-byte field in the
structure, settingrc to point to the address of the field in the zeroth element
of the array (e.g&array[0]->my_field), swap_size to the size of the
field, stride to the size of the structure, argp_count to the number of
elements in the array.

UDI_ENDIAN_SWAP_ARRAY

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

22-13

UDI_ENDIAN_SWAP_ARRAY Endianness Ultilities

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_ENDIAN_SWAP_ARRAY Byte-swap each element in an array
#include <udi.h>

#define \
UDI_ENDIAN_SWAP_ARRAXrc , element size , count)\
udi_endian_swap(src, src, element_size, \
element_size, count)

src points to an array ofount elements, each of which are
element _size bytes in size.

element _size s the size, in bytes, of each element to be byte-swapped.
element_size must be a power-of-two.

count the number oklements in thesrc array to be byte-swapped.

UDI_ENDIAN_SWAP_ARRAlMyte-swapzount elements in the array
pointed to bysrc . The results are written in place in thee array.

The macroUDI_ENDIAN_SWAP_ARRANust be called as if it had the
following functional interface, as can be derived from the above macro
definition and the definition ofidi_endian_swap

void UDI_ENDIAN_SWAP_ARRAY
void *src ,
udi_ubit8 t element size
udi_ubitl6 t count);

udi_endian_swap

22-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 4: Core Utility Functions

ect

UDI Core Specification

Section 5: Core Metalanguages

UDI Core Specification - Version 1.01

projecy

‘J'E‘IJ'\ U D !! [..'1IU

Introduction to UDI Metalanguages 23

23.1 Overview

A metalanguage defines a communication protocol for use over a UDI channel. Metalanguages allow
two drivers or a driver and the environment to communicate with each other in a strongly-typed manner.
Driver writers may define their own metalanguages, for intra-driver communication (between multiple
regions within a driver instance) or between layers in a driver stack, but a number of metalanguages are
defined within the UDI specifications. These latter metalanguages are s@tethrd metalanguages,

while other metalanguages are referred tousdom metalanguagellote that for complete portability a
custom metalanguage must be implemented using the interfaces defined in Section 4. MEI Services.

Two generally applicable metalanguages are defined in the Core Specification: the Management
Metalanguage, which is needed by all UDI drivers for configuration and system management purposes;
and the Generic I1/0O Metalanguage, which is available for use as a generic pass-through metalanguage.
Other metalanguages are defined in separate UDI specification books; e.g., the Bus Bridge
Metalanguage in the “UDI Physical 1/0 Specification”, the SCSI Metalanguage in the “UDI SCSI Driver
Specification”, etc.

The remainder of this chapter describes conventions and requirements common to all metalanguages.

23.2 Standard Metalanguage Functions and Parameters

See Chapter TCalling Sequence and Naming Conventiorfst requirements and conventions on
metalanguage interfaces and their names.

In addition to the required channel operation functions, metalanguages may also proxydeutines

for events that will never occur for some drivers, or for operations that require no action by the driver.
For example, if a driver has no children to enumerate, it may sadiitenumerate_req_op_t to
udi_enumerate_no_children instead of providing its own routine that always just responds
immediately withudi_enumerate_ack

UDI Core Specification - Version 1.01 - 2/2/01 23-1
Section 5: Core Metalanguages

Channel Operation Suffixes Metalanguages Intro

23.3 Channel Operation Suffixes

Channel operations generally operate in pairs: e.g., a request and a corresponding acknowledgment, or
an event and a corresponding response. The corresponding handshake operation tends to be generally
useful in the UDI model to cycle the control block back to the requestor or event initiator or to cycle
back buffers and other transferable objects. As a result, metalanguage operations tend to fall into the
following categories. (The term “driver” below may also refer to the Management Agent in the case of
the Management Metalanguage).

Table 23-1 Channel Operation Categories

Suffix | Category Description

_req Request Operations sent by a driver to
request service from another
driver

_ack Acknowledgement Operations returned to handshake
a request and indicate results and
status (normal completion,
warning, or failure)

_nak | Negative Operations returned to handshake

Acknowledgement a request and specifically indicate
non-normal status; used in
performance-critical cases to keep
status checks out of the normal
path

_ind Event Indication Operations sent by a driver to
notify another driver of an event

_res Event Response Operations returned in response to
event indications

_rdy Ready for Event Operation submitted “against the
flow” to prime the initiator with a
set of control blocks for it to use,
in order to have flow control.

The suffixes listed in the above table are conventionally used in names of channel operation that belong
to the corresponding categories.

23-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Metalanguages Intro General Rules for Handling

23.4 General Rules for Handling Channel Operations

This section provides general information on the handling of channel operations performed on a driver.

Upon receipt of a channel operation, a driver may handle it in one of the following ways, depending on
the relationship of the request to the driver’s current state:

®* Normal: the driver knows how to handle the operation, and can handle it in its present state.

® Not understood: the driver doesn't understand how to handle the operation, given its
parameters.

* Not supported: the driver understands the operation, but chooses not to support it.

* |nvalid state: the driver knows how to handle the operation, but is not in a correct state for
such a request.

* Mistaken identity: the driver understands the operation, but its parameters are out of range
for the associated object.

For all but the normal case, the driver must respond with an appropriate status code as defined in this
Section and also log the error usindi_log_write . (Seeudi_log_write on page 17-7.) These

status codes may be specified by the driver for any metalanguage operation, even if not explicitly listed
as a valid status return value for that metalanguage operation.

23.4.1 Normal Operation Handling

Under normal circumstances, a driver is called to handle a request, does some processing, and performs
an acknowledge operation. (Processing an operation may or may not involve performing operations on
other drivers.) If the operation was an indication that came from a parent driver, the driver may have to
interrogate its hardware about the interrupt and/or perform an operation on its child (or parent) driver.

23.4.2 Operations That Are Not Understood

When a driver receives an operation that is not understood because the parameters or associated data are
not appropriate, the driver must reply back with a status vallbofSTAT _NOT_UNDERSTOOD
indicating that the operation is not understood.

23.4.3 Operations That Are Not Supported

When a driver receives an operation that it recognizes, but for which it has not implemented the
specified function, the driver must reply back with a status valugDéf STAT NOT_SUPPORTED
indicating that the operation is not supported.

23.4.4 Operations Received In An Invalid State

When a driver receives an operation that is understood and implemented, but is not valid in the driver’'s
current state with respect to the sequence rules of the metalanguage, the driver must reply back with a
status value otUDI_STAT _INVALID_STATE.

UDI Core Specification - Version 1.01 - 2/2/01 23-3
Section 5: Core Metalanguages

General Rules for Handling Channel Operations

23.4.5 Operations With Mistaken Identity

When a driver receives an operation that is understood, implemented, and received in the correct state,
but with a range of values not appropriate for the corresponding device or other object, the driver must
reply back with a status value BDI_STAT_MISTAKEN_IDENTITY.

23.4.6 Extended Channel Error Handling

When a driver receives a channel error indication as part of a status code associated with a channel
operation, the receiving driver must handle the error in accordance with the description of the
udi_status_t type. Specifically, if the receiving driver does not recover from the error as part of
normal operations, it should:

® preserve the correlation value in theéi_status_t

® change the status code to an appropriate status code for the problem encountered (with
UDI_STAT_PARENT_DRV_ERRGa#¥ailable in lieu of a more specific indication)

® |og the error withudi_log_write

® pass along the error indication as needed to any children or other requestors.

23-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

r
"L (]

By U D [.'1IU

Management Metalanguage 24

24.1 Overview

This chapter defines the channel operations and associated service calls of the Management
Metalanguage, which is used by the environmevitsnagement Ager(MA) to communicate with the

primary region of each driver instance for configuration and other system management purposes. The
MA uses the Management Metalanguage to communicate binding information between driver instances
including initial channels between related driver instances, according to system configuration
information. The MA uses the Management Metalanguage to enumerate device presence or loss, as well
as to manage changes in state for hot plugging and power management. The MA may also participate in
cleanup operations by indicating that various channels are to be closed via indirect requests or direct
operations.

All UDI drivers must support the Management Metalanguage.

Each subsection defines the channel operations, associated control blocks and service calls, constraints
and guidelines for the use of each operation, and any error conditions that can occur.

Management Metalanguage operations are not abortableudiitcthannel_op_abort

24.2 Management Agent

The MA is an abstract entity within the UDI environment; it represents the environment’s control and
configuration mechanisms. All device configuration, driver instantiation, and initial channel creation is
driven and controlled by the MA. The MA is an integral part of the environment and is always present
in any UDI environment implementation.

The Management Metalanguage defines the communication between a driver instance and the MA and
is used for thenanagement channéometimes abbreviated “mgmt channel”), which is a channel that is
always present between the MA and the driver’s primary region. When the MA wishes to instruct a

UDI Core Specification - Version 1.01 - 2/2/01 24-1
Section 5: Core Metalanguages

Management Agent Mgmt Meta

driver instance to perform a management-related operation it will generate a Management Metalanguage
request to that driver instance over its management channel. The driver will respond via a Management
Metalanguage acknowledgement.

Child Driver instances

i Managemen
Agent (MA)

|

W Mgmt Driver
Channel instance

Parent Driver instances

UDI Environment

The driver can indicate system-level events by generating responses to corresponding Management
Metalanguage inquiries, but the driver will never initiate an operation to the MA. Asynchronous event
indication in the Management Metalanguage is handleplosyinga request to the driver; that is, the

MA sends a request to the driver asking for future event notification, and the driver holds on to the
control block indefinitely, sending a reply only when the (first such) asynchronous event occurs.

24.2.1 Driver Instantiation

The MA is responsible for controlling the creation of new driver instances, and determining when to do
so. The MA combines information obtained from the enumeration responses of a parent driver instance
with the information provided by candidate child drivers’ static driver properties to make this decision.
The environment then uses information from the selected child drivair'snit_info to set up
appropriate linkages between the driver and the rest of the system. The process of creating new driver
instances is referred to dsiver instantiation

The MA is also responsible for creating nevphandriver instances, which are drivers which have no
parent instance. In order to instantiate an orphan driver instance, the MA must have instructions from the
system administrator or system configuration files describing the orphan instance and its enumeration
parameters since there is no enumeration of that instance by a parent.

The following model describes the typical sequence of events surrounding the instantiation of a driver
instance. The actual sequence of operations and MA functionality may differ but the events described by
this model will be valid from the driver’'s perspective for any environment:

1. ... the parent driver instance has previously been instantiated and has a management
channel established between its primary region and the MA.

2. The MA issues aenumeration requegudi_enumerate_req) to the parent driver
instance.

3. The parent driver returns amumeration respong@di_enumerate_ack) with
information describing an instance of enild”! to the MA.

24-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Management Agent

4,

10.

11.

12.

The MA locates a driver that corresponds to the instance attribute information provided by
the parent in the enumeration response.

The selected driver may have been previously loaded or it may be dynamically loaded at
this time. In either case, once it is loadeduid$ init_info structure will be
processed.

The MA creates a new driver instance for the child, including a primary region, optional
secondary regions, a management channel connecting the MA to the child’s primary
region,internal bind channelgonnecting secondary regions to the primary region, and a
bind channebetween the parent and child driver instances to be used for initial
parent/child communications. All of these channels are pre-anchored. The MA also creates
internal configuration information and prepares any necessary resources.

. The MA issues asage indicatior{udi_usage _ind) to the newly created driver to allow

it to perform preliminary initialization of internal data structures and adjust resource usage
and trace levels. This is guaranteed to be the first operation the driver instance receives on
any of its channels. Further, no additional operations will be received until the driver calls
udi_usage res for this first operation. The driver may examine its instance attributes

to assist in initialization; the instance attributes primarily consist of the enumeration
attributes specified by its parent when it was enumerated.

If the driver has requested any static secondary regions or any dynamic regions for this
binding, it will receive a UDI_CHANNEL_BOUND event indication (see
udi_channel_event_cb_t on page 17-10) on one end of the internal bind channel for
each such region. No external bind operations or additional management operations will be
delivered until the driver has processed all the internal bind events and called
udi_channel_event_complete for each one.

. The MA then begins the child/parent bind sequence by genetdiihdCHANNEL_BOUND

channel event indication on the new child’'s end of the bind channel to its parent. This
event may be delivered to the primary region or to a secondary region, depending on the
region index value in the corresponding “parent_bind_ops” declaration (see Chapter 31,
“Static Driver Properties’).

The child now performs internal initialization, completing the examination of any needed
enumeration and configuration attributes (usimj instance_attr_get), and then
issues a metalanguage-specific bind request to the parent instance via the bind channel.

The parent instance processes the child’s bind request and then returns a bind response via
the same bind channel.

The child completes initialization and then issuesliachannel_event_complete
corresponding to the parent bind event indication, to let the MA know that the parent/child
initialization process has completed (successfully or unsuccessfully). On receipt of a
successful completion notification, the parent and child are considered “open for business”
and should expect to perform normal activities.

1. The child represents a physical or logical entity that can be accessed via the parent device instance and for which a
corresponding driver should be instantiated. Examples of parent/child relationships are: (1) a PCI Bus/PCI Card, a SCSI
HBA/SCSI Disk, etc.

UDI Core Specification - Version 1.01 - 2/2/01 24-3
Section 5: Core Metalanguages

Management Agent Mgmt Meta

13. The MA may then repeat this sequence with the new child taking on the parent role, and
issue an enumeration request to this new child instance to determine if it has children of its
own. If this driver has no children of its own, the enumeration response to the MA
indicates this fact and the configuration of this driver instance is complete.

The sequence for instantiating orphan drivers is similar to the above, although it begins at Step 4 with
enumeration information that is provided by the system administrator or system configuration rather
than by a parent instance, and Step 9 through Step 12 are skipped.

A multi-parent (multiplexer) driver may receive additional parent bindings after the above sequence has
completed. In this case, the bind sequence begins with Step 7.

24-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta ManagementMetalanguage

24.3 Management Metalanguage Considerations

Because of its unique nature, the Management Metalanguage differs in a number of ways from other
UDI metalanguages:

The management channel is always created by the MA and exists prior to invocation of the
driver’'s primary region.

There is only one management channel per driver instance, regardless of the number of
regions for that instance, and it is automatically anchored in the driver's primary region.

There is no way for the driver to create a management channel.

Management control blocks must always be sent back to the channel over which they were
received, since there is only one management channel per driver. Therefore, drivers must not
modify or even reference thehannel member of a management control block.

There is only one role the driver may play for the Management Metalanguage since the other
end is always handled by the MA; therefore only one channel ops vector is defined for this
metalanguage.

There is no<<meta>> _<<role>> _OPS_NUMor management operations since the single
management ops vector is supplied wéi_primary_init_t (see page 10-5).

There are nox<meta>> _<<cbgroup>> _CB_NUMvalues for management agent control
blocks since all management control blocks are allocated by the MA and passed to the driver
via the single Management Channieé.(all Management Metalanguage requests are

initiated by the MA).

The mgmt_scratch_size value inudi_primary_init_t determines the scratch
space size foall control blocks used on the management channel.

There is nahannel_event_ind_op in the Management Metalanguage ops vector, since
the MA will never close the management channel while the driver instance exists, no
constraints will be propagated across the management channel, and the MA will never be
terminated.

UDI Core Specification - Version 1.01 - 2/2/01 24-5
Section 5: Core Metalanguages

Initialization Mgmt Meta

24.4 Initialization

This section describes the system calls that are performed to register this module for communications
with the Management Agent and the operations that are used on that channel to initialize the driver.

24.4.1 Tracing Control Operations

One of the functions of the Management Metalanguage is to implement control over the tracing
operations performed by a driver. When the system (or user) wishes to obtain specific classes of tracing
information from a driver a management operation is issued to the driver over the Management
Metalanguage channel. The driver updates its internal tracing operations accordingly and acknowledges
the update back to the Management Agent.

For more information on generating trace information please consuliDhdracing and Logging
Chapter of this specification.

24.4.2 Resource Management

The UDI environment handles resource management (passively) througdii thenits_t

information and actively through the selective control and completion of individual driver resource
allocation requests. Both of these activities primarily focus on the ability of the UDI environment to
restrict the initial and ongoing supply of new resources to a driver but do not have any effect on the
amount of resources that the driver is currently maintaining.

As an ultimate measure, the UDI environment may choose to kill and unload driver instances in an
attempt to deal with critical resource availability conditions. However, it is frequently desirable to
manage resources in a more graceful manner that will allow the driver to voluntarily release resources
back to the UDI environment while continuing to operate.

To support this, the UDI Management Metalanguage provides the ability for the UDI environment to
indicate the current level of environment-supplied resource availability to a driver instance for resources.

24-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_mgmt _ops t

NAME

SYNOPSIS

DESCRIPTION

REFERENCES

udi_mgmt_ops_t Management Meta channel ops
vector

#include <udi.h>

typedef const struct {
udi_usage _ind op_t * usage ind op ;
udi_enumerate_req_op_t * enumerate_req_op
udi_devmgmt_req_op_t * devmgmt _req_op ;
udi_final_cleanup_req_op_t * final_cleanup_req_op ;
} udi_mgmt ops_t ;

’

udi_mgmt_ops_t is anops vectorstructure that contains function pointers
for all of the Management Metalanguage entry point routines for the driver. It
is used in the driver'sdi_init_info to register these entry points with

the environment. For additional information on ops vectors, see “Channel
Operations Vectors” on page 7-6.

For theudi_usage_ind andudi_enumerate_req entry points, the

driver can specify environment-provided proxy functions. See the
corresponding reference pages for information on these proxy functions and
when they may be used.

Note —Theudi_mgmt_ops_t deviates from other channel ops vectors, in
that it does not have wdi_channel_event_ind operation.

udi_init_info, udi_primary_init_t

UDI Core Specification - Version 1.01 - 2/2/01 24-7
Section 5: Core Metalanguages

udi_mgmt cb t Mgmt Meta

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_mgmt_cb_t Common Management Control Block
#include <udi.h>

typedef struct {
udi_cb_t gcb;
} udi_mgmt cb t ;

gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

Theudi_mgmt _cb_t defines a control block which is used in Management
Metalanguage operations that do not require any additional parameters in the
control block. This control block is used for requests or indications from the
Management Agent to the target driver and is passed back to the Management
Agent in the acknowledgement or response operation.

Scratch space size for all Management Metalanguage control blocks is
determined by the setting ofgmt_scratch_requirement in the driver's
udi_primary_init_t in its udi_init_info . Management
Metalanguage control blocks are allocated only by the MA, not by drivers.

udi_cb_t, udi_primary_init_t, udi_init_info

24-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_usage cb t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_usage_cb_t Resource indication and trace level
control block

#include <udi.h>

typedef struct {

udi_ cb t gcb;
udi_trevent t trace_mask ;
udi_index_t meta_idx ;

} udi_usage cb t ;

gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

trace_mask is a bitmask describing the types of trace events that the driver
is to report. Setting one of the trace mask bits enables tracing for
all events of that type. Some event types are selectable on a
metalanguage basis using theeta_idx field.

For the definition of thaudi_trevent t type and the
corresponding trace events that may be enabled, see
udi_trevent_t on page 17-3 of thelDI Tracing and Logging
Chapter.

meta_idx is a metalanguage index that indicates to which metalanguage the
metalanguage-selectalfimce _mask bits apply. It must match
the value okmeta_idx> in the corresponding “meta”
declaration of the driver’s static driver properties (see Chapter
31), or be zero for the Management Metalanguage.

This control block is used with thedi_usage _ind andudi_usage_res
operations to indicate the types of events to be traced by the driver and the
resource level to which it should comply.

Scratch space size for all Management Metalanguage control blocks is
determined by the setting ofgmt_scratch_requirement in the driver's
udi_primary_init_t in its udi_init_info . Management
Metalanguage control blocks are allocated only by the MA, not by drivers.

udi_cb_t, udi_primary_init_t, udi_init_info,
udi_trevent_t, udi_usage_ind, udi_usage_res

UDI Core Specification - Version 1.01 - 2/2/01 24-9
Section 5: Core Metalanguages

udi_usage ind Mgmt Meta

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
PROXIES

DESCRIPTION

udi_usage_ind Indicate desired resource usage and
trace levels

#include <udi.h>

void udi_usage_ind (
udi_usage cb t* cb,
udi_ubit8 t resource_level);

/* Values for resource_level */

#define UDI_RESOURCES_CRITICAL 1

#define UDI_RESOURCES_LOW 2

#define UDI_RESOURCES_NORMAL 3

#define UDI_RESOURCES_PLENTIFUL 4

cb is a pointer to a Management Metalanguage usage control block.
resource_level is an indication of the current resource level to which the

driver should adhere.
The affected driver instance’s management channel.
udi_static_usage Proxy for udi_usage_ind
udi_usage_ind_op_t udi_static_usage ;

Drivers that do not adjust their resource utilization levels and do not support
tracing may specifydi_static_usage as the entry point for this
operation.

Theudi_usage_ind operation is used to provide advisory information to
the target driver regarding the current level of system resources and the
desired level of tracing information to be reported by the driver.

This is the first operation that will be issued to a newly instantiated driver
instance. The Management Agent may also call this operation any time it
wishes to change the level of trace output from the driver or if the system
resource levels change significantly.

When used as the driver’s first operation, the environment guarantees that no
additional channel operations will be delivered to the driver instance on any
channel until the driver callgdi_usage res for this first operation.

This operation is used to activate and deactivate tracing of particular types of
events. The Management Agent issues this request to the driver when it is to
activate or deactivate tracing according to the values set itidbe mask
andmeta_idx fields of thecb, as described fandi_usage cb_t

The resource_level argument is used by the UDI Management Agent to
indicate the UDI environment’s current resource levels to the UDI driver. The
UDI driver may use this information to reduce or increase its resource
allocation and utilization as appropriate to assist in overall UDI resource
management. Driver may treat some or all of the resource levels as the same.

24-10

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_usage ind

WARNING

REFERENCES

Resource levels that may be indicated by rdsource level argument
are:

UDI_RESOURCES_CRITICAL- Indicates that UDI resource levels are
critically low and that the driver should release any and all resources
that are not absolutely essential to its operation. It is expected that
drivers that receive and respond to this indication will operate in
reduced capability and/or reduced performance modes.

UDI_RESOURCES_LOWNnNdicates that UDI resource levels are below a
system threshold level. This is typically an indication that resource
allocation requests will begin to be delayed and that system
performance may be beginning to be affected due to the resource
restrictions. The driver should return any extra resources that it is
currently holding but it is not expected to release any resources that
would adversely affect its operational state to any great degree.

UDI_RESOURCES_NORMAIndicates that UDI resource levels are normal
and system resources are still readily available. This is the default
state that drivers may assume on startup until indicated otherwise.
This indication is most frequently used to undo the effects of a
previousUDI_RESOURCES_LOwW UDI_RESOURCES_CRITICAL
indication.

UDI_RESOURCES_PLENTIFUL Indicates that UDI resource usage levels
are low relative to the amount of total available resources. Drivers
receiving this indication should operate in an “extravagant” mode to
achieve absolute peak performance and functionality levels, acquiring
additional resources if necessary.

The MA is not required to notify the driver of resource level changes nor is it
restricted to indicating updates levels in any particular sequence. The UDI
environment may unload UDI drivers whether or not they have reduced their
resource allocations levels if the environment determines that this driver
should be unloaded to retrieve needed resources.

Drivers must not invoke this operation.

Resource levels and corresponding low and plentiful thresholds are somewhat
arbitrary and may be set or modified by the UDI environment via automatic
means or by the system administrator. Driver notification is purely optional.

udi_usage cb t, udi_usage res

UDI Core Specification - Version 1.01 - 2/2/01 24-11
Section 5: Core Metalanguages

udi_usage res Mgmt Meta

NAME

SYNOPSIS

ARGUMENTS
TARGET CHANNEL
DESCRIPTION

WARNINGS

REFERENCES

udi_usage_res Resource usage and trace level
response operation

#include <udi.h>

void udi_usage_res (
udi_usage cb_t * cb),

cb is a pointer to a Management Metalanguage usage control block.
The affected driver instance’s management channel.

Theudi_usage_res operation is used by the driver to respond to update
information provided by the Management Agent fromda usage_ind
operation.

If the driver does not support one or more of the requested trace event types,
it must clear the corresponding bits in thece _mask field of the control

block in the acknowledgement. In particular, if tracing is entirely unsupported,
trace_mask must be set to zero.

This operation is also used to acknowledge the receipt of the resource
indication; it doesot indicate to the Management Agent that the driver has
completed any internal resource adjustements as a result of the resource
indication, but merely indicates that the driver is aware of the new resource
levels.

The control block must be the same control block as passed to the driver in the
correspondingidi_usage_ind operation.

udi_usage cb _t, udi_usage_ind

24-12

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Enumeration Operations

24.5 Enumeration Operations

This subsection of the Management Metalanguage defines child enumeration operations. As described in
“Driver Instantiation” on page 24-2, each driver instance is given the opportunity to enumerate the
presence, number, and initial instance attributes of any child devices (actual or pseudo) associated with
the current driver instance. The typical response of the MA to an enumerated child device is to create
one or more driver instances and initiate a bind operation between each child instance and the current
driver instance (which becomes the parent of that new child).

This process begins with the MA issuing a sequence of enumeration requests to the driver, to instruct it
to respond with information regarding each child device present. The enumeration request and
acknowledgement operation, along with associated data objects, are described in this subsection.

24.5.1 Enumeration Attributes

Each child device instance is described by a senameration attributesThese attributes are a set of

driver instance attributes that serve to identify the specific child instance. The set of attributes needed to
identify a child instance are defined by the associated metalanguage and represent the set of attributes
initially attached to the child instance when it is instantiated. If multiple child driver instances are
associated with the same device instance, the same enumerated attributes will be used for all of those
instances.

24.5.2 Child ID

Each child device instance is also identified lghdd ID. The child ID is a value that uniquely refers to
a given child device instance with respect to its parent. This allows communications between the
environment and the parent driver to refer to specific child devices.

When a new child instance is enumerated, the parent driver specifies the child ID, the enumeration
attributes for the child device, and a channel ops index indicating the metalanguage and entry points to
use for the bind channel between this child and its parent. If the parent driver supports multiple
metalanguages for a given child device, it can enumerate thecgdltie/D multiple times with

different ops index values. Thahild_ID value must not be reused for a new device until the MA tells

the parent to release it.

24.5.3 Enumeration Filters

In cases where the Management Agent wishes to query the target driver for information about a specific
range of child devices instead of obtaining information about any and all children, it may use an
enumeration filteto specify this restricted level of interest to the target driver. The target driver may use
this enumeration filter as a hint to indicate which child or children the Management Agent is interested
in. The enumeration filter specification is only a hint, however, and the target driver is free to ignore it
and return information about any or all known children that make up the same set or a superset of those
specified by the filter.

Enumeration filters are especially useful in situations where the child enumeration can be quite large or
when enumeration can take significant amounts of time to probe for each child. If the Management
Agent knows about these characteristics it can provide appropriate enumeration filter hints to limit the

UDI Core Specification - Version 1.01 - 2/2/01 24-13
Section 5: Core Metalanguages

Enumeration Operations Mgmt Meta

scope of the enumeration query. Environment implementations that are not concerned with the size of
the child instance space or the amount of time taken to enumerate that space will typically not provide
any filter hints to the target driver.

An enumeration filter is specified as one or more enumeration attributes and the desired range and
granularity of values for those attributes. The associated metalanguage is responsible for providing
information about the interpretation of enumeration attribute filters as well as defining the enumeration
attributes. Any enumeration attribute not specified in the filter is “unfiltered” and will match any value.

24.5.4 Parent ID

When a driver instance is bound to (one of) its parent(s), the MA provides a parent ID, which is a
number that can later be used to identify this particular parent, relative to the target driver instance. The
same parent ID value is passed back to the driver to request it to unbind from a specific parent. Drivers
that don’t support multiple parents can ignore the parent ID.

In cases where the Management Agent wishes to query the target driver instance for information about
which of its children would be affected by the unbinding of a particular parent of the driver instance, it
may specify garent ID.In this case, thparent IDcan logically be thought of as an enumeration filter
where the filter is the identified parent. Howewuhis is not a hint The driver must enumerate all

children that would become dysfunctional if the instances’ parent were to be unbound. The driver must
not enumerate children that can continue unabated once the parent binding is lost. It is acceptable for
both parent ID andenumeration filtergo be specified. If so, the driver is to enumerate only those
children that would be affected by the unbinding of the indicated parent, but is allowed to further reduce
this set based on application of the enumeration filters.

Enumeration based on parent ID will normally be used during instance unbinding and hardware hot plug
scenarios. It is used to determine the portion of the topology tree that will be unbound or affected by the
hot plugging of a component or set of components.

Drivers that have only a single parent per instance have a direct relationship between the loss of a parent
binding and the ability to service I/O requests from their children: all children will be affected. As such,
the MA does not need to query such a driver to enumerate its affected children. On the other hand, if a
driver has multiple parents, the MA cannot know the relationship between that driver’s parents and its
children, so it will query the driver instance for the set of affected child devices.

24.5.5 Dynamic Enumeration (Hot Plug)

As described above, the MA issues enumeration requests to the driver when it wishes to obtain
information regarding child devices that are present. The same mechanism is used by the MA to obtain
information about any subsequent topology changes. Once the known devices have been enumerated to
the MA the MA will typically issue an enumeration request to the driver instructing the driver to tell it
about any new enumeration events.

The driver will hold this enumeration request indefinitely until one of the following events occurs:
1. A child device is added or removed.
2. The enumeration request is overridden with a new enumeration request.

3. The driver instance is shutdown and removed.

24-14 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Enumeration Operations

In this manner, the MA keeps an enumeration request “posted” to the driver that the driver can use to
inform the MA about any changes in the child topology of the driver.

The driver instance is only expected to maintain one posted enumeration request from the MA per
parent_ID . If the MA issues another enumeration request the enumeration request being held must be
acknowledged with a “no child events” status and the new enumeration request must be processed and
(if necessary) held to use for future enumeration notifications to the MA. The MA will typically override

a posted enumeration request when it wishes to rescan all known children or when it wishes to change
the enumeration filter of the posted request.

24.5.6 Unenumeration

The converse to the enumeration operation is the case where a child has “gone away” from the
perspective of the parent driver, such as when a device is unplugged or turned off. In UDI, this is
handled by aminenumeratioroperation. This operation is performed as a variation of the enumeration
operation: the child ID value indicates which child has gone away and there are no enumeration
attributes specified. This response to the enumeration request indicates to the Management Agent that
the corresponding child instance is no longer valid and that the Management Agent should initiate
cleanup operations for that child driver instance.

24.5.7 Directed Enumeration

The children of a particular driver instance may not always be determined by performing a physical scan
or other specific determination. In some cases the children are determined by the presence of other
modules in the system, and in other cases the children are determined by system configuration, possibly
resulting from input from the system administrator. This is typically true of pseudo-drivers and
especiallyorphandrivers which have no parent regions.

To accomodate this type of configuration, UDI implements the conceaptextted enumeratiowherein

the target driver is “directed” to enumerate a specific child instance by the Management Agent. The
Management Agent will use the operations described in this section to request the target driver to
enumerate a specific child; the resulting actions are identical to those that would be performed for a
physically enumerated child: the target parent driver prepares internal management structures and then
generates an enumeration acknowledgement for the new child. Subsequent child instance creation and
binding operations then proceed normally.

UDI Core Specification - Version 1.01 - 2/2/01 24-15
Section 5: Core Metalanguages

udi_filter_element t Mgmt Meta

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

udi_filter_element_t Enumeration filter element structure
#include <udi.h>

typedef struct {
char attr_name [UDI_MAX_ATTR_NAMELEN];
udi_ubit8_t attr_min [UDI_MAX_ATTR_SIZE];

udi_ubit8 t attr min_len

udi_ubit8 t attr_max [UDI_MAX_ATTR_SIZE];
udi_ubit8 t attr_max_len ;
udi_instance_attr_type_t attr_type ;

udi_ubit32_t attr_stride ;
} udi_filter_element t ;

attr_name is the name of the attribute to be filtered.

attr_min is the minimum acceptable value for the attribute in this filter.
When combined with thattr_max value an inclusive range of
valid attribute values for the filter is specified.

attr_min_len specifies the valid length (in bytes) of th#&r_min value.
Must not be zero.

attr_max is the maximum acceptable value for the attribute in this filter.

attr_max_len specifies the valid length (in bytes) of th#r_max value.
Must not be zero.

attr_type is the attribute type as specified fali_instance_attr_type t
on page 16-7. Must not B¢DI_ ATTR_NONEor
UDI_ATTR_FILE.

attr_stride specifies the periodicity of the filter match values starting at
attr_min and ending at or abowatr_max

Theudi_filter_element_t structure is used to specify an attribute
being filtered and the valid range and periodicity of the values for that filter.

This can be used to reduce the amount of work a driver needs to go through to

scan for child devices.

The interpretation oattr_stride is unique to eachttr_name attribute
and is specified by the metalanguage when describing that attribute.

The interpretation o&ttr_min andattr_max values will be determined
by theattr_type specified for thatwttr_name attribute when the
attribute is being enumerated.

If attr_type is UDI_ATTR_UBIT32, the 32-bit value is encoded as a
little-endian value in the first four bytes aftr min andattr_max , and
attr_min_len andattr_max_len must be 4. In this case,
UDI_ATTR32_GET (page 16-14) must be used to extract values from
attr_min andattr_max

24-16

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_filter_element t

EXAMPLE

REFERENCES

If the current target driver instance is a SCSI HD that is enumerating SCSI
Metalanguage children (SCSI peripheral devices) for the MA, the following
filter specification (as initialized by the MA):

udi_filter_element_t f = {
“scsi_target”, UDI_ATTR32_INIT(2), 1,
UDI_ATTR32_INIT(15), 1,
UDI_ATTR_UBIT32, 3 };

indicates that the MA only cares about SCSI targets with one of the following
SCSI Target ID values: 2, 5, 8, 11, 14.

udi_instance_attr_type_t, udi_instance_attr_list_t,
UDI_ATTR32_GET, UDI_ATTR32_INIT, udi_enumerate_req

UDI Core Specification - Version 1.01 - 2/2/01 24-17
Section 5: Core Metalanguages

udi_enumerate cb t Mgmt Meta

NAME udi_enumerate_cb_t Enumeration operation control block
SYNOPSIS | #include <udi.h>

typedef struct {
udi_cb_t gcb;
udi_ubit32_t child_ID ;
void * child data ;

udi_instance_attr_list t * attr_list ;
udi_ubit8 t attr_valid_length ;
const udi_filter_element t * filter_list ;

udi_ubit8 t filter_list_length ;
udi_ubit8 t parent ID ;
} udi_enumerate cb_t ;

/* Special parent_ID filter values */

#define UDI_ANY_PARENT_ID 0
MEMBERS gcb is the standard control block information structure.
parent_ID is the parent ID that identifies a specific parent of the current

driver instance. When this value is nddl_ ANY_PARENT _ID
then the current driver must only enumerate children that relate
to this indicated parent. This is used most often for multiplexer
drivers which have multiple parents and children and an
enumeration event needs to determine which children will be
affected by a change in a parent’s status.

The parent _ID value will match a value previously passed to
the driver via audi_channel_event_ind operation of type
UDI_CHANNEL_BOUNMDrivers must not changearent ID

child_ID is the child ID that identifies a specific child instance. When the
driver enumerates a new child device, it assigns a unique
child_ID to identify that device in subsequent operation.

The child_ID field is only valid in certain enumeration
operations:

1. Thechild_ID field is valid in theudi_enumerate_req
operation only for th&JDI_ ENUMERATE_RELEASE
enumeration level.

2. Thechild _ID field is valid in theudi_enumerate _ack
operation only for th&JDI_ENUMERATE_OHKnd
UDI_ENUMERATE_REMOVEBumeration levels.

The child_ID value is unspecified and must be ignored in all
other situations.

child_data is a pointer to pre-allocated movable memory for per-child
data, if any. Ifchild_data_size in the driver's
udi_primary_init_t is non-zero, that many bytes of

24-18 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta udi_enumerate cb t

memory will be allocated, as if ydi_mem_alloc with the
UDI_MEM_NOZER@&nduDI_MEM_MOVABLfags set, for each
call toudi_enumerate_req with any enumeration level
exceptUDl_ENUMERATE_RELEASBtherwisechild_data

will be NULL.

If the driver responds indi_enumerate_ack with any result
besidesUDI_ENUMERATE_QHKt must leavechild_data
unmodified and the environment will free the memory
automatically. Otherwise, the driver must free tf#ld_data
usingudi_mem_free when it is through with it.

attr_list is a pointer to an array ofdi_instance_attr_list_t
structures (see page 16-13), allocated and owned by the MA.
This attribute list is used to describe the initial set of instance
attributes being enumerated by this driver or the desired set of
child attributes for a directed enumeration operation. The length
of this array shall be equal to the value of
enumeration_attr_list_length from the driver’s
udi_primary_init_t

attr_valid_length indicates the number of valid attribute values
currently stored in the control block&ttr_list . This is
initialized by the MA to zero, or the number of attributes
specified by the MA for directed enumeration. Attribute list
elements beyond the firgittr_valid_length elements are
ignored and their values are unspecified.

filter_list is a pointer to an array ofdi_filter_element _t
structures, allocated and owned by the MA, used to specify the
attributes filter to be applied to this enumeration request by the
target driver.

filter_list_length is the number of elements in tli#er_list
array.

DESCRIPTION Theudi_enumerate_cb_t is the control block used for the
udi_enumerate_req andudi_enumerate_ack channel operations.
This control block is allocated by the MA when the MA issues the
udi_enumerate_req and is to be returned to the MA by the driver in the
udi_enumerate_ack response.

The filter_list passed to the driver in this control block on the
enumeration request must be returned to the MA in the acknowledgement
operation and must not be used after that acknowledgement has been issued.

The driver fills in the attribute list passed in this control block with the
attributes of the child node for thali_enumerate_ack operation. If this

is used for a directed enumeration operation, the attribute list is also used to
specify the minimum set of enumeration attributes for the child that the driver
is being directed to enumerate; these initial attributes must be preserved for
the acknowledgement although additional attributes may be added.

UDI Core Specification - Version 1.01 - 2/2/01 24-19
Section 5: Core Metalanguages

udi_enumerate cb t Mgmt Meta

WARNINGS

REFERENCES

All attribute names in bothttr_list andfilter_list must be
enumeration attribute names and so must not have any special prefix
characters.

Scratch space size for all Management Metalanguage control blocks is
determined by the setting ofgmt_scratch_requirement in the driver's
udi_primary_init_t in its udi_init_info . Management
Metalanguage control blocks are allocated only by the MA, not by drivers.

Drivers must not use pointer values as child_ID values, since pointer values
are larger than 32 bits on some platforms.

udi_cb_t, udi_instance_attr_list t,
udi_primary_init_t, udi_init_info, udi_enumerate_req,
udi_enumerate_ack, udi_ops_init_t,
udi_child_chan_context_t

24-20

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_enumerate _req

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
PROXIES

DESCRIPTION

udi_enumerate_req Request information regarding a
child instance

#include <udi.h>

void udi_enumerate_req (
udi_enumerate _cb t * cb,
udi_ubit8 t enumeration_level);

/* Values for enumeration_level */

#define UDI_ENUMERATE_START 1

#define UDI_ENUMERATE_START_RESCAN 2

#define UDI_ENUMERATE_NEXT 3

#define UDI_ENUMERATE_NEW 4

#define UDI_ENUMERATE_DIRECTED 5

#define UDI_ENUMERATE_RELEASE 6

cb is a pointer to an enumeration control block.

enumeration_level is a value describing the relationship of this
enumeration request to previous enumeration requests (see
below).

The affected driver instance’s management channel.

udi_enumerate_no_children Proxy for udi_enumerate_req

udi_enumerate_req_op_t udi_enumerate_no_children ;

udi_enumerate_no_children may be used as a driver's

udi_enumerate_req entry point if the driver never needs to enumerate
any child devices. It will simply acknowledge the request with
UDI_ENUMERATE_LEARo indicate that there are and never will be any
children of this device.

The Management Agent issues this request to obtain enumeration information
about child devices of the current driver instance’s device. If there is
information that may be returned for child devices, the receiving driver fills in

an array oludi_instance_attr_list_t structures to describe that child
device.
The enumeration_level argument indicates the relationship of this

enumeration request to any previous enumeration requests based on the
following values:

UDI_ENUMERATE_STARTThe Management Agent is starting a new
enumeration cycle. The target driver must provide information about
at least all child devices that match the filter, regardless of whether
those children were previously enumerated (or are currently actively
bound). Subsequent enumeration requests are expected to have an
enumeration_level of UDI_ENUMERATE_NEXID obtain

UDI Core Specification - Version 1.01 - 2/2/01 24-21
Section 5: Core Metalanguages

udi_enumerate _req Mgmt Meta

information about more child devices; receipt of another
UDI_ENUMERATE_STARWiIll restart the enumeration back at the
beginning.

UDI_ENUMERATE_START_RESCANhis enumeration level is the same as
the UDI_ENUMERATE_STAR&numeration level except that with
this level the driver must not use any previously obtained or cached
information to report child devices and must instead perform physical
verification as appropriate to obtain the filtered list of children. The
physical scan must only be sufficient to satisfy the specified filter; an
exhaustive physical scan is not necessary unless indicated by the filter
(or lack thereof).

UDI_ENUMERATE_NEXT The target driver shall return information about
the next child device relative to the one described in the previous
successfulidi_enumerate_ack operation with a
UDI_ENUMERATE_STARUDI_ENUMERATE_RESCANr
UDI_ENUMERATE_NE®Whumeration level that was relative to the
same parent ID. When all children have been enumerated the
udi_enumerate_ack operation shall indicate an
enumeration_flag of UDI_ ENUMERATE_DONEhe driver is
expected to maintain the context (in its region data and, if a multiple-
parent driver instance, in its parent context data) necessary to
implement theUDI_ENUMERATE_NEX®perations properly.

Although the enumeratiofilter_list is passed to the driver
each time theidi_enumerate_req is called, the MA will not
change the filter specification from the previous
udi_enumerate_req call if theUDI_ENUMERATE_NEXT
enumeration level is specified.

UDI_ENUMERATE_NEMWThe target driver shall return information about any
child device changes.€. new or removed children) that have been
detected since the completion of any previous enumeration cycles.
The MA will typically issue aidi_enumerate_req of this type to
the target driver that will be held by the target driver for an indefinite
period of time until such a child event occurs, at which point the
target driver will indicate the event by completing this request with a
udi_enumerate_ack operation.

UDI_ENUMERATE_DIRECTEBThis enumeration level is an indication to
the target driver that it must create a child with the specific attributes
indicated in the associated attribute list. This is used when the
Management Agent needs to instantiate children as a result of
external configuration information rather than hardware probed
configuration.

UDI_ENUMERATE_RELEASEThis enumeration level is an indication to the
target driver that it should release resources associate with the
indicated child (as specified by tlo#ild ID member of the
control block). This is used when the Management Agent has
terminated all child instances for thigild /D and is no longer

24-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_enumerate _req

WARNING
REFERENCES

planning to use this child device. This may occur whether or not the
target driver has unenumerated the device instance (with
UDI_ENUMERATE_REMOVEDhis signals the current driver that

the child_ID value for the indicated child and any associated
context information may now be deallocated or re-used for future
enumerations.

If a UDI_ENUMERATE_NEW received after & DI_ENUMERATE_START
(and zero or mor&/DI_ENUMERATE_NEX), but before the driver has
provided information regarding all child devices, it will be treated as if it were
a UDI_ENUMERATE_NEXT

UDI_ENUMERATE_DIRECTEBndUDI_ENUMERATE_RELEASHay be
invoked independently of other enumeration sequences. They do not affect the
behavior ofUDI_ENUMERATE_NEXT

If a previousUDI_ENUMERATE_NEYIr the samearent ID s still
pending, the driver must caldi_enumerate_ack with
UDI_ENUMERATE_FAILED to “cancel” the previous request and then
process the new enumeration request.

The filter_list specified in the enumeration control block specifies the
attribute filter hints to be applied to the enumeration by the target driver. The
target driver may use these hints to select which child instances to return
information about, or it may ignore these hints and return a superset of the
filtered children.

If the parent ID in the enumeration control block is not
UDI_ANY_PARENT_IQ then it identifies the specific parent of the current
driver instance with respect to which the enumeration is to be performed.

Drivers must not invoke this operation.

udi_enumerate_ack, udi_instance_attr_list _t,
udi_enumerate_cb _t

UDI Core Specification - Version 1.01 - 2/2/01 24-23
Section 5: Core Metalanguages

udi_enumerate _ack Mgmt Meta

NAME
SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

udi_enumerate_ack Provide child instance information
#include <udi.h>

void udi_enumerate_ack (
udi_enumerate _cb_t * cb,
udi_ubit8 t enumeration_result ,
udi_index_t ops_idx);

/* Values for enumeration_result */

#define UDI_ENUMERATE_OK 0

#define UDI_ENUMERATE_LEAF 1

#define UDI_ENUMERATE_DONE 2

#define UDI_ENUMERATE_RESCAN 3

#define UDI_ENUMERATE_REMOVED 4

#define UDI_ENUMERATE_REMOVED_SELF 5

#define UDI_ENUMERATE_RELEASED 6

#define UDI_ENUMERATE_FAILED 255

cb is a pointer to an enumeration control block.
enumeration_result is a value indicating what type of enumeration

acknowledgement is being generated.

ops_idx indicates (one of) the child binding ops index(es)—with
associated metalanguage(s)—useable with this child device. If a
driver callsudi_enumerate_ack multiple times with the
samechild_ID then each must have a differeas_idx ,
corresponding to a differembeta_idx , and the environment
may bind child drivers using any or all corresponding

metalanguages. Bnumeration_result is not
UDI_ENUMERATE_Qkps idx is ignored and may be set to
any value.

The affected driver instance’s management channel.

Theudi_enumerate_ack channel operation is used in response to a
udi_enumerate_req channel operation and provides information about a
particular child device instance.

The attr_list in the control block specifies the enumeration instance
attributes that will be present for corresponding child driver instance(s) when
created. These enumeration attributes may be obtained by a child driver via
calls toudi_instance_attr_get , to obtain additional information about
the instance being created. All child devices that matcfiltbe list in

the enumeration request control block must be included in the set of
enumeration acknowledgements. Other children may also be included.

The enumeration_result argument must be one of the following values
and indicates the type of enumeration response being generated by the driver
and how the associatehild ID andattr_list values in the control

block should be interpreted:

24-24

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_enumerate _ack

UDI_ENUMERATE_OKIndicates that the enumeration is returning a valid
child instance enumeration and that no special cases apply. The
attr_valid_length value is adjusted accordingly and the
child_ID field is filled in by the driver with a value that
uniquely identifies this child. This value will be used to identify
the bind channel to that child in the
udi_child_chan_context_t structure (if the
udi_ops_init_t chan_context _size is non-zero).

UDI_ENUMERATE_LEAF Indicates that there are not and never will be any
child devices for the current device.

UDI_ENUMERATE_DON#Hndicates that all children have already been
enumerated and no more child devices exist. This response does
not actually enumerate a child.

UDI_ENUMERATE_RESCANNdicates that the Management Agent should
re-scan the entire set of children Wi®! ENUMERATE_START
andUDI_ENUMERATE_NEX®®perations. This can be returned
in situations where there are multiple changes to the set of child
devices, where the set has changed part way through the
enumeration process, or when the target driver is unable to
determine the exact change that has occurred.

This response does not actually enumerate a child.

This value must only be returned fdbDl_ ENUMERATE_NEW
andUDI_ENUMERATE_NEXfequests.

UDI_ENUMERATE_REMOVEIndicates that the specified child device has
been removed (as opposed to added) and that the Management
Agent should initiate handling of a device removal. The
child_ID indicates which child has been removed by passing
the same value that the child was originally enumerated with.

This value must only be returned fdbDl_ ENUMERATE_NEW
requests.

It is important to note that the use of
UDI_ENUMERATE_REMOVE® aUDI_ENUMERATE_NEW
request is aexplicit unenumeration of a child device. A child
device may also benplicitly unenumerated by not listing it as
part of aUDI_ENUMERATE_STARMUDI_ENUMERATE_NEXT
scan.

Whether explicitly or implicitly unenumerated, the driver must
maintain the validity of thehild ID associated with this child
until the Management Agent acknowledges the unenumeration
with audi_enumerate_req operation with an enumeration
level of UDI_ENUMERATE_RELEASE

UDI Core Specification - Version 1.01 - 2/2/01 24-25
Section 5: Core Metalanguages

udi_enumerate _ack Mgmt Meta

WARNINGS

REFERENCES

UDI_ENUMERATE_REMOVED_SE1L Freated like
UDI_ENUMERATE_REMOVE®Xcept that this indicates that the
enumerating device itself has been removed.

UDI_ENUMERATE_RELEASEDThe response from the driver when it has
released all resources associated with a removed child device.
This response must only be used with the
UDI_ENUMERATE_RELEASHquest and indicates that the
driver has released all resources associated with the indicated
child.

UDI_ENUMERATE_FAILED Indicates that the dynamic or directed
enumeration cannot be satisfied by this target driver. This may
only be returned fotJDI_ENUMERATE_NE®hd
UDI_ENUMERATE_DIRECTER:quests.

In all cases exceftiDI_ENUMERATE_QHKhe contents oéttr_list is
ignored and returned unchanged. Hii_valid _length member of the
control block must always be zero except forthel ENUMERATE_OKase,
where it indicates the number of child enumeration attributes. In all cases
exceptUDI_ENUMERATE_OEndUDI_ENUMERATE_REMOVEDe

child_ID value is ignored.

Table 24-1enumeration_result value usage
enumeration_result valid
UDI_ENUMERATE_xxx for child_ID attr_valid_length
OK all new child ID number of child
instance
enumeration
attributes
specified
LEAF all ignored 0
DONE all ignored 0
RESCAN NEXT ignored 0
NEW
REMOVED NEW child instance to be 0
removed
REMOVED_SELF NEW ignored 0
RELEASED RELEASE ignored 0
FAILED NEW, ignored 0
DIRECTED

The control block must be the same control block as passed to the driver in the
correspondingidi_enumerate_req operation.

udi_enumerate_req, udi_instance_attr_list t
udi_enumerate_cb _t, udi_primary_init_t

24-26

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Device Management Operations

24.6 Device Management Operations

This subsection of the Management Metalanguage is used to manage the flow of I/O operations within a
driver instance during hot plug scenarios. In addition to controlling further 1/O operations, the
Management Metalanguage also allows the driver instance to communicate its operational state to the
MA. A driver instance may indicate that it cannot currently support the suspension of activity. The MA
could then decide to discontinue the hot plug operation, or forcibly continue. The driver instance may
indicate that it can suspend internally and will queue all new 1/O requests. The MA could then decide to
no longer propagate the hot plug operation to the driver instance’s children, leaving them unaffected.

The following model describes the typical sequence of events surrounding a hot plug operation. The
actual sequence of operations and MA functionality may differ but the events described by this model
will be valid from the driver’s perspective for any environment:

1. ... a hot plug event occurs and the driver instance is determined to be in the set of affected
driver instances.

2. The MA issues repare_To_Suspermberation to the driver instance. The driver instance
takes appropriate action (see 20.8.1) and acknowledges the operation. Note: if the MA
were to subsequently cancel the hot plug operation, it would isResw@meperation to
the driver instance.

3. The MA issues &uspendperation to the driver instance. The driver instance takes
appropriate action (see 20.8.2) and acknowledges the operation. Note: if the MA were to
subsequently cancel the hot plug operation, it would isfesameperation to the driver
instance.

4. If the instance is to be unbound, the MA will cause all children to unbind from the driver
instance. Note: if the MA were to subsequently cancel the hot plug operation, it would
cause the children to rebind to the driver instance.

5. If parent instance(s) are to be unbound, the MA will request the driver instance to unbind
from the respective parent(s).

6. If the instance is to be removed from the system, after unbinding all parents and children,
the MA will invoke udi_final_cleanup_req to cause the instance to be fully
removed.

7. .. the affected hardware is powered down, swapped, and re-enabled. The MA starts normal
attachment. The hardware is identified as belonging to the driver.

8. If the driver was removed from the system, the instance is recreated and re-bound to its
parent(s).

9. The MA enumerates the driver instance’s children. If the children were unbound, the MA
will initiate re-binding to each of the children. If the children were not unbound, the MA
will issue aResumeperation to the driver instance.

24.6.1 Prepare To Suspend

This device management operation serves as an informational noticeStisienperation is about to
be performed relative to the indicated parent. It serves the following purposes:

UDI Core Specification - Version 1.01 - 2/2/01 24-27
Section 5: Core Metalanguages

Device Management Operations Mgmt Meta

Relative to the driver instance:

1. If the instance cannot support suspending operation and/or unbinding, it shall return the
proper error code in the acknowledgment.

2. As a configuration change is about to take place, changes to the instance’s configuration,
state, etc that may conflict with a configuration change must be avoided or kept track of.

3. To minimize the generation of new 1/O traffic based on the receipt of unsolicited inbound
requests, the instance should take action, if possible, to turn off unsolicited inbound traffic
(for example, a network driver should turn off the reception of new packets).

4. To minimize the length of time that ti&ispendperation will take, the instance should
avoid, if possible, issuing new I/O requests to its parent.

Relative to the MA and the environment:

1. Based on the response of the driver instance, the MA is given an indication as to whether
the hot plug operation can succeed. This allows the MA to determine if it should cancel the
operation or whether it must forcibly remove this portion of the tree. If the MA is to cancel
the operation, it can simpResumeperation on the device instances previously sent a
Prepare To Suspendhis early failure naotification allows the MA to avoid the costly
unbinding and rebinding process on the portion of the topology that was traversed prior to
the failure.

24.6.2 Suspend

This management operation instructs the driver instance to suspend all activity via the indicated parent.
The instance is to no longer initiate transactions to the indicated parent. In addition, prior to
acknowledging th&uspendperation, it is to wait for all transactions outstanding with the indicated

parent to complete (successfully or otherwise). The instance is to also take whatever actions necessary to
prevent the delivery of unsolicited inbound requests. This may involve disabling the reception of new
packets, disabling interrupts, exerting flow control, etc.

If the instance determines that it is in a state that cannot be suspended, it shall return a proper error
status in the acknowledgment.

If the instance receives new requests (from its children) that are targeted for the indicated parent, the
instance can either queue the requests or discard the requests as appropriate for the instance’s device
model. If the instance is queuing requests, it must continue to process them in as much as it is capable
relative to the metalanguage definition. In any case, the driver must ensure that the suspension is not
directly apparent to its children, though there may be indirect effects, such as extended delays or
additional retry requirements.

24.6.3 Shutdown

This management operation is identical tBuspendperation with the addition that it also instructs the
driver instance to shutdown and detach as much as possible with its associated hardware. All
communication connections should be terminated. Singtdownoperation is commonly used when no
further device activity is desired but the device itself will remain powered on (e.g. when the operating
system is to be rebooted).

24-28 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Device Management Operations

Unlike Suspend, Shutdown will not be followed by a Resume, but may be followed by an Unbind.

24.6.4 Parent Suspended

This management operation is a notification that is used by the MA to affect some level of flow control

over resources and requests that are issued by instances that are descendants of a suspended or shutdown
instance. Typically, this will be used when the MA determines it no longer needs to propagate the
Suspenaperation because it has encountered an instance that sufficiently queues new requests such that
its children are no longer affected by the hot plug operation.

An instance that receives this operation should throttle its operation. The MA will send this instance a
Resumeoperation once the ancestor has been resumed.

24.6.5 Resume

This management operation is used by the MA to resume normal operatioRrafiare To Suspend
Suspengdor Parent Suspendedt may be issued when the MA encounters a scenario in which the MA
needs to abort the hot plug operation, or when sufficient hardware has been rebound such that I/O should
resume.

If resuming from a suspend, a different parent device may have been re-bound, and this driver must
adapt to all device property changes, such as those indicated by a constraints propagation. If the driver
cannot, or chooses not to, maintain sufficient state to reprogram the (replacement) device when it is
resumed, then it must respondReepare To Suspendith an indication that it does not support

transparent resume. The MA may choose to abort the hot plug operation or continue with a non-
transparent Suspend/Resume.

24.6.6 Abrupt Unbind

Instead of going through the normal device management unbind scenario, the MA may sometimes need
to abruptly unbind a driver instance. This may happen as a result of an abrupt hot removal of a device
(i.e. removing a device without informing the operating system). It may also happen as a result of
“region-kill” as a result of a driver software failure. In either case, the event will propagate to
neighboring driver instances adi_channel_event_ind operations of type

UDI_CHANNEL_CLOSED

UDI Core Specification - Version 1.01 - 2/2/01 24-29
Section 5: Core Metalanguages

udi_devmgmt req Mgmt Meta

NAME
SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

udi_devmgmt_req Device Management request
#include <udi.h>

void udi_devmgmt req (
udimgmt _cb_t* cb,
udi_ubit8 t mgmt_op,
udi_ubit8 t parent ID);

/* Values for mgmt_op */

#define UDI_DMGMT_PREPARE_TO_SUSPEND 1

#define UDI_DMGMT_SUSPEND 2

#define UDI_DMGMT_SHUTDOWN 3

#define UDI_DMGMT_PARENT_SUSPENDED 4

#define UDI_DMGMT_RESUME 5

#define UDI_DMGMT_UNBIND 6

cb is a pointer to a miscellaneous Management Metalanguage

control block.
mgmt_op is a value that selects the operation type.

parent_ID is the parent ID that indicates the parent for which the operation
is to take place. This will match the value originally supplied by
the MA when the parent was bound to the current driver via the
udi_channel_event_ind operation of type
UDI_CHANNEL_BOUND

The Management Agent's management channel to the parent driver.

The Management Agent issues this request to manage I/O transfers within a
driver instance during hot plug operations.

The mgmt_op argument must be one of the following values and indicates the
type of management operation being requested:

UDI_DMGMT_PREPARE_TO_SUSPENDdicates that a Suspend operation
is about to take place relative to the indicated parent.

UDI_DMGMT_SUSPENDRequests the instance to suspend all operation
relative to the indicated parent, and queue or fail new requests that
are received. The instance must not acknowledge the request until all
outstanding requests to the indicated parent are complete. The device
must be put in a state that is prepared for the possibility of having
power removed (for example, disk caches must be flushed), but
device state and communications connections should not be
completely shut down.

UDI_DMGMT_SHUTDOWRreated a®¥)DI_DMGMT_SUSPENWith the
addition that the device must be completely shut down (in particular,
all communications connections should be terminated).

24-30

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_devmgmt _req

WARNING
REFERENCES

UDI_DMGMT_PARENT_SUSPENDERdicates that outbound traffic via the
indicated parent has been suspended.

UDI_DMGMT_RESUMHndicates that the instance is to cancel any suspended
or throttled state and is to resume full operation. I/O shall resume
onto the then-active set of parents; if a multi-parent driver has parent-
specific routing requirements, it must compaegent ID against
the set of currently-bound parents and fail if that parent is no longer
(re-)bound.

UDI_DMGMT_UNBIND Indicates that the driver must unbind from the
indicated parent. The driver must first complete a metalanguage-
specific unbind sequence with its parent and free resources related to
that parent (it may choose to defer freeing some resources until it
receives audi_final_cleanup_req). As much as possible, the
device should be shut down, as if it might be removed or powered off
after this operation completes if this is the last parent.
Communications connections should be terminated. Storage device
write-back caches should be flushed to permanent storage, for
example. When the unbinding is complete (and not before), the driver
must respond to theDI_DMGMT_UNBINDPequest with a
correspondingidi_devmgmt_ack

Drivers must not invoke this operation.

udi_devmgmt_ack, udi_mgmt_cb _t

UDI Core Specification - Version 1.01 - 2/2/01 24-31
Section 5: Core Metalanguages

udi_devmgmt_ack Mgmt Meta

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

STATUS VALUES

udi_devmgmt_ack Acknowledge a device management
request

#include <udi.h>

void udi_devmgmt _ack {
udi mgmt cb t* cb,
udi_ubit8 t flags ,
udi_status t status '}

/* Values for flags */
#define UDI_DMGMT_NONTRANSPARENT (1&<0)

/* Meta-Specific Status Codes */
#define UDI_DMGMT_STAT_ROUTING_CHANGE
(UDI_STAT_META_SPECIFIC|1)

cb is a pointer to a miscellaneous Management Metalanguage
control block.

status indicates the success or failure of the operation.
The parent driver’'s primary region management channel.

Theudi_devmgmt_ack channel operation is used in response to a
udi_devmgmt_req channel operation and provides information about a
device management function requested of an instance.

The flags argument may include:

UDI_DMGMT_NONTRANSPARENMdicates that the requested
UDI_DMGMT_PREPARE_TO_SUSPENDDI_DMGMT_SUSPEND
operation has been complied with. The instance is also indicating that
it does not support transparent resume.

UDI_OK - Indicates that the device management operation was handled
successfully by the driver and that no exceptions are indicated.

UDI_STAT_NOT_SUPPORTEDIndicates that the instance has failed the
UDI_DMGMT_PREPARE_TO_SUSPENDI_DMGMT_SUSPEND
or UDI_DMGMT_SHUTDOMWA&Yjuest, because it does not maintain
sufficient state to be able to suspend.

UDI_STAT_INVALID_STATE - Indicates that the instance has failed the
UDI_DMGMT_PREPARE_TO_SUSPENDI_DMGMT_SUSPEND
or UDI_DMGMT_SHUTDOWAYuest because its hardware,
configuration state, coding level, etc, do not allow it to be suspended
at this time.

UDI_DMGMT_STAT_ROUTING_CHANGHEdicates that the instance has
failed theUDI_DMGMT_SUSPEN& UDI_DMGMT_SHUTDOWN
request. The instance is indicating that the set of children related to
the indicated parent has changed since it was last enumerated. The

24-32

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_devmgmt_ack

WARNINGS

REFERENCES

MA is to re-enumerate and resume the operation. Drivers that do not
support multiple parents need not check for this condition and must
not use this status code.

The control block must be the same control block as passed to the driver in the
correspondingidi_devmgmt_req operation.

udi_devmgmt_req, udi_devmgmt_cb _t

UDI Core Specification - Version 1.01 - 2/2/01 24-33
Section 5: Core Metalanguages

udi_final _cleanup_req Mgmt Meta

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

WARNING
REFERENCES

udi_final_cleanup_req Release final resources prior to
instance unload

#include <udi.h>

void udi_final_cleanup_req (
udimgmt _cb t* cb);

cb is a pointer to a miscellaneous Management Metalanguage
control block.

The affected driver instance’s management channel

The MA issues this operation to request that the driver fully remove all
resources and region instance context. The MA will only invoke this request
after all parents and children have been unbound from the instance and the
instance is now to fully be removed from the system. The driver must fully
return any resources allocated on behalf of the instance, including closing any
channels that the driver explicitly spawned.

Upon completion of this request, the driver must perform a
udi_final_cleanup_ack operation, passing it the same control block as
was passed todi_final_cleanup_req . After sending the ack, it should
logically appear as if the driver instance had not appeared in the system.

Drivers must not invoke this operation.

udi_final_cleanup_ack

24-34

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta

udi_final _cleanup _ack

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

WARNINGS

REFERENCES

udi_final_cleanup_ack Acknowledge completion of a final
cleanup request

#include <udi.h>
void udi_final_cleanup_ack (
udi mgmt cb t* c¢b);
cb is a pointer to a miscellaneous Management Metalanguage
control block.
The affected driver instance’s management channel

Handshakes adi_final_cleanup_req operation. This indicates to the
MA that the removal operation has completed.

The driver must free all of its resources before calling
udi_final_cleanup_ack , regardless of its current state.

The control block must be the same control block as passed to the driver in the
correspondingudi_final_cleanup_req operation.

udi_final_cleanup_req

UDI Core Specification - Version 1.01 - 2/2/01 24-35
Section 5: Core Metalanguages

Metalanguage-Specific Trace Events Mgmt Meta

24.7 Metalanguage-Specific Trace Events

The following defines the rules and conventions in the Management Metalanguage for the use of the
metalanguage-selectable trace events (see the “Metalanguage Trace Events” in the 17-3 of the UDI Core
Specification).

* UDI_TREVENT_IO_SCHEDULED,
UDI_TREVENT_IO_COMPLETED

* These trace events are not applicable to the Management Metalanguage.

* UDI_TREVENT_META_SPECIFIC_1
e This trace event is used to track the start and completion of scans for child
devices (regardless of whether this causes any enumeration/denumeration
operations with the management agent or whether it was triggered by a
udi_enumerate_req). The driver may post trace events indicating the
existence or non-existence of hardware as determined by the internal scan
operations.

* UDI_TREVENT_META_SPECIFIC_2
UDI_TREVENT_META_SPECIFIC_3,
UDI_TREVENT_META_SPECIFIC_4,
UDI_TREVENT_META_SPECIFIC_5

* Reserved for future use.

Note —All returned status values other theDI_OK that indicate exceptional conditions must be
logged and, when enabled, may also be traced, even if such events are expected.

24-36 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Mgmt Meta Management Metalanguage States

24.8 Management Metalanguage States

The following states, along with the state diagram shown in Figure 25-1, define the valid states for a
UDI driver relative to the Management Metalanguage and the allowed operations in each of the states.

Operations or events that cause a state change are indicated by a character label on the associated state
change path in the state diagram; the character labels refer to events as shown in Table 25-2 below. If the
operation is a success or failure indication, the success path is indicated by the single-character label and
the failure path is indicated by a hash mark (‘#’) following the single-character label. Operations and
events that are not listed in the state diagram do not cause state changes to occur.

UDI Core Specification - Version 1.01 - 2/2/01 24-37
Section 5: Core Metalanguages

Management Metalanguage States Mgmt Meta

Figure 24-1 Management Metalanguage State Diagrams

INSTANCE A INSTANCE
CREATION DELETION
" for each parent channel h |
created (OPERATIONAL L parent channe
K deallocated

state only)

M

CLOSING
A

E#
parent channel
rejected
Table 24-2 Management Metalanguage Events
Event Operation
A udi_usage_ind
B udi_channel_event_ind (UDI_CHANNEL_BOUND) on parent channel
C udi_final_cleanup_req
D udi_final_cleanup_ack
E udi_channel_event_complete (UDI_CHANNEL_BOUND)
F udi_devmgmt_req (Unbind)
G udi_devmgmt_req (Prepare to Suspend)
H udi_devmgmt_req (Suspend or Shutdown)
| udi_devmgmt_req (Resume)
J udi_devmgmt_req (Parent Suspended)
K udi_channel_event_ind (UDI_CHANNEL_CLOSED) on parent channel
L udi_channel_close on parent channel
M udi_devmgmt_ack (Unbind)
24-38 UDI Core Specification - Version 1.01 - 2/2/01

Section 5: Core Metalanguages

Mgmt Meta Management Metalanguage States

24.8.1 Management Metalanguage States

START

OPERATIONAL

CLEANUP

This is the initial state for any newly instantiated driver instance. A driver instance
in this state has been newly created along with a management channel and is being
prepared for I/O operations, but is not yet bound to any parents or children. This is
the only state wherein secondary regions will be automatically instantiated and all
secondary regions will be instantiated before leaving this state.

This is the primary state for a driver instance. In this state, parent and child
channels may be bound to the instance and normal I/O channel operations and
functionality may occur.

This is the final state for a driver instance and is entered from any state that has no
parents or children bound, whedi_final_cleanup_req is received on that
driver's management channel. Any remaining resources held by the driver must be
released, preparatory to this driver instance being removed from the system.

24.8.1.1 Operational Sub-States

BINDING

ACTIVE

UNBINDING

THROTTLED

SUSPENDING

SUSPENDED

CLOSING

UNBOUND

A driver in the BINDING state is in the process of satisfying a
UDI_CHANNEL_BOUNBvent for a newly created parent bind channel. This is a
transition state into the ACTIVE state.

This is the normal functional state for the driver instance. When in this state, the
instance is bound to one or more parents and may also be bound to one or more
child instances. The driver instance is expected to be able to handle 1/O traffic and
any associated device activity.

A driver instance enters this state when it has receivd®laDMGMT_UNBIND
request for a particular parent. In this state the driver is expected to complete any
pending I/O to that parent and clean up any resources associated with that parent.
Upon completion of this state (signalled by a correspondiigdevmgmt_ack
operation) the parent channel will be deallocated by the MA. The MA may later re-
use the parent ID to enter the BINDING state but the target driver should treat this
binding as a completely new binding.

This state is entered when the MA has suspended (or is in the process of
suspending) a parent of the current driver instance; the driver should throttle
operations and generate as little traffic as possible to the parent channel(s).

This state is entered when the MA is preparing to handle a device
shutdown/suspension in order to replace the device or perform some other device
management operation.

This state is entered when the MA issues a device management operation
instructing the driver to temporarily halt I/O activities with respect to this parent.

This state is entered whetyBI_CHANNEL _CLOSEPBvent indication has been
received on the parent bind channel to this parent. This indicates that the parent was
abruptly removed as part of a region kill or other catastrophic event. In CLOSING
state the target driver must clean up all resources relative to the parent immediately
without exchanging further channel operations with that parent driver instance.

This state is reached when the last parent and child are unbound from this instance.

UDI Core Specification - Version 1.01 - 2/2/01 24-39
Section 5: Core Metalanguages

Management Metalanguage States Mgmt Meta

Table 24-3 Management Metalanguage: Valid Operations by State

OPERATIONAL
9 a
Q 2 Z i a o
] =z [a] a z

| 2z 2| 5| E| &| & 2| 3| 2

gl 2] § B 2 & & S| 2| 4
Operation n s < 5 F 2 2 o s 3
udi_usage_ind YES | YES | YES | YES| YES| YES| YES| YES| YES| no
udi_usage_res YES | YES | YES | YES| YES| YES| YES| YES| YES| no
udi_channel_event_ind YES | no no no no no no no | YES | no
(UDI_CHANNEL_BOUND)
on parent channel
udi_channel_event_complete no YES | no no no no no no no no
(UDI_CHANNEL_BOUND)
udi_enumerate_req no no YES | no YES | YES | YES | no no no
udi_enumerate_ack no no YES | YES | YES | YES| YES| YES| no YES
udi_devmgmt_req no no YES | no YES | no no no no no
(Prepare to Suspend)
udi_devmgmt_req no no no no no | YES | no no no no
(Suspend or Shutdown)
udi_devmgmt_req (Resume) no no no no | YES | YES | YES | no no no
udi_devmgmt_req no no YES | no no no no no | no no
(Parent Suspended)
udi_devmgmt_req (Unbind) no no YES | no no no YES | no no no
udi_devmgmt_ack (Unbind) no no no YES | no no no YES| no no
udi_devmgmt_ack no no YES | YES | YES | YES | no YES | no no
udi_final_cleanup_req YES | no no no no no no no | YES | no
udi_final_cleanup_ack no no no no no no no no | no YES
udi_channel_event_ind no YES | YES | YES | YES | YES | YES | no no no
(UDI_CHANNEL_CLOSED)
on parent channel

24-40 UDI Core Specification - Version 1.01 - 2/2/01

Section 5: Core Metalanguages

|

%l u D b o
Generic I/O Metalanguage 25

25.1 Overview

This chapter defines the channel operations and associated service calls for the Generic I/O
Metalanguage, which is available for use as a generic pass-through metalanguage.

Each subsection defines the channel operations, associated control blocks, the rationale for the
operation’s existence, constraints and guidelines for the use of each operation, and error conditions that
can occur.

The Generic I/O Metalanguage can be used as a “top-side” metalanguage for drivers when a more
specific metalanguage does not (yet) exist. Some of the ways this might be used are:

1. as a prototyping vehicle, until a more specific metalanguage can be constructed;

2. as a “super pass-through”, for vendor-specific applications to talk to their own drivers;
3. as a way for diagnostic applications to invoke diagnostic operations in the driver;
4

. and as a top-side metalanguage for pseudo-drivers that are so specialized, and possibly
even OS-specific, that they don’t deserve the investment in a custom metalanguage.

The Generic I/O Metalanguage can also be used as an internal metalanguage between a multi-region
driver's primary and secondary regions or between secondary regions.

The Generic I/0 Metalanguage provides the following functionality:
® the ability to send and receive data buffers to/from the driver;
® the ability to send control operations to the driver;

® and the ability to send event notifications from the driver “upward.”

Note —The GIO client must usedi_channel_op_abort on page 16-7 to abort outstanding GIO
transfer requests. Only theeli_gio_xfer_req operation is abortable in GIO; therefore for a
GIO channel, theorig cb parameter taudi_channel_op_abort must point to a
udi_gio_xfer_cb_t control block that was previously passed on the GIO channel from the
client to the provider.

The only operation in the Generic I/O Metalanguage that is recoverable (see Section 4.10, “Driver
Faults/Recovery”) isudi_gio_xfer_req

UDI Core Specification - Version 1.01 - 2/2/01 25-1
Section 5: Core Metalanguages

Metalanguage Bindings Generic I/O Meta

25.1.1 Versioning

All functions and structures defined in this chapter are part ofutlie gio ” interface, currently at
version ‘0x101 ". A driver that conforms to and uses the Generic I/O Metalanguage of the UDI Core
Specification, Version 1.01, must include the following declaration indigrops.txt file (see
Chapter 30;'Static Driver Properties’):

requires udi_gio 0x101

Compile-time versioning and header files for the Generic 1/0 Metalanguage are covered by the general
requirements for the UDI Core Specification defined in ChaptéG8neral Requirements”

A portable implementation of the Generic I/O Metalanguage must include a corresponding "provides"
declaration in itaudiprops.txt file, must conform to the same compile-time versioning and header

file requirements as for drivers, and must conform to the requirements specified in the Metalanguage-to-
Environment (MEI) interface defined in Chapter 2Ihtroduction to MEI” and Chapter 28,
“Metalanguage-to-Environment Interfacedf the UDI Core Specification.

25.1.2 Roles

There are two roles to the Generic 1/0 Metalanguage: the “client” and the “provider.” When this
metalanguage is used between drivers, the client is always a child of the provider. When used as an
internal metalanguage, the client and provider are both in the same driver, but in different regions.

To keep things simple, the initial bind channel is also used for all I/O operations. As a result, there is
just one channel between the client and the provider.

25.2 Metalanguage Bindings

25.2.1 Bindings for Static Driver Properties

Some of the bindings for the static driver properties are defined in Section 25.1.1, “Versioning”. This
includes the definition of the relevant interface name(s) (i.e., the <interface_name> parameter on the
“requires” and “provides” and other property declarations), and the definition of the interface version
number for this version of this Specification.

The driver category to be used with the “category” declaration (see Section 30.5.3, “Category
Declaration,” on page 30-11) by a portable implementation of the GIO Metalangauge Library shall be
“Miscellaneous”.

25.2.2 Bindings for Instance Attributes

In each of the attribute tables below, &ETRIBUTE NAME is a null-terminated string (see “Instance
Attribute Names” on page 15-1); tHe&rPE column specifies an attribute data type as defined in
udi_instance_attr_type t on page 15-7; and tH&lZE column specifies the valid sizes, in bytes, for
each attribute.

25-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta Metalanguage Bindings

25.2.2.1 Enumeration Attributes

The driver that enumerates GIO clients must create the following enumeration attributes and pass them
to the Management Agent in tlatr_list parameter of thadi_enumerate_ack operation (see
“Device Management Operations” on page 24-27).

Table 25-1 GIO Enumeration Attributes

ATTRIBUTE NAME TYPE BIZE DESCRIPTION
gio_type UDI_ATTR_STRING 1..32 Type of GIO client driver
gio_instance UDI_ATTR_UBIT32 4 Instance number of GIO client relative to the
parent GIO provider
gio_privileged_ops UDI|ATTR_ARRAY8 1..63 | Array of one or more GIO opcodes (one per
array entry) that perform “privileged”
operations.
gio_destructive_ops UDI|ATTR_ARRAYS 1..63 | Array of one or more GIO opcodes (one per
array entry) that perform “destructive”
operations.

The “gio_type " attribute specifies the type of GIO client driver being enumerated. The size of the
“gio_type " attribute must be in the range 1..32, including the null-terminator character. If enumerating
a GIO client to be a Diagnostics child, the value for this attribute is defined in ChaptBidfjostics
Support”. Otherwise, the contents ofib_type " strings are driver-defined.

The “gio_privileged_ops " and “gio_destructive_ops " attributes may be used to specify

which GIO opcodes are either privileged or destructive. These enumeration attributes are optional and do
not need to be specified by the GIO service provider. The meaning of a privileged or destructive
operation must be documented by the individual service provider, but in general terms, a privileged
operation is one which has a system-wide impact or may allow access to sensitive data or control over
the device configuration and therefore should be limited to requestors that are “privileged”. A
destructive operation is one which can cause data loss or will reconfigure the device in such a way that
future use of the device is incompatible with current use (e.g. formatting a disk drive). The GIO service
provider should determine a policy for handling both privileged and destructive operations, possibly
including: ignoring the indicators entirely, checking application privileges before delivering the
operations to the service provider, providing exclusive access to the service provider for the duration of
the operation, and logging operations of this type.

25.2.2.2 Filter Attributes

There are no filter attributes defined for the GIO Metalanguage.

25.2.2.3 Generic Enumeration Attributes

As defined in “Enumeration Attributes” on page 15-2, there are four generically-accessible enumeration
attributes: fdentifier ", “address_locator ", physical_locator ", and

“physical_label ". These attributes, of type UDI_ATTR_STRING, are defined so as to allow
environments to use these attributes in generic algorithms to identify and compare information about the
devices in the system. This is useful in keeping the UDI environment isolated from the specifics of

metalanguages and bus bindings.

UDI Core Specification - Version 1.01 - 2/2/01 25-3
Section 5: Core Metalanguages

Metalanguage Bindings Generic I/O Meta

In GIO, the ‘identifier " attribute must have the same value as tjie “type " attribute. The
“address_locator " attribute must have the same value as fifie “instance " attribute. The
“physical_locator " and “physical_label " attributes are not defined for the GIO

metalanguage and must not be set by the enumerating driver.

25.2.3 Enumeration Attribute Ranking

To support the ranking of enumerated devices against available drivers for the
udi_mei_enumerate_rank_func_t , the following combinations of enumeration attribute matches

yield the corresponding ranking values. Attribute combinations not specified return a relative rank of 0
(the lowest possible rank). The combinations are unchanged by matches against non-rankable attributes.

Table 25-2 GIO Enumeration Attribute Ranking

Rank Value
Rankable
Attributes 1 2 1 2 3
identifier Y Y Y
address_locator Y Y Y
gio_type Y Y Y
gio_instance Y Yl Y

1. Y indicates the valid match of the attribute, * indicates that the
attribute may or may not be a valid match (i.e. will be ignored if
matched).

2. Only the attributes listed are rankable; all other enumeration attributes
have no effect on the ranking value.

Thus, if a GIO provider enumerates a child and specifies either or both gibthestance or the
address_locator attributes, the ranking value will be one; if it also specifiesideatifier
attribute then the ranking value will be three.

25.2.4 Bindings for Trace Events

The following defines the rules and conventions in the GIO Metalanguage for the use of the
metalanguage-selectable trace events (see the “Metalanguage-Selectable Trace Events” #defines in
udi_trevent_t on page 17-3).

* UDI_TREVENT_IO_SCHEDULED

« The provider should trace at least the corresponding GIO transfer control block
pointer and GIO opcode.

® UDI_TREVENT_IO_COMPLETED

« The provider should trace at least the corresponding GIO transfer control block
pointer, GIO opcode, angtatus

e UDI_TREVENT_META_SPECIFIC_1,
UDI_TREVENT_META_SPECIFIC_2,
UDI_TREVENT_META_SPECIFIC_3,
UDI_TREVENT_META_SPECIFIC_4,
UDI_TREVENT_META_SPECIFIC_5

25-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta Metalanguage State Diagram

* Reserved for future use.

Note —All returned status values other theiDl_OK that indicate exceptional conditions must be
logged and, when enabled, may also be traced, even if such events are expected.

25.3 Metalanguage State Diagram

See “Driver Instantiation” on page 24-2 for the general configuration sequence of UDI drivers. The
following state diagram shows the GIO metalanguage state diagram, which illustrates the set of states
specific to use of the GIO metalanguage. This same state diagram applies to both GIO clients and GIO
providers.

Figure 25-1 GIO Metalanguage State Diagram

O

B
UNBOUND BINDING

ACTIVE

UNBINDING

Table 25-3 GIO Metalanguage Events

Event | Operation

A udi_gio_bind_req

B udi_gio_bind_ack

C udi_gio_xfer_req , udi_gio_xfer_ack , udi_gio_xfer_nak ,
udi_gio_event_ind , udi_gio_event_res

D udi_gio_unbind_req

E udi_gio_unbind_ack

25.3.1 GIO Metalanguage States

UNBOUND A GIO channel in the unbound state has been established between the two regions
but has not yet been initialized in those regions for general use. The client side of
the GIO channel should initiate the GIO bind operation when in this state.

BINDING This indicates that the client side of the GIO channel has initiated a bind operation
and is waiting for the provider side of the GIO channel to complete its initialization
and acknowledge that bind request.

UDI Core Specification - Version 1.01 - 2/2/01 25-5
Section 5: Core Metalanguages

Metalanguage State Diagram Generic I/O Meta

ACTIVE

UNBINDING

This indicates that the GIO channel is fully bound between the two regions and that
it may be used for GIO transfer operations or event indications.

This indicates that the GIO channel is being shut down. The client driver can cause
this state to be entered by issuingdd_gio_unbind_req . When the unbind

operation is acknowledged, both the client and the provider return to the
UNBOUND state.

25-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta Channel Ops Vectors

25.4 Channel Ops Vectors

This section defines the channel ops vector types for use with the Generic I/O Metalanguage. There are
two ops vector types in the Generic 1/0O Metalanguage: one that a GIO provider uses on its end of a GIO
channel @di_gio_provider_ops_t) and one that a GIO client uses on its end of a GIO channel
(udi_gio_client_ops_t).

UDI Core Specification - Version 1.01 - 2/2/01 25-7
Section 5: Core Metalanguages

udi_gio_provider _ops t Generic I/0 Meta

NAME udi_gio_provider_ops_t Provider entry point ops vector
SYNOPSIS | #include <udi.h>

typedef const struct {

udi_channel_event_ind_op_t * channel_event_ind_op ;
udi_gio_bind_req_op_t * gio_bind req op ;
udi_gio_unbind_req_op_t * gio_unbind_req_op ;
udi_gio_xfer_req_op_t * gio_xfer_ req_ op ;
udi_gio_event res op_t* gio_event res op

} udi_gio_provider_ops_t ;

/* Ops Vector Number */

#define UDI_GIO_PROVIDER_OPS_NUM 1
DESCRIPTION A Generic I/O provider uses thai_gio_provider_o ps_t structureina
udi_ops_init_t as part of itaudi_init_info in order to register its
entry points for receiving generic 1/0 bind and transfer requests, and event
responses.
EXAMPLE The driver'sudi_init_info might include the following:

#define MY_GIO_OPS 1 /* Ops for my child GIO client */
#define MY_GIO_META 1 /* Meta index for GIO meta */

static const
udi_gio_provider_ops_t ddd_gio_provider_ops = {
ddd_gio_channel_event_ind,
ddd_gio_bind_req,
ddd_gio_unbind_req,
ddd_gio_xfer_req,
ddd_gio_event_res

static const udi_ops_init_t ddd_ops_init_list[] = {
{ MY_GIO_OPS,
MY_GIO_META,
UDI_GIO_PROVIDER_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_gio_provider_ops },
{0}

25-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio_client_ops t

NAME
SYNOPSIS

DESCRIPTION

EXAMPLE

udi_gio_client_ops _t Client entry point ops vector
#include <udi.h>

typedef const struct {

udi_channel_event_ind_op_t * channel_event _ind_op ;
udi_gio_bind_ack op t* gio_bind_ack op ;
udi_gio_unbind_ack _op_t * gio_unbind_ack op ;
udi_gio_xfer_ack op_t * gio_xfer_ack op ;
udi_gio_xfer_nak _op_t * gio _xfer nak op ;
udi_gio_event_ind_op_t * gio_event ind_op ;

} udi_gio_client_ops_t ;

/* Ops Vector Number */
#define UDI_GIO_CLIENT_OPS_NUM 2

A Generic 1/O client uses th&di_gio_provide r_ops_t structure in a
udi_ops_init_t as part of itaudi_init_info in order to register its
entry points for receiving generic 1/0 bind and transfer acknowledgements,
and event indications.

The driver'sudi_init_info might include the following:
#define MY_GIO_OPS 1 /* Ops for my parent GIO provider */
#define MY_GIO_META 1 /* Meta index for GIO meta */

static const
udi_gio_client_ops_t ddd_gio_client_ ops = {

ddd_gio_channel_event_ind,
ddd_gio_bind_ack,

ddd_gio_unbind_ack,

ddd_gio_xfer_ack,

ddd_gio_xfer_nak,

ddd_gio_event_ind

static const udi_ops_init_t ddd_ops_init_list[] = {
{ MY_GIO_OPS,
MY_GIO_META,
UDI_GIO_CLIENT_OPS_NUM,
0, /* chan_context_size */
(udi_ops_vector_t *)&ddd_gio_client_ops },
{0}

UDI Core Specification - Version 1.01 - 2/2/01 25-9
Section 5: Core Metalanguages

Binding and Unbinding Operations Generic I/O Meta

25.5 Binding and Unbinding Operations

25-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio _bind cb t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gio_bind_cb_t Control block for GIO binding
operations

#include <udi.h>

typedef struct {

udi_ cb t gcb;

udi_xfer_constraints_t Xfer_constraints ;
} udi_gio_bind_cb_t ;

/* Control Block Group Number */
#define UDI_GIO_BIND_CB_NUM 1

gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

xfer_constraints is a structure describing the transfer constraints
required by the provider driver. (Sedi_xfer_constraints_t
on page 13-5.) These constraints apply only to the standard
read/write operationg)DI_GIO_OP_READand
UDI_GIO_OP_WRITE This field is ignored on the
udi_gio_bhind_req and is filled in by the provider for
returning information in thedi_gio_bind_ack operation.

The Generic I/0O bind control block is used between the GIO client and the
GIO provider to complete initial binding over the bind channel.

In order to use this type of control block it must be associated with a control
block index by includindJDI_GIO_BIND_CB_NUMin audi_cb _init_t
in the driver’'sudi_init_info

udi_init_info, udi_cb_init_t, udi_cb_alloc

UDI Core Specification - Version 1.01 - 2/2/01 25-11
Section 5: Core Metalanguages

udi_gio_bind req Generic I/0 Meta

NAME udi_gio_bind_req Request a binding to a GIO provider
SYNOPSIS | #include <udi.h>

void udi_gio_bind_req (
udi_gio_bind _cb_t * cb);

ARGUMENTS cb is a pointer to a GIO bind control block.

TARGET CHANNEL | The target channel for this operation is the bind channel connecting a GIO
client to a GIO provider.

DESCRIPTION A Generic 1/O client uses this operation to bind to a Generic /O provider.

The client must prepare for thueli_gio_bind_req operation by
allocating a GIO bind control block (callingli_cb_alloc with acb_idx
that was previously associated witfibl_GIO_BIND _CB_NUM.

Next, the client sends the GIO bind control block to the provider with a
udi_gio_bind_req operation.

Theudi_gio_bind_req operation must be the first channel operation sent
on the bind channel. The GIO client must not send any further operations on
the bind channel until it receives the correspondidg gio_bind_ack

from the GIO provider.

REFERENCES | udi_gio_bind_cb _t, udi_gio_bind_ack

25-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta

udi_gio_bind _ack

NAME
SYNOPSIS

ARGUMENTS

TARGET CHANNEL

DESCRIPTION

STATUS VALUES

WARNINGS

REFERENCES

udi_gio_bind_ack Acknowledge a GIO binding

#include <udi.h>

void udi_gio_bind_ack (
udi_gio_bind_cb_t * cb,
udi_ubit32_t device size lo
udi_ubit32_t device_size hi

udi_status_t status);

cb is a pointer to a GIO bind control block.

device_size lo is the least-significant 32 bits of the (logical) device size,
in bytes. This affects the behavior of standard read/write
operations; its effect on custom operations, if any, is defined by
the GIO provider.

device_size hi is the next-most-significant 32 bits of the (logical) device
size, in bytes. This affects the behavior of standard read/write
operations; its effect on custom operations, if any, is defined by
the GIO provider.

status indicates whether or not the binding was successful.

The target channel for this operation is the bind channel connecting a GIO
provider to a GIO client.

The udi_gio_bind_ack operation is used by a Generic I/O provider to
acknowledge binding with a Generic 1/0O client (or failure to do so, as
indicated bystatus), as requested bywdi_gio_bind_req operation.

If device _size lo or device_size_hi are non-zero, the standard
read/write operationg)DI_GIO_OP_READandUDI_GIO_OP_WRITE are
treated as random-access operations; that ispffeet _lo and

offset_hi members ofidi_gio_rw_params_t indicate the starting

device offset for each transfer and transfers may be sent to the provider in any
order. The client must not send any such requests that would extend beyond
the end of the device as indicated dgvice size lo and

device size hi

If device size lo anddevice_size hi are both zero, and the client
uses standard read/write operations, then it must send them to the provider in
device order, andffset lo and offset_hi must be ignored by the
provider.

UDI_OK
UDI_STAT_CANNOT_BIND

The control block must be the same control block as passed to the driver in the
correspondingudi_gio_bind_req operation.

udi_gio_bind_cb t, udi_gio_bind_req

UDI Core Specification - Version 1.01 - 2/2/01 25-13

Section 5: Core Metalanguages

udi_gio_unbind_req Generic I/O Meta

NAME

SYNOPSIS

ARGUMENTS
TARGET CHANNEL

DESCRIPTION

REFERENCES

udi_gio_unbind_req Request to unbind from a GIO
provider

#include <udi.h>
void udi_gio_unbind_req (
udi_gio_bind_cb_t * cb);
cb is a pointer to a GIO bind control block.

The target channel for this operation is the bind channel connecting a GIO
client to a GIO provider.

A Generic /O client uses this operation to unbind from a Generic 1/0
provider.

The GIO client must prepare for thei_gio_unbind_req operation by
allocating a GIO bind control block (callingli_cb_alloc with acb_idx
that was previously associated witfibl_GIO_BIND _CB_NUM.

Next, the GIO client sends the GIO bind control block to the GIO provider
with audi_gio_unbind_req operation.

udi_gio_bind_cb t, udi_gio_unbind_ack

25-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/0O Meta udi_gio_unbind_ack

NAME udi_gio_unbind_ack Acknowledge a GIO unbind request
SYNOPSIS | #include <udi.h>
void udi_gio_unbind_ack (
udi_gio_bind_cb_t * cb);
ARGUMENTS cb is a pointer to a GIO bind control block.
TARGET CHANNEL | The target channel for this operation is the bind channel connecting a GIO
provider to a GIO client.

DESCRIPTION Theudi_gio_unbind_ack operation is used by a Generic 1/O provider to
acknowledge unbinding from a Generic 1/O client as requested by a
udi_gio_unbind_req operation.

WARNINGS The control block must be the same control block as passed to the driver in the
correspondingidi_gio_unbind_req operation.

REFERENCES | udi_gio_bind_cb t, udi_gio_unbind_req

UDI Core Specification - Version 1.01 - 2/2/01 25-15

Section 5: Core Metalanguages

Data Transfer and Control Operations Genericl/O

25.6 Data Transfer and Control Operations

25-16 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio xfer cb_t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gio_xfer_cb_t Control block for GIO transfer
operations

#include <udi.h>

typedef struct {
udi_ cb t gcb;
udi_gio_op_t op;
void * tr_params ;
udi_buf t * data_buf ;
} udi_gio_xfer_cb_t ;

/* Control Block Group Number */
#define UDI_GIO_XFER_CB_NUM 2

gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

op is a code designating the specific operation to be performed.
Operation codes may be used to indicate different operation
semantics. Custom operations are supported, as well as standard
operations. Seadi_gio_xfer_req for a description of these
operations.

tr_params is a pointer to an inline memory structure that is used to hold
operation-specific parameters. The pointer itself is set by the
environment when the control block is allocated, and must not be
modified by the driver.

data_buf is a pointer to a buffer used to carry the data portion of a transfer.
Seeudi_gio_xfer_req andudi_gio_xfer_ack for
details on buffer usage.

The Generic 1/O transfer control block is used between a GIO client and a
GIO provider to process a data or control transfer.

In order to use this type of control block it must be associated with a control
block index by includindJDI_GIO_XFER_CB_NUNN audi_cb_init_t
in the driver’sudi_init_info

The size and layout of the_params structure must be specified using the
inline_size andinline_layout members of thatidi_cb_init_t
structure (i.efr_params is aUDI_DL_INLINE_DRIVER_TYPED field).

udi_init_info, udi_cb_init_t, udi_cb_alloc,
udi_gio_op_t

UDI Core Specification - Version 1.01 - 2/2/01 25-17
Section 5: Core Metalanguages

udi_gio _op t

Generic I/O Meta

NAME
SYNOPSIS

DESCRIPTION

udi_gio_op_t GIO operation type

#include <udi.h>

typedef udi_ubit8_t udi_gio_op_t ;

/* Limit values for udi_gio_op_t */

#define UDI_GIO_OP_CUSTOM 16
#define UDI_GIO_OP_MAX 64

/* Direction flag values for op */

#define UDI_GIO_DIR_READ (AU <<6)
#define UDI_GIO_DIR_WRITE AU <<7)
/* Standard Operation Codes */

#define UDI_GIO_OP_READ UD |I_GIO_DIR_READ
#define UDI_GIO_OP_WRITE UD |I_GIO_DIR_WRITE

This type is used to hold an operation code, including direction flags, for a
Generic /O transfer control block.

The data_buf parameter is used to specify the data buffer to be read or
written in this GIO transfer operation. Tlaata buf->buf _size field
indicates the number of bytes that are to be transferred; if no actual data is to
be transferred thedata buf may beNULL

The operation code includes a bitmask of zero, one, or both direction flags
from the following list:

UDI_GIO_DIR_READ - from provider to client
UDI_GIO_DIR_WRITE - from client to provider

These indicate the direction of data flow for tfeta buf buffer. They do
not imply any particular operation semantics.

The standard operation codes listed above are defined below with specific
semantics. Additional, optional, standard operation codes are defined for
device diagnostics in Chapter 2®iagnostics Support” The GIO provider

may define additional custom operations, whose semantics and parameters are
completely defined by the GIO provider. However, the basic rules for use of
data_buf , data_buf->buf size , and the direction flags must be

followed in all cases. Driver-defined custom operations musbpselues of
UDI_GIO_OP_CUSTOMr greater.

The UDI_GIO_OP_READandUDI_GIO_OP_WRITEoperations use a
udi_gio_rw_params_t structure fortr_params in the transfer control
block.

The UDI_GIO_OP_READoperation reads data from the device at the offset
indicated byoffset lo andoffset_hi (if applicable). If there are fewer
thandata_buf->buf_size bytes remaining on the device at the time the
request is processed, then those bytes that are present must be returned and
data_buf->buf size adjusted accordingly. If there are no data bytes

25-18

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio _op t

REFERENCES

available, and the possibility exists of more data arriving eventually, the
provider must wait until at least one byte becomes available before
responding.

The UDI_GIO_OP_WRITEoperation writes data to the device at the offset
indicated byoffset lo andoffset_hi (if applicable). If the device

cannot holddata_buf->buf_size additional bytes at the time the

request is processed, then those bytes that fit must be sent to the device and
data_buf->buf_size must be set to that value. Note that if the device

is just temporarily unable to accept more data (for example, due to flow
control), and can reasonably be expected to be eventually able to accept more
data without external action, then the provider must continue to process the
write operation once the device is no longer busy, and must not respond early
with a short count.

Transfer constraints (seeli_xfer_constraints_t on page 13-5) apply to the
standard read/write operations, but not to any other standard or custom
operations.

udi_gio_xfer_cb_t, udi_gio_rw_params_t

UDI Core Specification - Version 1.01 - 2/2/01 25-19
Section 5: Core Metalanguages

udi_gio_rw_params t Generic I/0 Meta

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gio_rw_params_t Parameters for standard GIO
read/write ops

#include <udi.h>

typedef struct {
udi_ubit32_t offset lo ;
udi_ubit32_t offset hi
} udi_gio_rw_params_t ;

offset_lo is the least-significant 32 bits of an offset in bytes from the
beginning of the (logical) device. This value is ignored if
device_size lo anddevice_size hi were set to zero in
the call toudi_gio_bind_ack

offset_hi is the next-most-significant 32 bits of an offset in bytes from the
beginning of the (logical) device. This value is ignored if
device_size lo anddevice_size hi were set to zero in
the call toudi_gio_bind_ack

This structure is used to hold additional parameters for the standard GIO
read/write operationdJDI_GIO_OP_READandUDI_GIO_OP_WRITE It is

passed to adi_gio_xfer_req operation using th&_params inline
memory structure of thadi_gio_xfer_cb_t , Which must have been
initialized with aninline_size of sizeof(udi_gio_rw_params_t)

Thetr_params pointer itself must not be changed; instead it should be cast
to (udi_gio_rw_params_t *) and then the structure may be read or
written through the resulting pointer.

udi_gio_xfer_cb _t, udi_gio_xfer_req, udi_gio_xfer_ack

25-20

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio xfer _req

NAME udi_gio_xfer_req Request a Generic 1/O transfer
SYNOPSIS | #include <udi.h>
void udi_gio_xfer_req (
udi_gio_xfer_cb_t * cb);
ARGUMENTS cb is a pointer to a GIO transfer control block.
TARGET CHANNEL | The target channel for this operation is the bind channel connecting a GIO
client to a GIO provider.
DESCRIPTION A Generic I/O client uses this operation to send a transfer request to a Generic
I/O provider.
The GIO client must prepare for theli_gio_xfer_req operation by
allocating a GIO transfer control block (callingli_cb_alloc with a
cb_idx that was previously associated willbl_GIO_XFER_CB_NUM
and filling in all of its members.
The client driver must then setata_buf->buf _size to the amount of
data to be transferred vidata _buf in the direction(s) indicated by the
setting of the direction flags iop: UDI_GIO_DIR_READ and/or
UDI_GIO_DIR_WRITE. If no data is to be transferred in either direction, the
client may setlata_buf to NULL
Finally, the client sends the GIO transfer control block to the provider with a
udi_gio_xfer_req operation.
The particular semantics and parameters for the request dependam the
value in theudi_gio_xfer cb t transfer control block. See
udi_gio_op_t on page 25-18 for descriptions of valid operation codes.
This operation is abortable witkdi_channel _op_abort if op is
UDI_GIO_OP_READor UDI_GIO_OP_WRITE
This operation is recoverable upon abrupt termination of the target region (see
Section 4.10, “Driver Faults/Recovery”).
If op does not includ&/DI_GIO_DIR_WRITE, any data irdata_buf is not
guaranteed to be preserved by this channel operation. That is, when the
provider driver receives this operation, the contents (but not the size) of the
buffer are unspecified unle&Dl_GIO_DIR_WRITE is set.
REFERENCES | udi_gio_xfer_cb t, udi_gio_op_t, ud i_gio_xfer_ack
UDI Core Specification - Version 1.01 - 2/2/01 25-21

Section 5: Core Metalanguages

udi_gio xfer_ack Generic I/O Meta

NAME
SYNOPSIS

ARGUMENTS
TARGET CHANNEL

DESCRIPTION

WARNINGS

REFERENCES

udi_gio_xfer_ack Acknowledge a GIO transfer request

#include <udi.h>

void udi_gio_xfer_ack (
udi_gio_xfer_cb_t * cb);
cb is a pointer to a GIO transfer control block.

The target channel for this operation is the bind channel connecting a GIO
provider to a GIO client.

The udi_gio_xfer_ack operation is used by a Generic I/O provider to
acknowledge a transfer request back to a Generic 1/O client (indicating
success), as requested bydi_gio_xfer_req operation. The
udi_gio_xfer_nak operation is used to indicate failure or other
exceptional conditions.

The op member of the control block must have the same value as at the time
of theudi_gio_xfer_req operation. The contents of tlee params
inline memory are ignored fardi_gio_xfer_ack

If data_buf is notNULL, data_ buf->buf _size must be the same as in
the original request and must equal the number of bytes actually transferred
(overruns and underruns are handled widh gio xfer _nak). The

data_buf pointer must either be the same as in the original request, or a
direct “descendant” of the original buffer (i.e. results from a chain of one or
more service calls such adi_buf write that replace the original buffer
with a modified version).

If op does not includé&/DI_GIO_DIR_READ, any data irdata_buf is not
guaranteed to be preserved by this channel operation. That is, when the client
driver receives this operation, the contents (but not the size) of the buffer are
unspecified unleselDI_GIO_DIR_READ is set.

The control block must be the same control block as passed to the driver in the
correspondingudi_gio_xfer_req operation.

udi_gio_xfer_cb t, udi_gio_xfer_req,
udi_gio_xfer_nak, udi_buf_copy

25-22

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/0O Meta udi_gio_xfer _nak

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL

DESCRIPTION

STATUS VALUES
WARNINGS

REFERENCES

udi_gio_xfer_nak Abnormal completion of a GIO
transfer request

#include <udi.h>

void udi_gio_xfer_nak (

udi_gio_xfer_cb t * cb,

udi_status t status);
cb is a pointer to a GIO transfer control block.
status indicates why the transfer was unsuccessful.

The target channel for this operation is the bind channel connecting a GIO
provider to a GIO client.

The udi_gio_xfer_nak operation is used by a Generic I/O provider to
send a negative acknowledgement of a transfer request (indicating failure,
overruns, and underruns) back to the Generic 1/O client that requested the
transfer using aidi_gio_xfer_req operation. Whether or not overruns
and underruns are considered errors is defined by the semantics of the
particularop used and the needs of the client.

The op member of the control block must have the same value as at the time
of theudi_gio_xfer_req operation. The contents of tle params
inline memory are ignored fardi_gio_xfer_nak

If data_buf is notNULL, the provider driver must set

data_buf->buf_size to the number of bytes actually transferred, which
must be less than or equal to the requested sizeddtae buf pointer must
either be the same as in the original request, or a direct “descendant” of the
original buffer (i.e. results from a chain of one or more service calls such as
udi_buf_write that replace the original buffer with a modified version).

If flags in the control block includ&/DI_GIO_DIR_WRITE, the contents
of the data buffer must be the same as in the original request. This allows the
client driver to retry failed operations if it so chooses.

Data indata_buf is always preserved by this channel operation.
many

The control block must be the same control block as passed to the driver in the
correspondingudi_gio_xfer_req operation.

udi_gio_xfer_cb t, udi_gio_xfer_req,
udi_gio_xfer_ack, udi_buf_copy

UDI Core Specification - Version 1.01 - 2/2/01 25-23
Section 5: Core Metalanguages

Event Handling Operations Generic I/O Meta

25.7 Event Handling Operations

25-24 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio_event cb t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gio_event _cb_t Control block for GIO event
operations

#include <udi.h>

typedef struct {
udi_ cb t gcb;
udi_ubit8 t event_code ;
void * event_params ;

} udi_gio_event cb t ;

/* Control Block Group Number */
#define UDI_GIO_EVENT_CB_NUM 3

gcb is a generic control block header, which includes a pointer to the
scratch space associated with this control block. The driver may
use the scratch space while it owns the control block, but the
values are not guaranteed to persist across channel operations.

event_code is a driver-specific code that indicates the type of event which
occured.

event_params is a pointer to additional parameters for this type of event.
The structure and size of these parameters are defined by the
GIO provider. The pointer itself is set by the environment when
the control block is allocated, and must not be modified by the
driver.

The Generic I/O event control block is used between a GIO client and a GIO
provider to notify the client of an asynchronous event.

In order to use this type of control block it must be associated with a control
block index by includingJDI_GIO_EVENT_CB_NUNh audi_cb_init_t
in the driver'sudi_init_info

The size and layout of thevent_params structure must be specified using
the inline_size andinline_layout members of that

udi_cb_init_t structure (i.eevent_params is a
UDI_DL_INLINE_DRIVER_TYPED field).

If there are no parameters for this type of evemgnt_params must be
NULL and inline_size must be zero.

udi_init_info, udi_cb_init_t, udi_cb_alloc

UDI Core Specification - Version 1.01 - 2/2/01 25-25
Section 5: Core Metalanguages

udi_gio_event ind Generic I/0 Meta

NAME
SYNOPSIS

ARGUMENTS
TARGET CHANNEL

PROXIES

DESCRIPTION

REFERENCES

udi_gio_event_ind GIO event indication

#include <udi.h>

void udi_gio_event_ind (
udi_gio_event cb_t * cb);
cb is a pointer to a GIO event control block.

The target channel for this operation is the bind channel connecting a GIO
provider to GIO client.

udi_gio_event_ind_unused Proxy for udi_gio_event_ind
udi_gio_event_ind_op_t udi_gio_event_ind_unused ;
udi_gio_event_ind_unused may be used as a GIO client’s
udi_gio_event_ind entry point if the client expects that the GIO provider

will never send it any event indications.

A Generic 1/O provider uses this operation to send an event notification to a
Generic /O client.

The GIO provider must prepare for thdi_gio_event_ind operation by
allocating a GIO event control block (callingli_cb_alloc with a
cb_idx that was previously associated wilbl_GIO_EVENT_CB_NUM

Next, the provider sends the GIO event control block to the GIO client with a
udi_gio_event_ind operation. The provider does not need to wait to
receive a response before sending anatldérgio_event_ind ; multiple
indications may be pending at once.

Whether or not a provider supports event natification, and whether or not the
client must enable events explicitly (via custom operations), is defined by the
GIO provider. There are no standard events.

udi_gio_event_cb_t, udi_gio_event_res

25-26

UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Generic I/O Meta udi_gio_event res

NAME udi_gio_event_res GIO event response

SYNOPSIS | #include <udi.h>

void udi_gio_event_res (
udi_gio_event cb_t * cb);
ARGUMENTS cb is a pointer to a GIO event control block.

TARGET CHANNEL | The target channel for this operation is the bind channel connecting a GIO
client to a GIO provider.

PROXIES udi_gio_event_res_unused Proxy for udi_gio_event_res
udi_gio_event_res_op_t udi_gio_event_res_unused ;

udi_gio_event_res_unused may be used as a GIO provider's
udi_gio_event _res entry point if the provider never sends any event
indications (and therefore expects no responses).

DESCRIPTION The udi_gio_event_res operation is used by a Generic I/O client to
acknowledge an event indication from a Generic 1/O provider, as delivered by
audi_gio_event_ind operation.

WARNINGS The control block must be the same control block as passed to the driver in the
correspondingudi_gio_event_ind operation.

REFERENCES | udi_gio_event _cb_t, udi_gio_event_ind

UDI Core Specification - Version 1.01 - 2/2/01 25-27
Section 5: Core Metalanguages

udi_gio_event_res Generic I/0 Meta

25-28 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

|

%" M D p oY
Diagnostics Support 26

It is recommended, but not required, that UDI drivers support some level of diagnostics capability. The
following recommendations provide a framework for executing diagnostics tests and reporting the
results, but the semantics and descriptions of the tests are necessarily specific to the driver and adapter
being tested. In usage, these tests will probably be executed from an application that will assist in
directing the user to configure the hardware, run the tests, and interpret the results.

26.1 Diagnostics State

Since diagnostics tests may be destructive to the state of the device, and normal device operation may
cause a diagnostic to report an erroneous failure on a functional device, the diagnostic test sessions are
bracketed byyDI_GIO_OP_DIAG_ENABLEandUDI_GIO_OP_DIAG_DISABLE requests. The test

session must start by the driver receivingl@_GIO_OP_DIAG_ENABLErequest. If the driver is in a

state such that either running diagnostics tests might cause the device to lose state or data, or continued
normal operation of the device might cause a spurious failure of a diagnostic test, the driver must reject
the request with a status ODI_STAT_BUSYuntil such time as it is in a state to run the diagnostics.

For example, a network device driver may reject an attempt to run diagnostics while any network
interface is enabled. Other devices may need to be taken completely offline or be unbound from child
devices. In most cases, external action beyond the control of the driver needs to be taken before
diagnostics can be run. The driver is only responsible for answering the question “is it safe to run
diagnostics?".

If the device does not support any diagnostics capability, it must return a status of
UDI_STAT_NOT_SUPPORTEM® theUDI_GIO_OP_DIAG_ENABLErequest.

When a driver receives théDI_GIO_OP_DIAG_ENABLErequest and it is in a state to run its defined

set of diagnostics tests safely, it will acknowledge the request with a stdill dDK and set its

internal state to prevent the initiation of any activities that might not complete successfully due to the
execution of diagnostics tests or that might interfere with the results of the diagnostics tests. For
example, a network driver currently running diagnostics might refuse to allow any network interfaces to
be enabled until the tests are concluded. Other devices might refuse new child bindings. Once the driver
has agreed to allow the diagnostics session to begin, it must not allow normal activities that would
interfere with diagnostics (or vice versa) to resume until it has received the
UDI_GIO_OP_DIAG_DISABLE request.

If a driver receives atdDI_GIO_OP_DIAG_RUN_TESTrequest without first having responded to a
UDI_GIO_OP_DIAG_ENABLErequest withUDI_OK, the driver is not in the proper state to run
diagnostics and must respond with a statudBf STAT _INVALID_STATE.

UDI Core Specification - Version 1.01 - 2/2/01 26-1
Section 5: Core Metalanguages

Diagnostics State Diagnostics Support

If a driver receives anoth&fDl_GIO_OP_DIAG_ENABLErequest after having responded to a
UDI_GIO_OP_DIAG_ENABLErequest withUDI_OK but without an intervening
UDI_GIO_OP_DIAG_DISABLE, the driver is not in the proper state to enter diagnostics mode and
must respond to theDI_GIO_OP_DIAG_ENABLEwith a status ofJDI_STAT_INVALID_STATE.

When the driver receivesW@dDI_GIO_OP_DIAG_DISABLE request, it must clear the internal state set
by UDI_GIO_OP_DIAG_ENABLE terminate any tests running with a statu&JBi_STAT_ABORTED
and prepare the device to resume normal operations. The driver must always return a stiatu®Kkf

to aUDI_GIO_OP_DIAG_DISABLE request, regardless of driver state.

26-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

Diagnostics Support

udi_gio_op _t(Diagnostics)

NAME udi_gio_op_t (Diagnostics) Diagnostics control operations

SYNOPSIS | #include <udi.h>

typedef udi_ubit8_t udi_gio_op_t ;

/* Diagnostics values for udi_gio_op_t */

#define UDI_GIO_OP_DIAG_ENABLE 1
#define UDI_GIO_OP_DIAG_DISABLE 2
#define UDI_GIO_OP_DIAG_RUN_TEST \

(3 | UDI_GIO_DIR_READ)

DESCRIPTION The following optional Generic I/0O standard operations are defined to support

diagnostics

operations on drivers. These supplement the operations defined for

udi_gio_op_t on page 25-18.
UDI_GIO_OP_DIAG_ENABLE is used to enable diagnostics mode for a

particular device. If the device is in a state where it can safely
run diagnostics, the driver shall return a statugbf OK and

set its state to reject any attempts at normal device usage with a
status ofUDI_STAT_BUSYuntil the driver receives a
UDI_GIO_OP_DIAG_DISABLE request. If the device is not in

a state where it is safe to run diagnostics, the driver must respond
to theUDI_GIO_OP_DIAG_ENABLErequest with a status of
UDI_STAT_BUSY If the device does not support any

diagnostics capability, it must return a status of
UDI_STAT_NOT_SUPPORTEDX the device is currently in its
internal diagnostics mode, it must reject any subsequent
UDI_GIO_OP_DIAG_ENABLErequests with a status of
UDI_STAT_INVALID_STATE.

No data payload is used with this operationgdata_buf must
be NULL

UDI_GIO_OP_DIAG_DISABLE clears the driver internal state set by a

previousUDI_GIO_OP_DIAG_ENABLEoperation and

terminates any diagnostics tests that may be running. The only
status returned igDI_OK. At the conclusion of this operation
the device is assumed to be ready for normal usage.

No data payload is used with this operationdata buf must
be NULL

UDI_GIO_OP_DIAG_RUN_TEST causes the driver to execute a selected

diagnostics test. Drivers that support diagnostics must support at
least one test. Test numbers start from zero. By convention, the
lower-numbered tests are usually device self-tests which require
no intervention, while the higher-numbered tests are more
complicated tests which may require operator intervention to
prepare for or recover from the test. Test number zero must be a
self-test.

UDI Core Specification - Version 1.01 - 2/2/01 26-3
Section 5: Core Metalanguages

udi_gio_op_t(Diagnostics) Diagnostics Support

STATUS VALUES

In theudi_gio_xfer_ack returned in response to the
UDI_GIO_OP_DIAG_RUN_TESToperation, the status may be
UDI_OK f the test passed)DI_STAT_HW_PROBLERNIthe test
failed due to a hardware problem,
UDI_STAT_NOT_SUPPORTEDthe specified test is not
supported on this devic&lDI_STAT_ABORTEDf the test was
aborted, otUDI_STAT_INVALID_STATE if the driver is not in
the proper state for running diagnostics.

In the case oUDI_STAT_HW_PROBLENhe buffer pointed to
by data_buf is filled in with a message string containing
additional information to help isolate the failure to a specific
field replaceable unit. Thdata buf->buf size field must
be set to the length of that string (without any null terminator).
The buffer returned in thdata_buf parameter of
udi_gio_xfer_ack must be the same buffer as received in
theudi_gio_xfer_req or a direct decendent of that buffer
(i.e. adst_buf of the original buffer as processed by

udi_buf _copy orudi_buf write).

UDI_OK — The operation completed successfully.
UDI_STAT_BUSY — The device or driver is not in a safe state for diagnostics.

UDI_STAT_NOT_SUPPORTED - The specified test number, or diagnostics

in general, are not supported by this driver.

UDI_STAT_INVALID_STATE — The driver is not in diagnostics mode when

requestes to run tests or disable diagnostics, or is already in
diagnostics mode when requested to enable diagnostics.

UDI_STAT_HW_PROBLEM - The requested diagnostics test failed.
UDI_STAT_ABORTED - A test in progress was aborted.

26-4

UDI Core Specification - Version 1.01 - 2/2/01

Section 5: Core Metalanguages

Diagnostics Support udi_gio_diag params t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gio_diag_params_t Parameters for standard GIO
diagnostic ops

#include <udi.h>

typedef struct {

udi_ubit8 t test num ;

udi_ubit8 t test params_size
} udi_gio_diag_params_t ;

test num is the number of the diagnostic test to run. This value is ignored
if the op member of thegio_xfer cb s not set to
UDI_GIO_OP_DIAG_RUN_TEST

test params_size is the number of bytes of additional parameters, if any,
for the test specified byest num . This number may be zero,
and must not be greater than two less tharprams_size
specified inudi_gio_xfer_cb_init . The semantics and
structure of these additional parameters are defined by each
driver; the correspondingarams_layout must include the
structure of the additional parameters. This value is ignored if the
op member of thegio_xfer cb is not set to
UDI_GIO_OP_DIAG_RUN_TEST

This structure is used to hold additional parameters for the GIO device
diagnostics operatiodDI_GIO_OP_DIAG_RUN_TEST It is passed to a
udi_gio_xfer_req operation using th&_params inline array of the
udi_gio_xfer_cb_t

Thetr_params pointer itself must not be changed; instead it should be cast
to (udi_gio_diag_params_t *) and then the structure may be read or
written through the resulting pointer.

Any control block allocated for use witidi_gio_diag_params_t must
result from audi_gio_xfer_cb_init call with params_size set to at
leastsizeof(udi_gio_diag_params_t)

udi_gio_xfer_cb_t, udi_gio_xfer_req,
udi_gio_xfer_ack, udi_gio_xfer_cb_init

UDI Core Specification - Version 1.01 - 2/2/01 26-5
Section 5: Core Metalanguages

udi_gio_diag_params t Diagnostics Support

26-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 5: Core Metalanguages

ect

UDI Core Specification

Section 6: MEI Services

UDI Core Specification - Version 1.01

projecy

“\UDI*

Introduction to MEI 27

27.1 Overview

This section defines the Metalanguage-to-Environment Interfaces (MEI) available to implementors of
UDI metalanguage libraries. The use of these interfaces (as opposed to using system-specific interfaces)
is necessary to create portable metalanguage libraries, to allow for the dynamic loading and unloading of
metalanguage libraries (initialization interfaces), and to allow for multi-domain 1/O environments
distributed across heterogeneous nodes.

MEI Services must not be used directly by driver modules.

This chapter defines requirements for the design of new metalanguages.

UDI Core Specification - Version 1.01 - 2/2/01 27-1
Section 6: MEI Services

Requirements on Metalanguage SpecificationMEl

27.2 Requirements on Metalanguage Specifications

27.2.1 General Requirements & Conventions

A UDI metalanguage specification must define a version number for all its functions and structures. A
driver that confoms to and uses that metalanguage must include the appropriate “requires” versioning
declaration in itsudiprops.txt file (see Chapter 30Static Driver Properties”).

In each UDI driver source file, before including any metalanguage-specific header files, the driver must
define a preprocessor symbol to indicate the version of each metalanguage to which it conforms. This
version number must be the same as the “requires” version number defined above. Metalanguage-
specific header files must be included aftedith ”

A portable implementation of any Metalanguage Library must include a corresponding “provides”
declaration in itaudiprops.txt file and must also define the preprocessor symbol.

As described in Section 30.4.6, “Requires Declaration,” on page 30-6, the two least-significant
hexadecimal digits of the interface version represent the minor number; the rest of the hex digits
represent the major number. Versions that have the same “major version number” as an earlier version
shall be backward compatible with that earlier version (i.e. a strict superset).

27.2.2 Bindings to the Core Specification

Each metalanguage definition must specify how each of the following generic concepts apply
specifically to that metalanguage.

27.2.2.1 Bindings for Static Driver Properties

Each metalanguage definition must specify the relevant interface name(s) (i.e., the <interface_name>
parameter on the “requires” and “provides” and “meta” property declarations), and the definition of the
interface version number for this version of this metalanguage.

Each metalanguage definition must also specify the string to use for the “category” declaration.

27.2.2.2 Bindings for Instance Attributes

Each metalanguage can specify a list of instance attributes appropriate to that metalanguage. There are
four principle classes of driver instance attributes: instance-private attributes, enumeration attributes;
sibling-group attributes, and parent-visible attributes. Of these, metalanguages typically specify
enumeration and, in some cases, parent-visible attributes.

There are four generic enumeration attributes whose specific content must be defined for each

metalanguage that can be used between drivers: “identifier”, “address_locator”, “physical_locator” and
“physical_label”.

See Section 15.2, “Instance Attribute Names,” on page 15-1 for more details on Instance Attributes.

27-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI Intro Reqguirements on Metalanguage

27.2.2.3 Bindings for Custom Parameters

Many metalanguages also specify minimum requirements for driver's use of “custom” parameters by
defining a set of private instance attributes each driver must support.

27.2.2.4 Bindings for Trace Events

Each metalanguage must specify how the metalanguage-selectable trace events apply to that
metalanguage. This must include a definition of the metalanguage-specific semantics for
UDI_TREVENT_IO_SCHEDULERBNdUDI_TREVENT_IO_COMPLETEas well as any
metalanguage-specific events. See Section 17.2.3, “Trace Event Types,” on page 17-2.

27.2.2.5 Abortable Ops

Each metalanguage must specify which (if any) of its metalanguage operations are abortable (see
udi_channel_op_abort on page 16-7). By default, any operation that is not explicitly identified as
abortable may be assumed to not be abortable.

Metalanguage design rule: Operations on the responder driver that can be terminated by the initiator
driver after having been sent to the responder must be abortabledvithannel_op_abort
Other metalanguage operations should not be abortable.

Any operations that are to be timed out by the initiator must be abortable with
udi_channel_op_abort

27.2.2.6 Recoverable Ops

Each metalanguage must specify which (if any) of its metalanguage operations are recoverable (see
Section 4.10, “Driver Faults/Recovery”). By default, any operation that is not explicitly identified as
recoverable may be assumed to not be recoverable.

Generally, operations that may need to be retried or have results passed back to another level of driver
should be made recoverable. Operations that carry no payload (i.e. buffers or movable memory) and for
which only one such operation can be outstanding at a time on a given channel need not be recoverable.

27.2.3 Operation Ordering Requirements

Each metalanguage must specify which operations, if any, have any ordering requirements in the
handling of those operations. Due to the asynchronous nature of service call callbacks and multi-channel
regions, it is possible for operations to be forwarded or completed in a different order than they are
received; if this is not valid for one or more of the operations defined by the metalanguage, the
metalanguage must state the explicit requirements for those operations and the driver is required to
maintain the synchronization specified by the metalanguage.

The metalanguage specification must not alter the channel delivery sequencing for operations; all
operations are delivered across a channel in FIFO order in all cases.

UDI Core Specification - Version 1.01 - 2/2/01 27-3
Section 6: MEI Services

Requirements on Metalanguage SpecificationMEl

27.2.4 State Diagram

Each metalanguage should include a state diagram which indicates the valid set of state transitions for a
driver implementing that metalanguage, as well as the valid set of operations for each state.

27-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

projecy

‘J'E‘IJ'\ U D !! [..'1IU

Metalanguage-to-Environment Interface 28

28.1 Overview

The Metalanguage-to-Environment Interface (MEI) is a set of interfaces designed to allow for the
creation of portable metalanguage libraries. This chapter defines the data structures, macros, and service
calls that make up the UDI MEI services.

Metalanguage stubs are the pieces of code that implement metalanguage channel operations. In the UDI
execution model each channel operation requires a front-end stub, a back-end stub, and a direct-call
stub. The caller of the channel operation calls directly into the front end stub. If the target region at the
other end of the channel is not currently busy, the operation will be invoked in that region immediately
using the direct-call stub. If the target of the channel operation (at the other end of the channel) cannot
be run immediately, then the operation is queued; when the operation can be scheduled to run, it is taken
from the region queue and passed to the back end stub, which unmarshalls parameters and calls the
target driver’s entry point.

28.1.1 Versioning

All functions and structures defined in the MEI Services section of the UDI Core Specification are part
of the “udi_mei ” interface, currently at versiorD%X101 ". A library module that conforms to and uses

the MEI Services of the UDI Core Specification, Version 1.01, must include the following declaration in
its udiprops.txt file (see Chapter 30Static Driver Properties”):

requires udi_mei 0x101

UDI Core Specification - Version 1.01 - 2/2/01 28-1
Section 6: MEI Services

Initialization Structures MEI

28.2 Initialization Structures

Every metalanguage library must contain a global variable namiedheta_info , of type
udi_mei_init_t , declared as follows:

udi_mei_init_t udi_meta_info ={..}
This structure contains information describing the metalanguage-specific properties of control blocks
and ops vectors used with the particular metalanguage. The environment uses this information to

initialize drivers that use each metalanguage, before executing any code in either driver or metalanguage
library.

This section contains descriptions of the various components ofdthmeta_info structure.

28-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI

udi_meta_info

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_meta_info Metalanguage initialization
structure

#include <udi.h>

typedef const struct {
udi_mei_ops_vec_template_t
* ops_vec_template_list ;
udi_mei_enumeration_rank_func_t
* mei_enumeration_rank ;
} udi_mei_init_t ;

udi_mei_init_t udi_meta_info ;

ops_vec_template_list is a pointer to a list of structures containing
information about each type of ops vector supported by this
metalanguage.

mei_enumeration_rank is a pointer to a function called by the UDI
Management Agent to obtain an enumeration ranking for the
specified set of enumeration attributes in accordance with
ranking information defined by the Metalanguage specification.
The Management Agent will select the device instance with the
highest ranking value as the most appropriate driver instance to
instantiate to handle the enumerated child.

This structure contains information describing the metalanguage-specific
properties of control blocks and ops vectors used with the particular
metalanguage. The environment uses this information to initialize drivers that
use each metalanguage, before executing any code in either driver or
metalanguage library.

udi_init_info, udi_mei_ops_vec_template_t

UDI Core Specification - Version 1.01 - 2/2/01 28-3
Section 6: MEI Services

udi_mei_ops _vec template t MEI

NAME udi_mei_ops_vec_template_t Metalanguage ops vector template
SYNOPSIS | #include <udi.h>

typedef const struct {

udi_index_t meta_ops_num ;
udi_ubit8 t relationship ;
const udi_mei_op_template_t * op_template_list ;

} udi_mei_ops_vec_template_t ;

/* Flag values for relationship */

#define UDI_MEI_REL_INITIATOR (1U <<0)
#define UDI_MEI_REL_BIND (1U <<1)
#define UDI_MEI_REL_EXTERNAL (1U <<2)
#define UDI_MEI_REL_INTERNAL (1U <<3)
#define UDI_ME|_REL_SINGLE (1U <<4)

MEMBERS meta_ops _num is a number that identifies this ops vector type with respect
to others in this metalanguage, or zero to terminate the
ops_vec_template_list array to which this structure
belongs (se@di_mei_init_t). If meta_ops_num is zero,

all other members of this structure are ignored.

relationship defines the valid relationships between the regions on
opposite ends of a channel when using an ops vector of this type.

Relationship must include at least one of
UDI_MEI_REL_EXTERNALor UDI_MEI_REL_INTERNAL. If
and only if relationship includes
UDI_MEI_REL_EXTERNAL then this ops type can be used for
an external (driver-to-driver) channel. If and only if
relationship includesUDI_MEI_REL_INTERNAL, then

this ops type can be used for an internal (within one driver
instance) channel.

If and only if relationship includes

UDI_MEI_REL_INITIATOR , then this ops type can be used for
the initiator side of a channel (the side that sends the first
operation). Otherwise, this ops type can only be used for the non-
initiator (responder) side of a channel.

If and only if relationship includesUDI_MEI_REL_BIND,
then this ops type can be used for a bind channel. Otherwise, this
ops type can only be used for an auxiliary, non-bind, channel.

Both ends of a channel must be paired appropriately: both must
have the same combination UDI_MEI_REL_EXTERNAL
UDI_MEI_REL_INTERNAL, andUDI_MEI_REL_BIND;

exactly one must haudDl_MEI_REL_INITIATOR set.

28-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI udi_mei_ops _vec template t

UDI_MEI_REL_SINGLE is legal only if both
UDI_MEI_REL_EXTERNALandUDI_MEI_REL_BIND are

also set andUDI_MEI_REL_INITIATOR is not. If and only if
relationship does not includ&JDI_ MEI_REL_SINGLE,

then a driver using this ops type for a child bind channel must be
prepared to have multiple child instances bound to it for each
enumerated child context.

op_template_list is a pointer to a list of structures containing
information about each type of ops vector supported by this
metalanguage. Thedi_channel_event_ind_op_t at the
beginning of every ops vector type is not included in this list; the
first entry in the list corresponds to indere rather than zero,
in the ops vector.

DESCRIPTION This structure is used to describe the set of metalanguage operations that
correspond to the specifiedeta ops num for the role indicated by the
relationship parameter. The ops are described in terms of their parameters and
the associated ownership and data transfer of those parameters as a result of
performing the specified operation.

One structure of this type must be defined for each ops vector types. These
will generally come in pairs: one for the ops at each end of the channel.

REFERENCES | udi_channel_event ind, udi_mei_init_t,
udi_mei_op_template_t

UDI Core Specification - Version 1.01 - 2/2/01 28-5
Section 6: MEI Services

udi_mei_op_template t

MEI

NAME udi_mei_op_template_t

SYNOPSIS | #define <udi.h>

typedef const struct {
const char *
udi_ubit8 t
udi_ubit8 t
udi_index_t
udi_index_t
udi_index_t
udi_index_t
udi_index_t
udi_mei_direct_stub_t *
udi_mei_backend_stub _t *
udi_layout t * visible_layout ;
udi_layout_t *marshal_layout ;

} udi_mei_op_template t ;

op_name;
op_category
op_flags ;
meta_cb_num ;
completion_ops _num ;
completion_vec_idx ;
exception_ops_num
exception_vec_idx ;

/* Values for op_category */

#define UDI_MEI_OPCAT_REQ
#define UDI_MEI_OPCAT_ACK
#define UDI_MEI_OPCAT_NAK
#define UDI_MEI_OPCAT_IND
#define UDI_MEI_OPCAT_RES
#define UDI_MEI_OPCAT_RDY

/* Values for op_flags */

#define UDI_MEI_OP_ABORTABLE
#define UDI_MEI_OP_RECOVERABLE
#define UDI_MEI_OP_STATE_CHANGE

/* Maximum Sizes For Control Block Layouts */
#define UDI_MEI_MAX_VISIBLE_SIZE
#define UDI_MEI_MAX_MARSHAL_SIZE

MEMBERS

udi_gio_xfer_req
op_template_list
udi_mei_ops_vec_template_t

ignored.

op_category

direct_stub
backend_stub

Metalanguage channel op template

’

o P wNn e

(U <<0)
(1U <<1)
(1U <<2)

2000

4000

op_name is the name of the entry point for the channel operation (exactly
as documented for that operation; e.g. “udi_gio_xfer_req” for
), or NULL to terminate the
list to which this structure belongs (see
). Some environments may
use this information to selectively trace channel operations. If
op_name is NULL, all other members of this structure are

is a number that identifies the category of the channel op
described by this template, as indicated by its suffix. Channel op
suffixes are described in Section 23.3, “Channel Operation
Suffixes,” on page 23-2. Some environments may use this
information to selectively trace channel operations.

28-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI

udi_mei_op_template t

DESCRIPTION

op_flags is a bitmask of optional flags for this template, described below.

meta_cb_num is a number that identifies the control block group used with
this operation, with respect to others in this metalanguage. It
must be greater than zero.

completion_ops_num is a number that identifies the ops vector type that
contains the completion operation, if any, that is the normal
response to this operation. If zero, then there is no such response
operation; otherwisegompletion_ops num must match a
meta_ops_num in audi_mei_ops_vec_template_t for
this metalanguage.

completion_vec_idx is a number that identifies the index within the
above ops vector that contains the function pointer for the
completion operation, if any, that is the normal response to this
operation, starting from zero. This is used if and only if
completion_ops _num is non-zero.

exception_ops _num is a number that identifies the ops vector type that
contains the exception operation, if any, that is the error response
to this operation. If zero, then there is no such response
operation; otherwisegompletion_ops num must match a
meta_ops_num in audi_mei_ops_vec_template_t for
this metalanguage.

exception_vec_idx is a number that identifies the index within the above
ops vector that contains the function pointer for the exception
operation, if any, that is the error response to this operation,
starting from zero. This is used if and only if
exception_ops_num is non-zero.

direct_stub is a pointer to the function that implements the direct-call stub
for this operation.

backend _stub is a pointer to the function that implements the back-end
stub for this operation.

visible _layout is a pointer to the layout specifier for the visible part of
the control block type used with this operation, excluding the
genericudi_cb t header.

marshal_layout is a pointer to the layout specifier for any marshalling
space used to marshal extra parameters for this operation.

Theudi_mei_ops_template_t structure contains information describing
the metalanguage-specific properties of a channel operation and its associated
control block type.

The visible size of any control block, as indicatedvigible layout ,
including theudi_cb_t header, must not exceed
UDI_MEI_MAX_VISIBLE_SIZE (2000 bytes).

UDI Core Specification - Version 1.01 - 2/2/01 28-7
Section 6: MEI Services

udi_mei_op_template t MEI

The size, in bytes, needed to marshal call-dependent parameters for any
operation, as indicated byarshal _layout , must not exceed
UDI_MEI_MAX_MARSHAL_SIZE4000 bytes).

The environment can compute the maximum visible and marshal sizes for a
control block group by aggregating across all occurrences of the
meta_cb_num in the ops_vec template_list

If and only ifop_flags includesUDI_MEI_OP_ABORTABLEthe channel
operation described by this structure is abortable, and drivers may use

udi_channel_op_abort to abort control blocks previously passed to this
operation. Theudi_channel_op_abort service call will deliver a
udi_channel_event_ind operation of type

UDI_CHANNEL_OP_ABORTHD the target region if the corresponding
completion operation (as indicated bympletion_ops num and
completion_vec_idx) or exception operation (as indicated by
exception_ops_num andexception_vec_idx) has not yet been
invoked.

If and only ifop_flags includesUDI_MEI_OP_RECOVERABLEhe

channel operation described by this structure is recoverable; if an operation of
this type has been sent to a region that is abruptly terminated (“region-
killed”), and the target region has not yet responded with the corresponding
completion or exception operation, then the environment will automatically
construct an exception operation to inform the initiating region of the failure,
passing it the special status cotd®)l_STAT_TERMINATED If this flag is
set,exception_ops _num must be non-zero. and the exception operation
must contain exactly ongdDI_DL_STATUS_Tin either its

visible _layout or its marshal_layout

If and only ifop_flags includesUDI_MEI_OP_STATE_CHANGREhe

channel operation is considered to cause a change in the metalanguage-related
state of the driver. Environments can use this to trace state changes externally
to the driver.

WARNINGS If visible layout includes an inline pointer element
(UDI_DL_INLINE_UNTYPED, UDI_DL_INLINE_TYPED, or
UDI_DL_INLINE_DRIVER_TYPED), there must be exactly one
op_template for thismeta _cb_num of this metalanguage.

The marshal_layout specifier must include no inline pointers.

REFERENCES | udi_mei_ops_vec_template_t, udi_cb_t, udi_layout _t,
udi_mei_direct_stub_t, udi_mei_backend_stub_t

28-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI

udi_mei_direct _stub t

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_mei_direct_stub_t Metalanguage direct-call stub type
#include <udi.h>

typedef void udi_mei_direct_stub t (
udi_op_t* op,
udi_cb t* gcb,
va_list arglist);

op is a pointer to the driver entry point function in the target region
that will be called to handle this operation. This function was
declared in audi_ops_init_t structure by the driver for the
corresponding ops vector.

gcb is the pointer to the control block that is to be used for this
operation (as passed by the driver requesting the operation).

arglist is the list of arguments that are to be passed t@ghiinction.

Theudi_mei_direct_stub_t type is used for metalanguage “direct”
stub functions. These are usedunli_mei_call when it makes a direct
call to the target region, without marshalling parameters.

Direct-call stubs are automatically generated by the UDI_MEI_STUBS macro.
udi_ops_init_t, udi_mei_call, UDI_MEI_STUBS

UDI Core Specification - Version 1.01 - 2/2/01 28-9
Section 6: MEI Services

udi_mei_backend stub t MEI

NAME udi_mei_backend_stub _t Metalanguage back-end stub type
SYNOPSIS | #include <udi.h>

typedef void udi_mei_backend_stub_t (
udi_op_t* op,
udi_cb t* gcb,
void * marshal _space);

ARGUMENTS op is a pointer to the driver entry point function in the target region
that will be called to handle this operation. This function was
declared in audi_ops_init_t structure by the driver for the
corresponding ops vector.

gcb is the pointer to the control block that is to be used for this
operation (as passed by the driver requesting the operation).

marshal_space is a pointer to the marshalling space containing the
marshalled parameters to pass as arguments topttienction.

DESCRIPTION Theudi_mei_backend_stub _t type is used for metalanguage “back-
end” stub functions. These are useduldy mei_call when it makes a call
to the target region for an operation that has previously been marshalled.

Back-end stubs are automatically generated by the UDI_MEI_STUBS macro.
REFERENCES | udi_ops_init_t, udi_mei_call, UDI_MEI_STUBS

28-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI udi_mei_enumeration _rank func t

NAME udi_mei_enumeration_rank_func_t Metalanguage library device
enumeration ranking

SYNOPSIS | #include <udi.h>

typedef udi_ubit8_t udi_mei_enumeration_rank_func_t (
udi_ubit32_t attr_device_match ,
void ** attr_value_list);
ARGUMENTS attr_device_match is a bitmask value where each bit represents a

specific enumeration attribute as defined by the associated
metalanguage. If the bit is set then the value for that attribute
appears in thattr_value_list at an index that is equal to
the bit number.

attr_value_list specifies the value of the enumerated attribute indicated
by a non-zero bit at the corresponding bit offset in the
attr_device_match argument. The metalanguage must not
accessrray value_list entries whose corresponding bit is
not set in theattr_device _match argument.

DESCRIPTION The Management Agent (MA) will call thedi_mei_enumeration_rank

function provided by the Metalanguage Library for each “device” declaration
(seeDevice Declaration on page 30-15) that is a potential candidate for
binding to an enumerated device. In order to be a valid candidate, the
metalanguage and all enumeration attribute values specified in the “device”
declaration must match the values for the enumerated device instance (though
there may be additional enumerated attributes besidesthose specified in the
“device” line). The rank function will only be called for valid candidates.

This routine is responsible for determining the “ranking” of this match as
defined by the Metalanguage specification and returning that numeric ranking
value to the MA. The rankable enumeration attributes specified by the parent
are indicated to this function by setting a bit in gt&_device _match

bitmask along with the attribute’s value via th&r value list array.

After calling the rank function for all candidates, the MA will choose the
candidate with the highest ranking value. If more than one driver matches with
the same ranking value, the one with the greatest number of matching
attributes will be chosen. If this still leaves multiple candidates, the MA will
choose one of these candidates, in an implementation-dependent fashion.

RETURN VALUES This function returns the numerical ranking value for the specifed attribute
values. Higher ranking values indicate better matches. The ranking values and
methods are defined by each Metalanguage’s specification.

REFERENCES | udi_instance_attr_list t , udi_enumerate_ack

UDI Core Specification - Version 1.01 - 2/2/01 28-11
Section 6: MEI Services

Marshalling MEI

28.3 Marshalling

In order for channel operations to be queued or transferred between domains, call-dependent parameters
must be marshalled into marshalling space associated with the control block. Since the layout of these
parameters is known only to the metalanguage, the metalanguage library stubs are responsible for
marshalling and unmarshalling these parameters.

However, the content of the marshalling space must be laid out in a well-defined order, in case the
marshalled control block is passed to another domain and the metalanguage stubs on the other end are
implemented by a different instance of the metalanguage library. Both ends need to agree on the layout.
Therefore, this specification standardizes that layout.

Each additional parameter after the control block pointer, for a given channel operation, in left-to-right
order, shall be marshalled into the marshalling space starting at offset zero and proceeding with
successive offsets.

28-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI MEI Stubs

28.4 MEI Stubs

The following section describes the stubs used by metalanguage libraries and the implementation of
their functions. Each invocation &fDI_MEI_STUBS generates 3 stubs functions for a channel
operation: front-end, direct-call, and back-end, with the following pseudo-code.

The front-end stub implements the exported interface for the caller side of a channel operation:
void
<<meta>>_<<op>> (
<<meta>>_<cbtype>> _cb_t*cb,

...<<call-dependent parms>>...)
{
udi_mei_call(UDI_GCB(cb), &udi_meta_info, \
ZZZ OPS_NUM, ZZZ VEC_IDX,\
...<<call-dependent parms>>...);
}

The direct-call stub implements the call into the target driver when the environment wishes to invoke it
directly from the original calling context:

static void
<<meta>>_<<op>>_direct (
udi_op_t* op,

udi_cb_t* gcb,
va_list arglist)

{
argl type argl =UDI_VA_ARG(arglist, argl type , argl va code),
(*(<<meta>>_<<op>>_op_t)op)
(UDI_MCB(gcb, <<meta>>_<cbtype>> _cb_t),
argl ...);
}

The back-end stub implements the call into the target driver when the environment wishes to invoke it
after having queued the channel operation:

static void
<<meta>>_<<op>>_backend (
udi_op_t* op,

udi_cb_t* gcb,
void * marshal_space)

{
struct <<meta>>_<<op>>_marshal {
argl type argl;
} *mp = marshal_space;
(*(<<meta>>_<<op>>_op_t)op)
(UDI_MCB(gcb, <<meta>>_<cbtype>> _cb_t),
mp->argl ...);
}

UDI Core Specification - Version 1.01 - 2/2/01 28-13
Section 6: MEI Services

UDI_ MEI| _STUBS MEI

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

EXAMPLES

UDI_MEI_STUBS Metalanguage stub generator macro
#include <udi.h>

#define UDI_MEI_STUBS (op_name, cb_type ,
argc , args, arg types , arg va list
meta_ops _num, vec_idx)

op_name is a token specifying the name of the channel operation for
which to create stub functions.

ch_type is the data type of control blocks used with this operation.

argc is the number of additional arguments to the operation.

args is a comma-separated list, enclosed in parentheses, of the names
of the additional arguments.

arg _types is a comma-separated list, enclosed in parentheses, of the data
types of the additional arguments.

arg _va_list is a comma-separated list, enclosed in parentheses, of the “VA
codes” (seaJDI_VA_ARG on page 9-30) for the additional
arguments.

meta_ops_num is the metalanguage-defined identifier for the ops vector
type to which this operation belongs. (See
udi_mei_ops_vec_template_t on page 28-4.)

vec_idx is the index into the ops vector identified meta ops num
that corresponds to this operation, starting from zero. (A vec_idx
of zero corresponds to theli_channel_event_ind_op_t
at the beginning of every ops vector type, and is not actually used
in metalanguage libraries.)

Each invocation ofJDI_MEI_STUBS creates the definition of the following
three functions needed to support a metalanguage-specific channel operation:

Front-end stub:

void op_name (cb_type *cb
_UDI_ARG_LIST ##argc args);

Direct-call stub:

static udi_mei_direct_stub_t op_name##_direct;
Back-end stub:

static udi_mei_backend_stub_t op_name##_backend;

udi_mei_ops_vec_template_t, udi_channel_event_ind,
udi_mei_call, udi_mei_direct_stub _t,
udi_mei_backend_stub_t, UDI_VA ARG

The following examples illustrate the use of UDI_MEI_STUBS.

28-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI UDI_MEI STUBS

The udi_gio_bind_ack channel operation has three extra parameters and
could be implemented using the stubs macro as follows:

UDI_MEI_STUBS(udi_gio_bind_ack, udi_gio_bind_cb t,
3, (device_size lo, device_size_hi, status),
(udi_ubit32_t, udi_ubit32_t, udi_status_t),
(UDI_VA _UBIT32_T, UDI_VA_UBIT32_T,
UDI_VA_STATUS_T),
UDI_GIO_CLIENT_OPS_NUM,
UDI_GIO_BIND_ACK)
The udi_scsi_io_req channel operation has no extra parameters and
could be implemented using the stubs macro as follows:

UDI_MEI_STUBS(udi_scsi_io_req, udi_scsi_io_cb t,
0,0, 0,0,

UDI_SCSI_META_ID, UDI_SCSI_HD_OPS_NUM,
UDI_SCSI_I0_REQ)

28-15

UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

udi_mei_call

MEI

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

udi_mei_call Channel operation invocation

#include <udi.h>

void udi_mei_call (
udi_cb t* gcb,
udi_mei_init_t * meta_info
udi_index_t meta_ops_num ,
udi_index_t vec idx
)i
gcb is a pointer to the control block passed to the actual channel
operation.

meta_info is a pointer to this metalanguagai_meta_info structure,
which can be used to uniquely identify this metalanguage.

meta_ops_num is the metalanguage-defined identifier for the ops vector
type to which this operation belongs. (See
udi_mei_ops_vec_template_t on page 28-4.)

vec_idx is the index into the ops vector identified meta ops num
that corresponds to this operation, starting from zero. (A vec_idx
of zero corresponds to theli_channel_event_ind_op_t
at the beginning of every ops vector type, and is not actually used
in metalanguage libraries.)

are zero or more additional metalanguage-specific parameters for
this channel operation. This will be passed to the callee-side
entry point in the target driver, immediately following the control
block argument.

This function is called from within a portable front-end stub to implement a
channel operatiorudi_mei_call prepares the control block for transfer to
the target region, possibly reallocating the space for the control block and/or
its scratch space. It also arranges for the corresponding entry point to be
called in the target region, either “directly” (w/o queuing) or as a queued or
cross-domain indirect operation.

If the environment chooses to (and is able to) make a direct call,
udi_mei_call will make use of the corresponding direct-call stub in the
metalanguage library to make the actual call to the target region with the
appropriate parameters. This is the highest performance path and is thus
specially optimized. The direct-call stub (of type

udi_mei_direct_stub_t) simply takes the arguments pointed to by the
var-argsarglist , and calls the indicated function with these arguments.

There are many reasons why the environment might not use a direct call.
Some of these include excess call depth, busy regions and domain crossings.
All other things being equal, ownership transfer for transferable objects can be
handled with the direct case.

28-16

UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI

udi_mei_call

REFERENCES

If udi_mei_call does not make a direct call, it must first marshal any call-
dependent parameters into the marshalling space of the control block. It can
determine the number and type of these parameters from the
marshal_layout in the ops template for this operation. The ops template
can be located by a combination of eitgeb->channel andvec idx or
meta_init andmeta_ops _num . (Providing both of these sets of values to
udi_mei_call allows for a double-check that the correct types of channel
and control block were passed to the channel operation.)

After the control block is queued, copied across domains, or subject to any
further processing needed by the environment, it will eventually need to be
passed to the target region with the appropriate call-dependent parameters.
This is done by calling the appropriate back-end stub (of type
udi_mei_backend_stub _t) in the metalanguage library. The back-end
stub unmarshals the parameters from the marshalling space (pointed to by
marshal_space) and calls the driver entry point with these parameters

udi_mei_ops_vec_template_t, udi_channel_event_ind,
udi_mei_direct_stub_t, udi_mei_backend_stub t,
UDI_MEI_STUBS

UDI Core Specification - Version 1.01 - 2/2/01 28-17
Section 6: MEI Services

udi_mei_driver_error MEI

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_mei_driver_error Metalanguage violation by the
driver

#include <udi.h>

void udi_mei_driver_error (
udi_cb t* gcb,
udi_mei_init_t * meta_info
udi_index_t meta_ops_num ,
udi_index_t vec idx);
gcb is a pointer to the control blocked passed to the actual channel
operation.

meta_info is a pointer to this metalanguagai_meta_info structure,
which can be used to uniquely identify this metalanguage.

meta_ops_num is the metalanguage-defined identifier for the ops vector
type to which this operation belongs.

vec_idx is the index into the ops vector identified imeta _ops _num
that corresponds to this operation, starting from zero.

This function is called by a metalanguage library when it determines that the
driver that issued the specified channel operation has performed an illegal
operation. An illegal operation includes one in which the operation
parameters for the channel operation are invalid. The metalanguage library is
not required to check for invalid parameters or other illegal conditions, and
should normally not check for invalid parameter values that would (per the
metalanguage definition) be expected to be checked in the target driver.
lllegal conditions that are detectable only by a portable metalanguage library
(not by either the driver or the environment) should be checked for in
untrusting metalanguage library implementations.

The environment may choose to handle the specified operation in several
ways, including killing the region or completing the operation via the
exception completion operation withUDl_STAT_NOT_UNDERSTOOD

status code. In all cases, ownership of the control block is passed to the
environment and the metalanguage should no longer access the control block
or operate on behalf of this channel operation after the

udi_mei_driver_error call returns.

udi_mei_call

28-18

UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI MEI Stub Implementation

28.5 MEI Stub Implementation

This section presents a typical implementation of the UDI_MEI_STUBS macro. Actual implementations
of UDI_MEI_STUBS may vary, but must generate equivalent code.

#define UDI_MEI_STUBS(op_name, cb_type, \
argc, args, arg_types, \
meta_ID, ops_num, vec_idx) \
void op_name (cb_type *cb \
_UDI_ARG_LIST_ ##argc args) {\
udi_mei_call (UDI_GCB(cb), &udi_meta_info, \
ops_num, vec_idx \
_UDI_ARG_VARS_ ##argc); \
ja
static void op_name##_direct (\
udi_op_t *op, udi_cb_t *gcb, \
va_list arglist) {\
_UDI_VA_ARGS ##argc arg_types \
\
(*(op_name##_op_t *)op) (\
UDI_MCB(gch, cb_type) \
_UDI_ARG_VARS ##argc); \
ja
static void op_name##_backend (\
udi_op_t *op, udi_cb_t *gcb, \
void *marshal_space) {\
struct op_name##_marshal {\
_UDI_ARG_MEMBERS_##argc arg_types \
} *mp = marshal_space; \
\
(*(op_name##_op_t *)op) (\
UDI_MCB(gchb, cb_type) \
_UDI_MP_ARGS_##argc); \

#define _UDI_ARG_LIST_0()
#define _UDI_ARG_LIST_1(a) ,aargl
#define _UDI_ARG_LIST_2(a,b) ,aargl,barg?
#define _UDI_ARG_LIST_3(a,b,c) ,aargl,barg2,c arg3
#define _UDI_ARG_LIST_4(a,b,c,d) \

,aargl,b arg2,c arg3,d arg4
#define _UDI_ARG_LIST 5(a,b,c,d,e) \

,aargl,b arg2,c arg3,d arg4,e arg5
#define _UDI_ARG_LIST_6(a,b,c,d,e,f) \

,aargl,b arg2,c arg3,d arg4,e arg5,f arg6
#define _UDI_ARG_LIST_7(a,b,c,d,e,f,g) \

,aargl,b arg2,c arg3,d arg4,e arg5,f arg6,g arg7

UDI Core Specification - Version 1.01 - 2/2/01 28-19
Section 6: MEI Services

MEI Stub Implementation

MEI

/-k
* The following macros are used to concatenate two argument lists.
*/

#define _UDI_L_0() (

#define _UDI_L 1(a) (a,

#define _UDI_L 2(a,b) (a,b,

#define _UDI_L_3(a,b,c) (a,b,c,

#define _UDI_L_4(a,b,c,d) (a,b,c,d,

#define _UDI_L 5(a,b,c,d,e) (a,b,c,d,e,

#define _UDI_L_6(a,b,c,d,e,f) (a,b,c,d,e\f,

#define _UDI_L_7(a,b,c,d,e,f,g) (a,b,c,d,e\f,qg,

#define _UDI_R_0())
#define _UDI_R_1(a) a)
#define _UDI_R_2(a,b) a,b)
#define _UDI_R_3(a,b,c) a,b,c)
#define _UDI_R_4(a,b,c,d) a,b,c,d)
#define _UDI_R_5(a,b,c,d,e) a,b,c,d,e)
#define _UDI_R_6(a,b,c,d,e,f) a,b,c,d,e,f)

#define _UDI_R_7(a,b,c,d,e,f,g) a,b,c,d,e,f,g)

#define _UDI_CAT_LIST(argc,list1,list2) \

_UDI_L_##argc listl _UDI_R_##argc list2

#define _UDI_VA_ARGS_0()
#define _UDI_VA_ARGS 1(a,va_a)\

a argl = UDI_VA_ARG(arglist, a, va_a);

#define _UDI_VA_ARGS 2(a,b,va_a,va_b)\

a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ARG(arglist, b, va_b);

#define _UDI_VA_ARGS_3(a,b,c,va_a,va b,va c)\

a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ ARG(arglist, b, va_bh); \
c arg3 = UDI_VA_ARG(arglist, c, va_c);

#define _UDI_VA_ARGS 4(a,b,c,d,va_a,va _b,va c,va_d)\

a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ ARG(arglist, b, va_bh); \
c arg3 = UDI_VA_ARG(arglist, c, va_c); \
d arg4 = UDI_VA_ARG(arglist, d, va_d);

#define _UDI_VA_ARGS 5(a,b,c,d,e,va_a,va b,va c,va _d,va_e)\

a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ ARG(arglist, b, va_b); \
c arg3 = UDI_VA_ARG(arglist, c, va_c); \
d arg4 = UDI_VA_ARG(arglist, d, va_d); \
e arg5 = UDI_VA_ARG(arglist, e, va_e);

#define _UDI_VA_ARGS 6(a,b,c,d,e,f,\

va_a,va_b,va_c,va d,va e,va f)\
a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ ARG(arglist, b, va_h); \
c arg3 = UDI_VA_ARG(arglist, c, va_c); \

28-20

UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

MEI MEI Stub Implementation

d arg4 = UDI_VA_ARG(arglist, d, va_d); \
e arg5 = UDI_VA_ARG(arglist, e, va_e); \
fargé = UDI_VA_ARG(arglist, f, va_f);
#define _UDI_VA_ARGS_7(a,b,c,d,e,f,g, \
va_a,va_b,va_c,va_d,va_e,va_fva g)\

a argl = UDI_VA_ARG(arglist, a, va_a); \
b arg2 = UDI_VA_ARG(arglist, b, va_b); \
c arg3 = UDI_VA_ARG(arglist, c, va_c); \
d arg4 = UDI_VA_ARG(arglist, d, va_d); \
e arg5 = UDI_VA_ARG(arglist, e, va_e); \
fargé = UDI_VA_ARG(arglist, f, va_f); \
g arg7 = UDI_VA_ARG(arglist, g, va_g);

#define __UDI_VA_ARGLIST(argc,list) \
_UDI_VA_ARGS ##argc list

#define _UDI_VA_ARGLIST(argc,list1,list2) \
__UDI_VA ARGLIST(argc, \
_UDI_CAT _LIST(argc, list1, list2))

#define _UDI_ARG_VARS 0

#define _UDI_ARG_VARS 1 ,argl

#define _UDI_ARG_VARS 2 ,argl,arg2

#define _UDI_ARG_VARS_ 3 ,argl,arg2,arg3

#define _UDI_ARG_VARS 4 ,argl,arg2,arg3,arg4

#define _UDI_ARG_VARS 5 ,argl,arg2,arg3,arg4,arg5

#define _UDI_ARG_VARS 6 ,argl,arg2,arg3,arg4,arg5,arg6
#define _UDI_ARG_VARS 7 ,argl,arg2,arg3,arg4,arg5,arg6,arg7

#define _UDI_ARG_MEMBERS_O0() \
char dummy;

#define _UDI_ARG_MEMBERS_1(a) \
a argl,;

#define _UDI_ARG_MEMBERS_2(a,b) \
aargl;\
b arg2;

#define _UDI_ARG_MEMBERS_3(a,b,c) \
aargl;\
b arg2; \
c arg3;

#define _UDI_ARG_MEMBERS_4(a,b,c,d) \
aargl;\
b arg2; \
c arg3; \
d arg4;

#define _UDI_ARG_MEMBERS 5(a,b,c,d,e) \
aargl;\
b arg2; \
c arg3; \
d arg4; \

UDI Core Specification - Version 1.01 - 2/2/01 28-21
Section 6: MEI Services

MEI Stub Implementation MEI

e arg5;
#define _UDI_ARG_MEMBERS_ 6(a,b,c,d,e,)\
aargl;\
b arg2; \
c arg3; \
d arg4; \
e arg5; \
f arg6;
#define _UDI_ARG_MEMBERS_ 7(a,b,c,d,e,f,g)\
aargl;\
b arg2; \
c arg3; \
d arg4; \
e arg5; \
farg6; \
g arg’;

#define _UDI_MP_ARGS_0

#define _UDI_MP_ARGS 1 ,mp->argl

#define _UDI_MP_ARGS_2 ,mp->argl,mp->arg2

#define _UDI_MP_ARGS_3 ,mp->argl,mp->arg2,mp->arg3

#define _UDI_MP_ARGS_4 ,mp->argl,mp->arg2,mp->arg3,mp->arg4

#define _UDI_MP_ARGS_5 ,mp->argl,mp->arg2,mp->arg3,mp->arg4, \
mp->arg5

#define _UDI_MP_ARGS_6 ,mp->argl,mp->arg2,mp->arg3,mp->arg4, \
mp->arg5,mp->arg6

#define _UDI_MP_ARGS_7 ,mp->argl,mp->arg2,mp->arg3,mp->arg4, \
mp->arg5,mp->arg6,mp->arg7

28-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 6: MEI Services

R

pro

“\UD g o

UDI Core Specification

Section 7: Packaging and Distribution

UDI Core Specification - Version 1.01

‘J'E‘IJ'\ U D !! [..'1IU

Introduction to Packaging and Distribution 29

29.1 Introduction

This section specifies UDI packaging and distribution format requirements, as well as all external files
and utilities used in conjunction with driver source or object code.

Chapter 30 defines the Static Driver Properties file that is used to provide global driver attributes.
Chapter 31 defines the packaging and distribution formats for UDI drivers.

Chapter 32 describes build and packaging utilities provided by UDI build environments.

UDI Core Specification - Version 1.01 - 2/2/01 29-1
Section 7: Packaging and Distribution

Introduction Packaging Intro

29-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

projecy

‘J'E‘IJ'\ U D !! [..'1IU

Static Driver Properties 30

30.1 Overview

This chapter definestatic driver propertiesand how they are included with UDI drivers as an addition
to the driver code itself.

Static driver properties are attributes of a driver or library that are known and fixed in advance of
compiling its source code. These are generally properties that the environment into which a driver is
being installed might need to know about prior to linking, loading and/or running the driver. For this
reason, static driver properties are stored with the driver in such a way that they can be easily extracted
without running the driver. The same is true for UDI libraries.

30.1.1 UDI Modules

UDI drivers and libraries are compiled and linked into binary object files calledliles A module is

the basic unit of loadability. That is, each module can potentially be loaded at separate times or into
separate domains, but all code and data in one module is loaded together. In this context, loading refers
to any process through which an instance of the module code and data is made available for execution;
this might involve dynamic loading into an already-running system or it might simply mean linking into

a static image for use at a subsequent system reboot. Modules must not reference symbols in other
modules (even within the same driver) or in the surrounding system except as included in explicitly
exported/imported interfaces (see the “Requires Declaration” on page 30-6 and the “Provides
Declaration” on page 30-10).

Three types of binary modules are supported:
1. primary driver module
2. secondary driver module
3. library module (including metalanguage libraries)

Each driver module contains the code to handle one or more region types that a driver supports (see
Section 30.6.8, “Region Declaration,” on page 30-18 for more details on region types). No two modules
for a driver may handle the same region type. The driver module that handles the driver’s primary region
(region index zero) is called the primary driver module; all other driver modules, if any, are called
secondary driver modules. Each driver module has itsu@ininit_info structure (see

udi_init_info on page 10-3).

UDI libraries each consist of at most one library module and zero or more exported header files. UDI
libraries provide functions that can be called by UDI drivers, but maintain no state of their own. Library
modules do not havedi_init_info structures and will not have any region data associated with

UDI Core Specification - Version 1.01 - 2/2/01 30-1
Section 7: Packaging and Distribution

Overview Static Properties

them. However, if a library is metalanguage libraryi.e. implements a metalanguage API), then it will
have audi_meta_init structure, which serves a similar purpose as a driugli’'sinit_info
structure.

Each UDI driver or library shall include as part of its source code a static properties file, named
“udiprops.txt ". At compile/build time, a special utility program calleddimkpkg " (see Section
32.3 on page 32-1) attaches the property values @rdiprops.txt to the binary object file for the
driver's primary module or the library’s sole module, in a fashion appropriate to the particular binary
object file format used. Header-only libraries have no modules to compile, so their static properties
remain as a text file.

A package component can either be a driver or a library. A library component must have exactly one
library module and no driver modules (except for header-only libraries, which have no modules). A
driver component must have exactly one primary driver module, zero or more secondary driver modules,
and no library modules. Each component must have one udiprops.txt file.

30-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Basic Syntax

30.2 Basic Syntax

The following rules describe the basic structure of a static properties file.

The file must consist entirely of a sequence of valid ISO 10646 (Unicode) characters
encoded according to the Annex P (UTF-8) encoding scheme. The 7-bit ASCII character set,
encoded in 8-bit bytes, is a subset of this encoding.

Any sequence of zero or more CR characters (0x0D) followed by a single LF character
(Ox0A) is considered to be“fine terminator”.

The file consists of multiple lines, each—except possibly the last line—ending in a line
terminator. If the last line has no terminator, it is treated as if it did have a line terminator. In
all cases, the line terminator is not counted as part of the line's contents.

Each line, including the line terminator character(s), must be less than 512 bytes long.

Any sequence of one or more consecutive SPACE characters (0x20) and/or HT characters
(0x09) is consideredwhitespacé

The DEL character (0x7F) and control characters (Ox00 - Ox1F) besides HT, LF and CR are
illegal.

The “hash” character”) preceeds comments. Arf/,'and any subsequent characters up to
the next line terminator are considered comments and will be completely ignored.

Any whitespace at the beginning or end of a line (i.e. immediately preceding a comment or
line terminator) is considered a comment and will be completely ignored.

If the last non-comment character on a line is a backsl&shad is not immediately

preceded by another backslash character, then the backslash and the line terminator are
ignored, and this line and the following line are treated as a single logical line. Any
whitespace immediately preceding the backslash becomes part of the logical line and is not
ignored. The total length of a logical line, including all backslashes and line terminators,
must be less than 512 bytes long.

Logical lines containing no non-comment characters are considered blank lines. Blank lines,
including their line terminators, are considered comments and will be completely ignored.

The non-comment portion of each non-blank logical line consists of a setigiseas
delimited by whitespace. That is, a token is defined as any consecutive sequence of non-
whitespace characters. Whitespace before the first token is optional and is ignored.

Any file and path specifications, denoted by the keywatiiléspec> ”, may reference a

file in the current directory or a subdirectory path using forward-slash (“/") characters as
directory name separators. All such specifications must be a relative path (i.e. may not begin
with a /), and must not include self-referentials (./) or parent-referentials (../); each
component must be an actual directory name except the last component which must be an
actual filename.

Any file-only specifications, denoted by the keyworditename> ", references a filename
that must appear in the current directory and may not have any path specification portion.

UDI Core Specification - Version 1.01 - 2/2/01 30-3
Section 7: Packaging and Distribution

Property Declaration Syntax Static Properties

30.3 Property Declaration Syntax

Each non-blank logical line of a static properties file is interpretedpaispeerty declarationThe first

token on the line identifies the property or type of property that is being declared. Additional tokens
provide values for the property. Definitions below describe the tokens required for each type of property
declaration.

The first declaration in the file must be a “properties_version” declaration, which specifies the version of
the static property syntax and semantics used for the file. The current verddad4 ":

properties_version 0x101

Properties versiofBx101 encompasses all of the rules and definitions in this chapter, including basic
syntax and all property declaration definitions. Static properties files that specify this properties version
must only include declarations defined for this version. Future versions of this specification may define
additional properties versions, with their own set of definitions and rules. The two least-significant
hexadecimal digits of the properties version represents the minor number; the rest of the hex digits
represent the major number. Versions that have the same “major version number” as an earlier version
shall be backward compatible with that earlier version (i.e. a strict supkrset).

Environments that support any particular properties version are also required to support all subsequent
versions with the same major version number; if they do not specifically support the later version, they
shall ignore all unrecognized declarations. Environments are required to refuse to install UDI modules

that have static properties files with major version numbers that they do not support.

After the “properties_version” declaration, all remaining declarations may appear in any order, except as
described for the “module” and “locale” declarations.

In the descriptions below<tmsgnum>' (or “<msgnum1>’, ...) is an ASCIl-encoded decimal number

used to select a (single-line) message string from a message declaration (described in the next section);
leading zeros are ignored for purposes of comparing two message numbers. Message numbers are
interpreted relative to each driver, so there is no need for the driver writer to generate numbers that are
unique with respect to any other driver. The value of <msgnum> must B@-]l.('(ze. a 16-bit value

with O reserved as illegal).

While drivers must provide the message strings that are specified to be required, environments that
choose not to present messages to the user are free to ignore any or all message strings.

1. As an exception to this version compatibility, version 1.0 (0x100) is not forward compatible with any other versions bearing
the major number of 1; version 1.0 of the specification cannot be wholly implemented as a functional product.

30-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Common Property Declarations

30.4 Common Property Declarations

This section lists those property declarations that apply to all types of modules.

30.4.1 Supplier Declaration

Exactly one “supplier” declaration must be included:
supplier <msgnum>

The supplier message string is used to display the verbose, human-readable name of the supplier of the
driver or library. This name should be chosen to be as unique as possible, but the supplier is not required
to guarantee that it is globally unique with respect to other suppliers.

30.4.2 Contact Declaration

One or more “contact” declarations must be included:
contact <msgnum>

The contact message string(s) supplement the “supplier” string with more detailed contact information
in cases where verbose output is required. Each contact declaration corresponds to a separate line in the
contact info listing. The contact info should generally include at least an e-mail address or URL.

30.4.3 Name Declaration

Exactly one “name” declaration must be included:
name <msgnum>

The name message string is used to display the verbose, human-readable name of the driver (as opposed
to names for individual devices supported by the driver) or library. This name should be chosen to be as
unique as possible, but the supplier is not required to guarantee that it is globally unique with respect to
other drivers or libraries from the same supplier or from other suppliers.

30.4.4 Shortname Declaration

Exactly one “shorthame” declaration must be included:
shortname <name_string>

The <name_string> string provides a recommended shorthand name for the driver or library. The
environment may choose to use this name as is, modify it, or ignore it entirely. The string must be from
1 to 8 characters long and must consist only of upper and lower case letters, digits, and the underscore
character (*"). This name should be chosen to be as unique as possible, but the supplier is not required
to guarantee that it is globally unique with respect to other drivers or libraries from the same supplier or
from other suppliers.

UDI Core Specification - Version 1.01 - 2/2/01 30-5
Section 7: Packaging and Distribution

Common Property Declarations Static Properties

30.4.5 Release Declaration

Exactly one “release” declaration must be included:
release <sequence_number> <release_string>

The <release_string> string identifies a release of the driver or library, in “user-friendly” form,

that may be presented to users to let them know which release of the driver or library that they are using.
<sequence_number> is a number encoded as for UDI_ATTR_UBIT32 (see Table 30-1,

“Enumeration Attribute Value Encoding,” on page 30-16) that may be used for automatic release
comparisons; larger numbers represent more recent releases. Neither of these is related to the properties
version or to any UDI interface version.

30.4.6 Requires Declaration

One or more “requires” declarations must be included:
requires <interface_name> <version_number>

Each “requires” declaration specifies a set of programming interfaces (and the associated semantics) that
the driver or library uses, and the version of those interfaces to which it conforms.

<interface_name> is a string of up to 32 ASCII letters, digits or underscore characters, and
<version_number> is a number encoded as a hexadecimal string of up to 4 digits preceded by “0x”.
The combination of interface name and version number must match an interface version supported on
the target system.

No two “requires” declarations for the same driver or library may have the siateeface_name>

Specifying the module’s requirements allows the environment to provide support for the module that is
specific to its needs. Environments may choose to support multiple versions of any given interface.
Larger version numbers represent more recent versions for a given interface name.

All UDI drivers and libraries must include the following “requires” declaration:
requires udi 0x101

Additional “requires” statements for each of the other UDI interfaces used by the driver must be
included; interface names corresponding to other UDI Specifications are defined in those specifications.
Library modules may also define and export their own interface names, as described in Section 30.5.1,
“Provides Declaration,” on page 30-10.

The two least-significant hexadecimal digits of the version represents the minor number; the rest of the
hex digits represent the major number. Versions that have the same “major version number” as an earlier
version shall be backward compatible with that earlier version (i.e. a strict superset).

If the interface name begins with a percent-sign (‘%’), the required interface must match a “provides”
declaration in the same package collection.

If a “requires” declaration precedes any “module” declarations, it applies to all modules of the driver or
library. Otherwise, it applies only to the most recently declared module.

The “requires” declaration indicates both an external symbol dependency for linking/loading, and a
compile-time dependency on any header files exported by the providing library. To express a
dependency only on header files, use “source_requires”.

30-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Common Property Declarations

30.4.7 Module Declaration

One or more “module” declarations must be included, except in a library that only exports header files:
module <filename>

Each “module” declaration denotes a module that is part of this driver or library. Drivers must have at
least one module declaration. Libraries must have at most one module declaration.

The <filename> string provides the name of a binary module file; it must be a local name, without
any path separators. No two “module” declarations in the same file may use theféanasne>
string.

For binary distributions, the module files are included in the distribution, having been previously built in
a UDI build environment. Module files are not distributed with source-only distributions, but will instead
be built when the driver source code is compiled and linked on the target system.

The following declaration types are sensitive to ordering relative to “module” declarations: “region”,

“requires”, “source_files”, and “source_requires”. See each of these declaration sections for more
details.

30.4.8 Locale Declaration

One or more optional “locale” declarations may be included:
locale <locale>

Each “locale” declaration changes the locale to which subsequent “message” and “disaster_message”
declarations in the same file apply. Until the first “locale” declaration in a particular file

(udiprops.txt or a message file) is encountered, the “C” locale will be used for “message” and
“disaster_message” declarations in that file.

The locale specifiexlocale> |, is in the following form, which is a subset of the POSIX locale
specifier format described in ISO/IEC 9945-1:

language[_territory]

The language specifier is a two- or three-letter language code as defined by ISO 639-2/T, or the special
“POSIX” locale designator, “C”. The territory code is an optional specifier, separated from the language
specifier by an underscore, that indicates a particular territory or area in which the language is used
differently from other areas. The territory code is a two- or three-letter country code as defined by ISO
3166.

At any given time, the environment will determine, in an environment-specific fashion (typically
administrator driven), what is the current locale for a particular driver. As message strings are accessed
(by driver request or by the environment), the environment will pick a message with the selected number
that was associated with the current locale. If it can’t find one, it tries to find the same message number
in the “C” locale. If it can't find the message there either, it will construct a string, in either the “C”
locale or the current locale, to the effect of:

[Unknown message number <msgnum=]

30.4.9 Message Declaration

One or more optional “message” declarations may be included:

UDI Core Specification - Version 1.01 - 2/2/01 30-7
Section 7: Packaging and Distribution

Common Property Declarations Static Properties

message <msgnum> { <text>}

Each “message” declaration provides text for a given message numisgnums>, for a particular
locale (see the “locale” declaration). If multiple declarations are given for the same message number in
the same locale, the environment may choose any one of the message texts.

The valid range for <msgnum> is il (i.e. a 16-bit value with 0 being reserved as an illegal message
number).

The actual message string used will consist of each of the <text> tokens, along with any intervening
whitespace, but not any preceding and trailing whitespace. Any whitespace between tokens is treated as
a single space character when the message text is used. Each <text> token is encoded as for
UDI_ATTR_STRING in Table 30-1. This encoding supports escape sequences that represent characters
that can't be included directly in a token.

Some messages are referenced by other declarations and may be used by the environment. Others may
be used by the driver modules themselves, for the purpose of tracing and logging, by specifying the
desired<msgnum>as an argument tadi_trace_write or udi_log_write . These message

strings may contain format codes as fidi_snprintf

Environment implementations may choose to manage message strings in any number of ways. They may
be accessed directly from the driver properties or the messages files, or they may first be copied into a
central message database, possibly with a different format. They may be individually fetched as needed,
or they may all be pre-loaded into memory when the corresponding driver is loaded. In fact, an extreme
environment could even discard all messages. In any case, none of these environment implementation
choices is visible to the driver.

30.4.10 Disaster_message Declaration

One or more optional “disaster_message” declarations may be included:
disaster_message <msgnum> { <text> }

Any “disaster_message” declaration is treated the same as a “message” declaration, except that it is
intended specifically for messages that will be used to log messagedMlithOG_DISASTER

severity. As such, some environments that don'’t pre-load all messages may choose to pre-load just the
disaster messages so they’re guaranteed to be available during system abort handling.

30.4.11 Message _file Declaration

One or more optional “message_file” declarations may be included:
message_file <filename>

Each “message_file” declaration denotes an external text file that includes additional message string
definitions for this driver, besides any that may be included in the static driver properties file itself. The
<filename> string must name a file that is included with the rest of the driver files, including the
static driver properties file, in the same directory; it must be a local name, without any path separators.

Message files are distributed as separate files from the main driver file(s), even for binary distributions.

Message files have the same formatidiprops.txt , and must also begin with a
“properties_version” declaration. Aside from the “properties_version” declaration, however, the only
declarations legal in a message file are “message”, “disaster_message”, and “locale”.

30-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Common Property Declarations

Message files must not be larger than 16 MB.

UDI Core Specification - Version 1.01 - 2/2/01 30-9
Section 7: Packaging and Distribution

Property Declarations for Libraries Static Properties

30.5 Property Declarations for Libraries

The property declarations in this section apply only to library modules.

30.5.1 Provides Declaration

One or more “provides” declarations must be included:
provides <interface_name> <version_number> [include-file ...]

Each “provides” declaration specifies a set of programming interfaces (and the associated semantics)
that the library provides for use by other libraries or drivers, along with the supported version of those
interfaces <interface_name> is a string of up to 32 ASCII letters, digits or underscore characters
(defined in each specification as described in the “requires” declarationyvamnslon_number> is

a number encoded as a hexadecimal string of up to 4 digits preceded by “Ox”. The combination of
interface name and version number must be globally unique.

The two least-significant hexadecimal digits of the version represents the minor number; the rest of the
hex digits represent the major number. Versions that have the same “major version number” as an earlier
version shall be backward compatible with that earlier version (i.e. a strict superset).

The fourth and following parameters on the provides line list zero or more C header files that contain
exported public definitions for the library being provided. These header files will be made available to
any modules specifying this library via a corresponding requires declaration; those modules may include
the header files by simple filename reference (in angle brackets); no path prefix is required.

By default, if no “symbols” declarations are associated with this “provides” declaration, all global
symbols exported by the library are available as part of the specified interface. Libraries that support
more than one interface or version will need finer control. To do this, they can use the “symbols”
declaration. Any library that has multiple “provides” declarations must include “symbols” declarations
that correspond to each of the “provides” declarations. For libraries with a single “provides” declaration,
“symbols” is optional.

If the interface name begins with a percent-sign (‘%"), this interface is visible only to modules in the
same package collection. Otherwise the library is available for use by any UDI package installed into the
system and will be referenced by a “requires” declaration in that driver’s installation. To avoid conflicts
with this global namespace, the following naming convention is recommended for the
<interface_name> parameter when it does not begin with ‘%’:

1. It should be a trademarked name owned by the supplying company, or

2. It should begin with the supplying company’s stock symbol followed by an underscore if
that company is publicly traded, or

3. It should start with an underscore followed by the company or organization’s name or
commonly used acronym, or

4. It should start with two underscores followed by the developer's name or similar
identification if not affiliated with any company or organization.

The “symbols” declaration type is sensitive to ordering relative to “provides” declarations. See the
“Symbols Declaration” section for more details.

30-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Property Declarations for Libraries

30.5.2 Symbols Declaration

Zero or more “symbols” declarations may be included:
symbols { [<library_symbol> as] <provided_symbol>}

Each “symbols” declaration specifies a set of symbols in the library that are associated with a particular
interface version provided by the library. “Symbols” declarations apply to the most recently declared
“provides” declaration preceding the “symbols” declaration. “Symbols” declarations must not precede
the first “provides” declaration. Multiple “symbols” declarations may be provided for the same
“provides” declaration.

For any interface version with one or more corresponding “symbols” declarations, only the listed
<provided_symbol> names will be available to other libraries or drivers that import these symbols
via a “requires” declaration. If a listed symbol hasliarary _symbol> associated with it (before

the preceding “as” keyword), then the symbol namldarary symbol> in the library will be used

to resolve references to tkgrovided_symbol> name; otherwise, theprovided_symbol>

name will also be used as the library symbol name.

The ability to resolve references to one symbol as another symbol in the library allows a library to
support multiple versions of an interface, even if the library’s implementation for some symbols is
different for different versions.

All symbol names in “symbols” declarations are spelled as they would be in a C language source file,
regardless of how they might appear in a symbol table in an object file. Some language or object file
conventions modify symbol names before placing them into a symbol table (for example, by prefixing
with an underscore character).

30.5.3 Category Declaration

One optional “category” declaration may be included in a library that is used as a metalanguage library:
category <msgnum>

The category message string is a human-readable brief (two or three word) description of the category of
device supported by drivers that use this metalanguage as a child metalanguage. While the overall type
of device can be inferred from the driver’s “requires” declarations, it may be desirable to supplement
this categorization with a more specific description.

Each metalanguage that can be used as a child metalanguage specifies a category name (in English) to
be used for its “category” declaration. The message text for the POSIX (“C”) locale for this “category”
declaration must exactly match the specified category name, since driver documentation may refer to
these strings.

Environments may choose to group drivers by category for purposes of presenting lists of drivers to
administrators, and to use the category message strings from the associated libraries to present a heading
for each group. If a driver falls into multiple categories (because it has multiple child metalanguages), it

is recommended but not required that it be listed in all categories to which it belongs.

UDI Core Specification - Version 1.01 - 2/2/01 30-11
Section 7: Packaging and Distribution

Property Declarations for Libraries Static Properties

The category hame must be phrased as a appropriate for a table heading, and thus must be a plural (or
collective) noun phrase. Examples of possible category names are listed below. Refer to metalanguage
specifications for the official names.

SCSI Host Bus Adapters

Network Interface Cards

Communications Cards

Video Cards

Sound Boards

Miscellaneous

30-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties ~ Property Declarations for Drivers

30.6 Property Declarations for Drivers

The property declarations in this section apply only to drivers.

30.6.1 Meta Declaration

One “meta” declaration must be included for each type of metalanguage used by the driver:
meta <meta_idx> <interface_name>

A “meta” declaration indicates a metalanguage that may be used by this driver. The
<interface_name> string must be the same as #ieterface_name> in a “requires”
declaration for this driver.

The<meta_idx> specified in the “meta” declaration is an ASCIl-encoded decimal number from 1 to
255 that is used to distinguish one metalanguage declaration from another (0 is reserved for the
Management Metalanguage) and is used to refer to this metalanguage in other declarations and in the
driver’s udi_init_info structure.

The<meta_idx> number must be unique with respect to all “meta” declarations for this driver.

30.6.2 Child_bind_ops Declaration

Exactly one “child_bind_ops” declaration must be included for each type of child binding ops index
supported by the driver:

child_bind_ops <meta_idx> <region_idx> <ops_idx>

A “child_bind_ops” declaration indicates a metalanguage that may be used to bind children to this
driver. Some drivers may support multiple child metalanguages.

The<meta_idx> token is an ASCII-encoded decimal nhumber from 1 to 255 that is used to distinguish
one metalanguage declaration from another and must match a corresponding “meta” declaration. It must
also match theneta idx value specified in the driverisdi_ops_init_t structures corresponding

to <ops_idx> . Themeta_ops _num for thisudi_ops_init_t structure must refer to an ops

vector type that is suitable for use with child bind channels (as indicated by the relationship value in the
metalanguage librarysdi_ops_vec_template_t). For more information, sa&di_ops_init t on

page 10-9 anddi_mei_ops_vec_template_t on page 28-4.

When the driver is being bound to a child using the specified ops index, its end of the bind channel will
be anchored usingops_idx> in a region of typeregion_idx>

Note —It is legal, though unusual, to have a driver with no “child_bind_ops” declarations. Such a driver
can have no children, and is thus really an application running as a UDI driver.

30.6.3 Parent_bind_ops Declaration

Exactly one “parent_bind_ops” declaration must be included for each type of parent metalanguage
supported by the driver:

UDI Core Specification - Version 1.01 - 2/2/01 30-13
Section 7: Packaging and Distribution

Property Declarations for Drivers Static Properties

parent_bind_ops <meta_idx> <region_idx> <ops_idx> <bind_cb_idx>

A “parent_bind_ops” declaration indicates a metalanguage that may be used to bind parents to this
driver. Some drivers may support multiple parent metalanguages.

The<meta_idx> token is an ASCII-encoded decimal number from 1 to 255 that is used to distinguish
one metalanguage declaration from another and must match a corresponding “meta” declaration. It must
also match theneta idx value specified in the driverisdi_ops_init_t structures corresponding

to <ops_idx> . Themeta_ops_num for thisudi_ops_init_t structure must refer to an ops

vector type that is suitable for use with parent bind channels (as indicated by the relationship value in
the metalanguage libraryigli_ops_vec_template_t). For more information, saedi_ops_init_t

on page 10-9 anddi_mei_ops_vec_template_t on page 28-4.

When the driver is being bound to a parent using the specified metalanguage, its end of the bind channel
will be anchored usingops_idx> in a region of typeregion_idx> . Depending on the settings for

this region index in the driversdi_init_info structures, this will either be a newly-created region

or an existing static primary or secondary region.

The<bind_cb_idx> token is the index value of the control block that will be used by this driver to
send the metalanguage-specific bind request to the parent driver wigih @HANNEL_BOUNBvent
indication for this type of binding is received. Thind_cb_idx> value must correspond to the
cb_idx of audi_cb_init t structure that describes the requirements of the control block to be
used; the Management Agent will pass a pre-allocated control block of this typetim¢theb field

of the UDI_CHANNEL_BOUNBvent indication. If thevind cb idx value is zero, no control block
will be pre-allocated or passed to the driver.

Drivers with no “parent_bind_ops” declarations can have no parents and are thusmgdibed drivers

Orphan drivers control no actual devices, but still present the device model(s) appropriate to the child
metalanguage(s) they support. (Sometimes the term pseudo-device driver or pseudo-driver is also used to
refer to orphan drivers as well as other drivers that do not directly control actual devices.) Orphan
drivers are treated specially in the following ways:

® Orphan drivers have no parents in their device tree (each orphan driver instance forms the
root of its own device tree), so must not use sibling group attributes. (See Section 15.4.3,
“Sibling Group Attributes,” on page 15-4.)

® Orphan driver instances are never bound to parents, so they do not have parent bind
channels.

® Orphan driver instances have parent_bind_ops and nodevice property
declarations.

30.6.4 Internal_bind_ops Declaration

Exactly one “internal_bind_ops” declaration must be included for each type of secondary region:
internal_bind_ops <meta_idx> <region_idx>\
<primary_ops_idx> <secondary_ops_idx>\
<bind_cb_idx>

A “internal_bind_ops” declaration indicates a metalanguage that may be used between regions internal
to this driver. There must be a one-to-one correspondence between “internal_bind_ops” declarations and
“region” declarations, based on matchiaggion_idx> values, except for region index zero (the

primary region).

30-14 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties ~ Property Declarations for Drivers

The<meta_idx> token is an ASCII-encoded decimal number from 1 to 255 that is used to distinguish
one metalanguage declaration from another and must match a corresponding “meta” declaration. It must
also match theneta idx value specified in the driverisdi_ops_init_t structures corresponding

to both<primary_ops_idx> and<secondary_ops_idx> . Themeta_ops_num for these
udi_ops_init_t structures must refer to ops vector types that are suitable for use with internal bind
channels (as indicated by the relationship value in the metalanguage library’s

udi_ops_vec_template_t). For more information, se&di_ops_init_t on page 10-9 and
udi_mei_ops_vec_template_t on page 28-4.

When a secondary region of this type is created, an internal bind channel will be created by the
environment, with the primary region’s end of the channel anchored gpirgary_ops_idx> and
with the secondary region’s end anchored usisgcondary_ops_idx>

The<bind_cb_idx> token is the index value of the control block that will be used by this driver to
send the metalanguage-specific bind request to the parent driver wigih @HANNEL_BOUNBvent
indication for this type of binding is received. Theind_cb_idx> value must correspond to the
cb_idx of audi_cb_init t structure that describes the requirements of the control block to be
used; the Management Agent will pass a pre-allocated control block of this typetim¢heb field

of the UDI_CHANNEL_BOUNBvent indication. If thebind cb idx value is zero, no control block
will be pre-allocated or passed to the driver.

30.6.5 Device Declaration

One or more “device” declarations must be included for non-orphan drivers:
device <msgnum> <meta_idx> { <attr_name> <attr_type> <attr_value>}

The “device” declarations describe the device(s) that can be supported by this driver. There will be one
declaration for each model of device. The message string is used to describe the particular device
selected by the declaration; the corresponding message referenced is intended to be a verbose human-
readable device name (see Section 30.4.9, “Message Declaration”).

The attribute name and value pairs are matched against the enumeration attribute of devices that are
possible candidates for being managed by this driver. The set of valid enumeration attribute names is
specified by the instance attribute bindings of the selected parent metalanguage, as indicated by a
“parent_bind_ops” declaration with matchirgieta_idx> . It is illegal to specify an attribute name

that is not a parent metalanguage enumeration attribute or to specify an attribute value that is out of
range.

If two or more “device” declarations for the same driver use the sansg_num>, the “multi_parent”
declaration must also be present, and the environment may bind multiple parents to this driver of
different types (as indicated by tkeneta_idx> values, which must be different for each of these
“device” declarations). Any “device” declarations with differingnsg_num> values identify distinct
types of devices and only one of which will be bound to a single instance of this driver.

If any specified attributes do not match the corresponding enumeration attribute of a device instance,
then this driver will not be used for that device instance. If multiple “device” declarations (from multiple
drivers or from the same driver) match a given device instance, only those with the most attribute pairs
specified are considered matches. It is environment implementation dependent what the behavior is
when multiple candidates match the same device, but it shall not be considered a driver error.

UDI Core Specification - Version 1.01 - 2/2/01 30-15
Section 7: Packaging and Distribution

Property Declarations for Drivers Static Properties

The <attr_value> string must be a single token. Its encoding depends on the type of the
enumeration instance attribute (3e#_instance_attr_type t on page 15-7), as indicated by
<attr_type> , according to the following tablgattr_type> must be one of the tokens in the Type
Name column of this table.

Table 30-1 Enumeration Attribute Value Encoding

Attribute Type Type Name | Encoding

UDI_ATTR_STRING string Literal string value, except that whitespace and hash
(‘#) characters cannot be included directly, so escape
sequences from Table 30-2 are used to represent these
characters. Matching is case-sensitive.

UDI_ATTR_UBIT32 ubit32 The numeric value may be encoded either as an
ASCIll-encoded decimal string, or as a hexadecimal
string preceded by0Ox”. Matching is case-insensitive.

UDI_ATTR_BOOLEAN boolean True values are encoded as the single character, “T”;
false values are encoded as the single character, “F".
Matching is case-insensitive.

UDI_ATTR_ARRAY8 array Each byte of the value is encoded as two ASCII-
encoded hex digits, with no prefixes or punctuation.
The first pair of digits corresponds to the first byte in
the array, and so on. All digits must be specified, even
if they are zero. Matching is case-insensitive.

For portability concern, the UDI_ATTR_ARRAY8
enumeration attribute value should not exceed
UDI_MIN_INSTANCE_ATTR_LIMIT as documented
by udi_limits_t on page 10-18 of the UDI Core
Specification.

Table 30-2 UDI_ATTR_STRING Escape Sequences

2-Character Escape Sequence Interpretation
N space
\H hash character (‘#)
\\ backslash (‘\)
30-16 UDI Core Specification - Version 1.01 - 2/2/01

Section 7: Packaging and Distribution

Static Properties ~ Property Declarations for Drivers

Table 30-2 UDI_ATTR_STRING Escape Sequences

2-Character Escape Sequence Interpretation

\p Paragraph Break

For “message” and “disaster_message” declarations only.

May optionally be used by the environment when it formats a

message to present to users. The manner in which a paragraph
break is rendered is unspecified.

\m <msgnum> Embedded Message
For “message” and “disaster_message” declarations only.
The text for the specified message number is recursively
embedded into the message text that included this escape
sequence. The resulting message text, after escape and
whitespace processing must not exceed 2000 bytes. At most
three (3) levels of nested embedding—not including the original
message—may be used.

all others All other escape sequences (as identified by the initial backslash
character) are illegal. The result of using an illegal escape
sequence is indeterminate and implementation-specific.

Values for enumeration attributes of other types not listed in Table 30-1 cannot be used in property
declarations.

30.6.6 Enumerates Declaration

One or more optional “enumerates” declarations may be included:

enumerates <msgnum> <min_num> <max_num> <meta_idx>\
{ <attr_name> <attr_type> <attr_value> }

Each “enumerates” declaration describes a type of (actual or pseudo) child device that this driver is
likely to enumerate when used with a device who'’s “device” declaration has a matatsggum>

This can be used as a hint to the environment, for example to help choose drivers to pre-load in a static
environment, or, on the opposite end of the spectrum to allow drivers to be automatically loaded as they
are accessed by applications.

As with “device” declarations, “enumerates” specifies a metalanguage and a set of enumeration
attributes. The driver is not required to guarantee that it will enumerate the devices for which it includes
“enumerates” declarations, but it should only list devices that are highly likely, to avoid incurring
excessive performance penalties.

The <min_num> and<max_num> values, represented as ASCIl-encoded decimal numbers from zero
to 222-1, indicate the expected range for the number of device instances of this type that will be
enumerated per parent instanegmax_num>must be greater than or equaltmin_num>.

30.6.7 Multi_parent Declaration

One optional “multi_parent” declaration may be included:

UDI Core Specification - Version 1.01 - 2/2/01 30-17
Section 7: Packaging and Distribution

Property Declarations for Drivers Static Properties

multi_parent

The “multi_parent” declaration indicates that each instance of the driver may be bound to multiple
parent instances (using either the same or different metalanguages); this is typically used for
multiplexers. If a driver does not include “multi_parent” in its static properties, it is guaranteed to be
bound to at most one parent per instance at any time.

30.6.8 Region Declaration

One “region” declaration must be included for each type of region used by the driver:
region <region_idx> { <region_attribute> <value> }

Each “region” declaration describes a type of region for this driver. A declaration for region index zero
is always required; this specifies attributes of the driver's primary region. The region index is specified
as an ASCII-encoded decimal number. No two “region” declarations in the same file may have the same
region index.

“Region” declarations must not precede the first “module” declaration. The most recently declared
module preceding any “region” declaration must be the module that handles this region index.

Valid values for<region_attribute> and<value> are shown in the following table. The same
<region_attribute> must not be listed twice in the same “region” declaration.

Table 30-3 Region Attributes

<region_attribute> <value> Meaning

type normal A normal region. This is the default value for
this attribute.

type fp Regions of this type may use floating point
operations and data types.

binding static Exactly one region of this type will be created by
the environment for each driver instance, when
that instance is created. The primary region must
have this attribute value. This id the default
value for this attribute.

binding dynamic Regions of this type are to be created only when
parent or child bindings for this region index are
performed. One region is created for each such
binding. See the “parent_bind_ops” and
“child_bind_ops” declarations.

priority lo Regions of this type should be scheduled, if
possible, at a lower priority than other regions
for this driver that have higheriority

values.

priority med Regions of this type should, if possible, be
scheduled ahead of regions whesmrity
attribute is set téo and behind regions whose
priority attribute is set tdi . This is the
default value for this attribute.

30-18 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties ~ Property Declarations for Drivers

Table 30-3 Region Attributes

<region_attribute> <value> Meaning

priority hi Regions of this type should be scheduled, if
possible, at a higher priority than other regions
for this driver that have loweariority values
(lo ormed).

latency powerfail_warning Regions of this type service devices that may
deliver early warning of impending power
failures. Some environments will consider this
the most critical type of event to be serviced
quickly.

latency averrunable Regions of this type service devices that are
overrunable without possibility of retry. That is,
if they are not serviced soon enough, they may
permanently lose data.

latency retryable Regions of this type service devices that are
overrunable but with the possibility of retry. That
is, if they are not serviced soon enough, they
may lose data but it can be recovered by retrying
the operation.

latency non_overrunable Regions of this type service devices that are not
overrunable. That is, they will maintain data
associated with all outstanding operations until
serviced, no matter how long it takes. This is the
default value for this attribute.

latency non_critical Regions of this type service devices that are not
overrunable and are also considered non-critical
relative to other devices. In other words, all other
devices may be serviced in preference to a non-
critical device if they both have service pending

at the same time. Typically this is used for slow,

infrequently-used devices like floppy disks.

overrun_time <nanoseconds> For regions withoverrunnable or

retryable latency, this attribute indicates the
typical time to overrun, in nanoseconds. The
nanoseconds value must be in the range®%12

30.6.9 Readable file Declaration

One or more optional “readable_file” declarations may be included:
readable_file <filename>

Each “readable_file” declaration denotes a file that may be read by the driver at run time. The
<filename> string must name a file that is included with the rest of the driver files, including the
static driver properties file, in the same directory; it must be a local name, without any path separators.

Readable files are distributed as separate files from the main driver file(s), even for binary distributions.

UDI Core Specification - Version 1.01 - 2/2/01 30-19
Section 7: Packaging and Distribution

Property Declarations for Drivers Static Properties

The driver can read the contents of readable files by uglhdnstance_attr get with

“<filename> " as the attribute name. See Section 15.2, “Instance Attribute Names,” on page 15-1 for
restrictions on attribute names. This will yield an attribute of typé ATTR_FILE . Readable files are
treated as raw binary files and are not in any way preprocessed by the environment.

The following files must not be used as readable filiel§props.txt , any file used as a message file
(see the “message_file” declaration), or any of the driver's source files (see the “source_files”
declaration) or module files (see the “module” declaration). Readable files must not be larger than 16
MB.

30.6.10 Custom Declaration

One or more optional “custom” declarations may be included:
custom <attr_name> <scope><msgnum1><msgnum?2><msgnum3> <choices><device>

Each “custom” declaration describes a custom configuration parameter for this driver. The environment
will provide a way for the administrator or integrator to set values for each of these parameters. The
selected parameter values are made available to the driver via its instance attributes.

<attr_name> is the name of the instance attribute that will be used to represent the value of this
parameter. This must be a private-persistent or parent-visible attribute. If it is parent-visible, it applies
separately to each child created. The driver can access these values using instance attribute services (see
Chapter 15;Instance Attribute Managemeny”

<scope> determines the applicability of this parameter to the various device instances covered by this
driver or, in the case of parent-visible attributes, the child device instances applicable to this driver,
according to the following table:

Table 30-4 Custom Parameter Scope

Value of <scope> Meaning

device The parameter applies to each device instance
independently, and is required for all device instances.

device_optional The parameter applies to each device instance
independently, and is optional.

driver The parameter applies to all device instances covered
by the driver and will be set to the same value for each
one. The parameter is required for all device instances.

driver_optional The parameter applies to all device instances covered
by the driver and will be set to the same value for each
one. The parameter is optional.

<msgnum1> provides the “user-friendly” name for the parameter. It should concisely (about one to

three words) elucidate the meaning of the parameter in a form that could be used as a table heading, a
menu option or in prose such as “Would you like to change&tiiggnum1> parameter?”. The

specification of<msgnum1> must be a single token and may using the encodings specified in Table
30-2.

30-20 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties ~ Property Declarations for Drivers

<msgnum?2> provides a description of the parameter that can be presented to the user to help them
understand what the parameter represents. It should be in the form of one or more complete sentences
and may consists of multiple paragraphs (though environments are not required to display the message
as multiple paragraphs). If the description text refers to any parameter name, it should use the name
given by<msgnum1> rather thar<attr_name> . The specification oEmsgnum?2>must be a single

token and may use the encodings specified in Table 30-2.

<msgnum3> indicates a sub-category of parameters to which this parameter belongs. Some
environments may group parameters by sub-category when presenting lists of parameters to the user. If
<msgnum3>is non-zero, the corresponding message string may be used as a heading for the sub-
category. Examples of possible sub-categories include “Basic” vs “Advanced” and “Ethernet” vs “Token
Ring”. The specification okmsgnum3>must be a single token and may use the encodings specified in
Table 30-2.

<choices> describes the set of valid values for the parameter, and is constructed as follows:
<attr_type> <default_value>\

(mutex { <value>} o+ end |\
range <min_value> <max_value> <stride> | \
any |\
only)

<attr_type> is the type of the instance attribute that will be used to represent the value of this
parameter. This must be one of the Type Names listed in Table 30-1, “Enumeration Attribute Value
Encoding,” on page 30-16.

<default_value> provides the default value for a parameter, and is encoded sattiovalue>

in “device” declarations (see Table 30-1) except whattr type> is “string”. If the<attr_type>

is “string " then the<default_value> and all other values specified for this parameter are ASCII
encoded numeric values representing message numbers; if such attribute values are presented to a user,
they shall be presented with the text of these message strings in the user’s current locale, but the C
locale string shall be used when setting the actual attribute value (which will be of type
UDI_ATTR_STRING).

The remainder of thechoices> clause begins with a keyword identifying the type of choice
available. Thenutex keyword indicates a mutually-exclusive set of at least two alternatives, terminated
by theend keyword. Therange keyword, which is only valid whegattr_type> is “ubit32 7,
indicates a range of choices beginning wdthin_value> , incrementing bystride> , until the

value exceedsmax_value> . Theany keyword indicates that any value appropriate for the attribute
type may be used. Thanly keyword indicates that the only valid value<idefault_value>

<value> , <min_value> , <max_value> , <attr value> , <attr_value2> and<stride> , if
provided, are encoded as shown in Table 30-1.

<device> is zero if this “custom” declaration applies to all types of devices supported by this driver.
Otherwise, it is theemsgnum>of a corresponding “device” declaration, and the parameter applies only
to devices of that type.

UDI Core Specification - Version 1.01 - 2/2/01 30-21
Section 7: Packaging and Distribution

Property Declarations for Drivers Static Properties

30.6.11 Config_choices Declaration

One or more “config_choices” declarations must be included for easignum>used in a “device”
declaration for a non-self-identifying bus (e.g. legacy ISA). The “config_choices” declaration is only
supported for such devices.

config_choices <msgnum> { <attr_name> <choices> }

These declarations are used for devices on buses that have device configuration attributes that can’t be
read by generic software (legacy ISA, for example). Such devices will generally require explicit user
configuration. The “config_choices” declarations provide default choices for these configuration
attributes. Theattr_name> string(s) must correspond to valid enumeration attributes, as described

for “device” declarations. Thechoices> clause describes a set of parameter value choices, as in the
“custom” declaration.

The <msgnum>value must match amsgnum>used in a “device” declaration. This associates one or
more default settings with a given device declaration. If there are more than one for the same device,
they represent alternate choices. It is environment implementation dependent how the choice between
alternates is made. Environments may choose to ignore some or all “config_choices” declarations.

For devices that have factory default settings, the first “config_choices” declaration for such a device
should represent the factory defaults.

30-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Build-Only Properties

30.7 Build-Only Properties

The property declarations in this section apply only when building drivers or libraries from source.
These declarations are stripped out byubenkpkg utility program (see Section 32.3 on page 32-1)
when it attaches static driver properties to binary object files for binary distributions.

30.7.1 Source_files Declaration

One or more optional “source_files” declarations may be included:
source_files { <filespec> }

“Source_files” declarations are used only when building (or re-building) a driver or library from source
code. Binary-only distributions need not have any “source_files” declarations.

The list of<filespec> names specifies the list of C source files that must be compiled and linked in
order to build this module. If this static properties file is for a binary-only distribution, no source files
will be listed; otherwise, there must be at least one source file for each module. C source file names

”

must be less than 64 characters long, and must end incot “.h .

The “source_files” declaration is sensitive to ordering relative to “compile_options” declarations. See
Section 30.7.2, “Compile_options Declaration”, for more details.

30.7.2 Compile_options Declaration

One or more optional “compile_options” declarations may be included:
compile_options { <option> }

“Compile_options” declarations are used only when building (or re-building) a driver or library from
source code. Binary-only distributions need not have any “compile_options” declarations.

“Compile_options” declarations apply to any “source_files” declarations following the
“compile_options” declaration, until the next “compile_options” declaration. Each “compile_options”
decalaration overrides the preceding one.

If no “compile_options” declarations precede a particular “source_files” declaration, the corresponding
source files will be compiled without any special compile options.

Valid compile options are listed in the following table.

Table 30-5 Compile Options

<option> Description

-D<name> Causesname> to be defined as a macro to be replacedliy “
as if by a#tdefine directive.

-D<name>=<token> Causesname> to be defined as a macro to be replaced by
<token> , as if by a#define directive.

-U<name> Causesname> to be undefined as a macro, as if bjumdef
directive. Overrides anyD compile options.

UDI Core Specification - Version 1.01 - 2/2/01 30-23
Section 7: Packaging and Distribution

Build-Only Properties Static Properties

Traditional compile options, such &g or-O, are not supported, since they will be provided generically
by theudibuild utility program (see Section 32.2 on page 32-1).

30.7.3 Source_requires Declaration

One or more optional “source_requires” declarations may be included:
source_requires <interface_name> <version_number>

Each “source_requires” declaration is treated exactly like a “requires” declaration, except that it is used
only when the driver or library is compiled/built from source.

“Source_requires” declarations are used only when building (or re-building) a driver or library from
source code. Binary-only distributions need not have any “source_requires” declarations.

30-24 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Static Properties Sample Static Driver Properties File

30.8 Sample Static Driver Properties File

The following example shows what a static driver properties file for a network interface card driver from
the XYZ Company might look like.

properties_version 0x101

supplier 1

contact 2

name 3

shorthname xyznic

release 5 1.0b5

requires udi 0x101

requires udi_physio 0x101

requires udi_bridge 0x101

meta 1 udi_bridge

requires udi_nic 0x101

meta 2 udi_nic

parent_bind_ ops1010

child_bind_ops 202

device 5 1 bus_type string pci pci_vendor_id ubit32 1234\
pci_device_id ubit32 19

enumerates 51 1 2 if_num ubit32 0 if_media string fe

custom %media_type driver 10 11 O string 12\
mutex 12 13 end O

message 1 XYZ Corporation
message 2 support@xyz.com
message 3 XYZ 552x LAN Driver
message 5 xyz5524 10/100Base-T
message 10 Media Type

message 11 The Media Type parameter indicates the type of network
to which the card is connected. This may be "\m12" or
"\m13".

message 12 Ethernet
message 13 Token Ring
locale piglatin

message 10 Ediamay ypetay

message 11 Ethay Ediamay Ypetay arameterpay indicatesyay ethay
ypetay ofyay etworknay otay ichwhay ethay ardcay isyay
onnectedcay. Isthay aymay ebay "\m12" oryay
"\m13".

message 12 Ethernetyay
message 13 Okentay Ingray
module xyznicd

region 0

UDI Core Specification - Version 1.01 - 2/2/01 30-25
Section 7: Packaging and Distribution

Sample Static Driver Properties FileStatic Properties

30-26 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

projecy

‘J'E‘IJ'\ U D !! [..'1IU

Packaging & Distribution Format 31

31.1 Overview

This chapter defines the UDI packaging and distribution format for both source and binary distributions
of UDI drivers.

31.2 Packaging Format

The UDI packaging format specification describes a directory hierarchy that is used to contain the
various components of a UDI driver “package”; i.e. all the files necessary to be provided with a driver to
make it usable. This directory structure is then encapsulated in a “pax” archive to create a distributable
UDI package. A single package can contain multiple drivers and/or libraries.

Each environment implementation shall provide a utility program caliésketup , that is used to

install a driver once the UDI package has been somehow transported to the target system and possibly
extracted from distribution media. This utility converts the driver files into appropriate native form,
installs copies of them into environment-specific locations, and performs any other operations necessary
to make the driver available for use.

When presented with a distribution containing multiple independent drivers, it is implementation-
dependent whethardisetup installs all of the drivers or prompts the user for the name of a driver
package to install.

31.2.1 Directory Structure

In the directory structure shown below, all UDI files are contained under a standard top-level directory
(“udi-pkg . 1"). If the directory structure were to change in a future version of this specification, a new
top-level directory name would be used.

One or more completely independent driver packages may be included in this directory, each rooted at a
sub-directory referred to below dsv_xxx (which may be any arbitrary name). For example, if a

vendor ships multiple network interface controller drivers for different kinds of network adapters, each
driver would be packaged under a differdni_xxx directory. Environments may choose to install all
driver packages in a distribution or to present the user with a choice of driver package names.

One or more alternate versions of the same logical driver package may be included withintke

directory, each rooted at a sub-directory referred to beloaltagyy (which may be any arbitrary

name). Environments will install only one alternate version for any driver package. Alternates will be
selected based on the UDI specification version on which they depend, as well as the versions of other
interfaces, such as metalanguages. Only alternates that require only supported interface versions will be
considered. If multiple alternates use supported interfaces, it is unspecified which one will be selected.

UDI Core Specification - Version 1.01 - 2/2/01 31-1
Section 7: Packaging and Distribution

Archive Format Distribution Format

One or more components (individual UDI drivers or libraries) may be included with Eltthygyy

directory, each rooted at a sub-directory referred to belosomp_zzz (which may be any arbitrary
name). Environments will install all components of a driver package for the selected alternate. This is
useful for grouping internal metalanguage libraries with the drivers that use them, sets of cooperating
drivers, etc.

Static driver properties must be provided for each component, as specified in Chap&at8ODriver
Properties”. If this component distribution contains the source form, the static properties will be

contained in theidiprops.txt file in thesrc subdirectory along with the driver source. If this
component distribution contains the binary form, the driver binaries are containedbin ttdirectory,
with the contents ofidiprops.txt embedded in the primary module’s object file in an ABI-specific
fashion.

Beneath thévin directory, the abi > subdirectories contain the driver binaries built to conform to a
particular Architected Binary Interface. Thabi > subdirectory names are defined in each ABI, with
typically one subdirectory defined for binaries which can be used generically within the ABI, and an
additional subdirectory defined for each supported processor subclass. For example, take a fictitious
CPU architecture called, “3CPU”", with specific processor models “3CPU1", “3CPU2” and so on.

bin /3CPUwould contain generic 3CPU binaries that would run on any processor in the family;

bin /3CPUl1would contain binaries specifically optimized for the 3CPUL processors and might not even
run on other processors in the family.

The optionalrfiles directory contains files readable by the driver. These are usually microcode files
for downloading to a particular adapter or device. The optimsgldirectory contains text for messages
used by the driver.

The resulting package directory hierarchy for one component would look like the following:
udi-pkg.1/<drv_xxx>/<alt_yyy>/<comp_zzz>/
src/udiprops.txt
<source files>...

bin/ <abi> | <primary module file>
<secondary modules>

rfiles/ <readable files>...

msg/ <message files>...

Each of thesrc , bin , rfiles , andmsg subdirectories are optional. They are required only if one or
more of the corresponding type of file is included in the package. At least @ne afr bin must be
present.

31.3 Archive Format

In order to create a UDI driver package, the entire package directory hierarchy described above is
encapsulated in a “pax” archive, as defined in the IEEE Std. 1003.1-1988 “Archive/Interchange File
Format”, with relative pathnames. The resultant archive file, referred tdJ&4 package file can be
given as an argument to theisetup utility to install the driver on a target system.

All UDI build environments shall support adimkpkg " utility, which takes a collection of UDI driver
files and creates a UDI package file.

31-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

Distribution Format Distribution Format

31.4 Distribution Format

The UDI distribution format specification defines how UDI driver packages may be placed on various
distribution media. Environments are not required to support any of these media types. However, for any
listed media type from which an environment supports installation of UDI drivers, the storage format
and layout specified herein must be supported.

All UDI distribution formats simply use one or more UDI package files (output frdimkpkg),

stored on the media in a specified storage format at a specified location. In order to allow the target
environment to locate the UDI package files, which may be interspersed with other files on the same
media, UDI package files stored on physical distribution media must be placed (directly) in a top-level
directory named fudi-dist.1 ", referred to as the distribution directory.

Further, since some media formats are limited to 8.3 filenames (up to 8 characters, optionally followed
by a dot (‘) and 1-3 additional characters), UDI package files stored on physical distribution media
must be namedxkxxxxxx.udi ", where xxxxxxxx " is replaced by 1-8 characters chosen by the
driver developer (or distributor). There must be no other files ending with.ude “ extension in the
distribution directory, except other UDI package files.

31.4.1 Floppy Storage Format

For floppy disks, the storage format shall be a DOS FAT12 filesystem. This filesystem supports
directory hierarchies, but the directory and file nhames are limited to 8.3 format (up to 8 characters,
optionally followed by a dot (") and 1-3 additional characters) and are case-insensitive but stored as
upper case. The UDI distribution directorudi-dist.1 ", must be placed in the root of the DOS
filesystem.

31.4.2 CD-ROM Storage Format

For CD-ROMSs, the storage format shall be an ISO-9660 filesystem. (RockRidge extensions are allowed,
but not required since the UDI package file names will fit in 8.3). The UDI distribution directory,
“udi-dist.1 ", must be placed in the root of the directory hierarchy identified by the Primary Volume
Descriptor.

UDI Core Specification - Version 1.01 - 2/2/01 31-3
Section 7: Packaging and Distribution

Distribution Format Distribution Format

31-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

projecy

‘J'E‘IJ'\ U D !! [..'1IU

Build & Packaging Utility Programs 32

32.1 Overview

This chapter describes utilities that UDI build environments and UDI runtime environments must
provide. The build environment consists of the tools and utilities used to create driver binaries (the
udibuild utility) and to create driver source and/or binary installation packagesdiim&pkg

utility). The runtime environment consists of the tools necessary to install driver packages (the
udisetup utility), as well as the software modules necessary to configure and execute UDI drivers.

Many environments will be a combination of both build and runtime environment.

32.2 The udibuild Utility

All UDI build environments, and all runtime environments that support source distributions, shall
include a utility calledudibuild . This utility, when invoked with no command-line arguments, will
search the current working directory foudiprops.txt file and source files, then attempt to build a
driver binary using build rules fromdiprops.txt , placing the resultant binary object modules in the
bin/<abi> subdirectory of the current directory (creating the subdirectories as needed) where the
name for the current ABI is substituted foabi> .

The binary object modules produced by tibuild utility must not export any global symbols for a
portable UDI module except for theli_init_info symbol and any symbols associated with any
provides declarations in the module’s static properties specification.

The behavior ofidibuild ~ when given any command-line arguments is implementation-dependent.
The commandudibuild -h " shall cause a usage message to be displayed, which will list the
parameters specific to this implementation.

32.3 The udimkpkg Utility

All UDI build environments shall include a utility calledlimkpkg . This utility uses the static driver
properties file udiprops.txt , to find the various pieces of a UDI driver or library component
(including message files, readable files, as well as source and/or object files), and gathers them into a
UDI package file, ready for distribution or installation. For binary distributiadsnkpkg also

attaches the content of thidiprops.txt file to the primary binary module (typically a relocatable
object file) of the driver, in an ABI-specific fashion, stripping out any build-only properties in the
process.

The output ofudimkpkg is a UDI package file, as described in Section 31.3, “Archive Format,” on
page 31-2. Additional environment-specific tools may be required to copy this package file onto physical
media or to upload it to a network server.

UDI Core Specification - Version 1.01 - 2/2/01 32-1
Section 7: Packaging and Distribution

The udisetup Utility Build Utilities

When run in the directory containing all of the input files, with no command-line arguments, the
udimkpkg utility will create a UDI package file in the current working directory, named
“nnnnnnnn.udi ", where ‘nnnnnnnn ” is replaced by th&name_string> from the “shortname”
declaration inudiprops.txt

When stored in the UDI package file, the component must have assatii@tgalternate and
componennames. By defaulydimkpkg takes these from the “shortname”, “release”, and “module”
declarations, respectively, froodiprops.txt . (If there are multiple “module” declarations for a
component, the first one is used.) Alimkpkg utilities must also provide a way to specify other

values for each of these names, but the command syntax for doing so is implementation-defined, as is
the syntax for selecting source vs binary distributions. By defadittpkpkg will include both source

and binary files in the package, if both are present in the input directory.

For binary distributionsudimkpkg will use a build environment general value for #tabi>
subdirectory name, but shall provide an implementation-defined way to override this default to specify
ABI variations such as processor-specific subclasses (see Section 31.2.1, “Directory Structure”).

The udimkpkg utility may also support additional implementation-defined arguments. The command
“udimkpkg -h " shall cause a usage message to be displayed, which will list the parameters specific to
this implementation.

32.4 The udisetup Utility

All UDI build environments shall include a utility calledlisetup . This utility extracts driver files
from the UDI package file, installs them in environment-specific locations, and prepares the driver for
use on the target system.

With no command-line argumentsdisetup shall search the current working directory for all files
ending in “udi " or “.UDI ", and either install all of the drivers in all of the packages, or provide the
user a way to interactively pick and choose amongst them if there are more than one. With a single
command-line argumentidisetup shall interpret that argument as the filename of a single UDI
package file to use, and either install all of the drivers in the package, or provide the user a way to
interactively pick and choose amongst them if there are more than one.

udisetup may have additional implementation-specific parameters for items such as distribution
package location, driver versions and alternates to be installed, and so forth. The command

“udisetup -h " shall cause a usage message to be displayed, which will list the parameters specific to
this implementation.

32-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 7: Packaging and Distribution

r

%]J'\ ‘ D !! [. o

UDI Core Specification

Section 8: ABI Bindings

UDI Core Specification - Version 1.01

‘J'E‘IJ'\ U D !! [..'1IU

Introduction to ABI Bindings 33

33.1 Introduction

Most of the UDI specification documents (S@kapter 2, “Document Organization’) define

programming interfaces and conventions that are applicable to any processor or platform architecture;
these specifications, referred tosamirce-level specificationgrovide source-level portability of UDI

drivers from one platform or operating environment to another. There is a class of UDI specifications,
called ABI Bindings, that define binary bindings to specific processor architectures; these specifications
provide binary-level portability of UDI driver modules, allowing the driver to be compiled once for a
target architecture and distributed to any platform or operating system which conforms to the ABI
specification. The ABI Binding specifications are also refered toireery-level specifications

A UDI ABI binding consists of the following components:

1. A processor architecture, instruction set definition, and endianness. This defines the
supported instruction sets, and endianness of the compiled UDI driver, as well as
corresponding subdirectory names for the UDI packaging format.

2. Runtime architecture. This defines the procedure calling conventions, register usage, stack
conventions, data layouts, etc.

3. Binary bindings to the source-level UDI specifications. This specifies the sizes of
fundamental UDI data types, the binary-portability requirementmpfementation-
dependent UDI macroand functional interfaces, and other miscellaneous binary bindings
related to the source-level specifications.

4. Building the driver object. This specifies the object file format, and the encapsulation of
the static driver properties in the object files.

33.2 Processor Architecture

Each ABI binding specification must specify a processor architecture with its associated instruction
set(s) as well as supported endianness modes. For example, separate ABI bindings will be specified for
IA-32 (little endian), 1A-64 (both big and little endian), PowerPC (big endian), etc.

Second, each ABI binding must specify the specific subclasses of processor architectures that are
supported; e.g., an I1A-32 binding might specify support for 386, 486, P1, P2, and P3 processors.

Third, the ABI binding must specify the <abi> subdirectory names for use in the UDI packaging format
specification (see Section 31.2.1, “Directory Structure,” on page 31-1); there should generally be one
generic subdirectory defined for driver binaries that are useable across the ABI's processor subclasses,
and an additional subdirectory for each processor subclass. For example, an 1A-32 binding might specify

UDI Core Specification - Version 1.01 - 2/2/01 33-1
Section 8: ABI Bindings

Runtime Architecture ABI Binding Intro

a subdirectory nameld\32 for generic IA-32 binaries, and might specify additional subdirectories
namedlA32_386 , 1A32_486 ,1A32_P1 ,1A32_P2 , andlA32_P3 for binaries specific to a given
IA-32 processor subclass.

33.3 Runtime Architecture

Associated with a given processor architecture is a set of conventions for executing software on that
processor called the runtime architecture. This includes such things as the procedure calling conventions,
register usage, stack conventions, data layouts, etc. The runtime architecture definition is typically
defined in a separate non-UDI specification for a particular processor architecture, and is simply
referenced by the UDI ABI specification.

33.4 Binary Bindings to the Source-Level Specifications

A few aspects of theource-level specificatiorsre implementation-dependent and thus require

additional specification for binary portability. These fall into four general categories: (1) the sizes of
fundamental UDI data types, (2) the binary-portability requirements of implementation-dependent UDI
macros, (3) the specification of UDI functional interfaces (other than the UDI utility functions) that are
allowed to be implemented as macros, and (4) other miscellaneous binary bindings related to the source-
level specifications.

Only the UDI Core Specification and the UDI Physical I/O Specification are allowed to contain
fundamental UDI data types aimdplementation-dependent macrésirthermore, only these two
Specifications are allowed to have functional interfaces that can be implemented as macros, or to have
any other aspects that require binary bindings to source-level specifications. Therefore, the only two
source-level specifications which require bindings for binary portability are the UDI Core Specification
and the UDI Physical I/0 Specification. This allows the ABI bindings to be specified independently
from the existence or the evolution of other source-level specifications such as metalanguages and bus
bindings.

Utility functions in UDI can always be implemented as macros without breaking binary portability; see
the Utility Functions Chapter for details.

Note —The values for symbolic constants are all defined in the source-level specifications, and thus
require no specification in the ABI bindings.

33.4.1 Sizes of UDI Data Types

As part of its C language binding, UDI defines a set of fundamental data types (see Chapter 9,
“Fundamental Types). The UDI interfaces, in any of the UDI specifications, use only these

fundamental types or types derived therefrom. The fundamental types include only a few standard ISO C
types, namelhar, void, and thevarargstypes; all the other fundamental types are UDI-defined and
include a set of specific-length types, abstract types, and opaque types. Of these fundamental types, only

33-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 8: ABI Bindings

ABI Binding Intro Binary Bindings to the Source-Level

the abstract types, opaque types, and pointer types (“void *” as well as specific pointer types) have
implementation-dependent sizes. Thus an ABI specification only needs to specify the sizes of UDI's
abstract types, opaque types, and pointer types, which are listed in the table below.

Table 33-1 UDI Data Types whose sizes need to be defined by the ABI

Data Type Classification Description

void * Pointer type Pointer type

udi_size_t Abstract type Size type

udi_index_t Abstract type Index type

udi_channel_t Opaque type Channel Handle

udi_buf_path_t Opaque type Buffer Path Handle

udi_origin_t Opaque type Control Block Origin Handle

udi_timestamp_t Opaque type Timestamp Type

udi_pio_handle_t Opaque type P10 Handldefined in the Physical I/O Specification

udi_dma_handle_t Opaque type DMA Handlelefined in the Physical 1/0O Specification

udi_dma_constraints_t Opaque type DMA Constraints Handlefined in the Physical 1/0
Specification

All pointer types have the same size, represented by the “void *” row in the table. The only fundamental
types not defined in the Core Specification are the handle types defined in the Physical 1/0
Specification. For convenience and completeness, the physical I/O fundamental types are included here.

Note —Only the UDI Core Specification and the UDI Physical I/0 Specification are allowed to define
UDI fundamental data types.

33.4.2 Implementation-Dependent Macros

In UDI, animplementation-dependent madgoan interface that is defined to be a macro in a source-
level specification (other than utility macros), but whose macro expansion definition is implementation-
specific. Such macros may contain environment and platform dependencies which, to provide binary
portability, must be hidden behind an external function call; any such external symbol references must
be specified in the ABI.

Only the UDI Core Specification and the UDI Physical I/O Specification are allowed to specify
implementation-dependent macros. In the 1.01 version of these Specifications two implementation-
dependent macros are specified: thel_HANDLE_ID macro on page 9-29 and
UDI_HANDLE_IS_NULL macro on page 9-28.

Each ABI must specify the binary-portability requirements of each macro. This means that the ABI must
specify whether or not the macro produces any external symbol references and, if so, the names and

semantics of those external symbols. The ABI must also specify the behavior of the inline portion of the
macro, in an environment-neutral fashion.

UDI Core Specification - Version 1.01 - 2/2/01 33-3
Section 8: ABI Bindings

Building the Driver Object ABI Binding Intro

33.4.3 UDI Functions implemented as macros

As previously noted, utility functions in UDI can always be implemented as macros without breaking
binary portability. However, ABI bindings must require each other UDI functional interface to be
implemented in one of two ways. One way is to implement the UDI functional interface as an external
function call. Another way is to optionally implement the interface as a macro with any environment or
platform dependencies hidden behind an external function call. This external function call is specified by
the ABI as part of the macro expansion.

A common example of a UDI functional interface that is implemented as a macrouidi tlassert

interface. Wherudi_assert is implemented as a macro, any environment or platform dependencies
must be hidden behind a call to an external function specified in the ABI. This allows the performance
path to be done inline, only taking the overhead of a function call in the exception case.

33.4.4 Miscellaneous Binary Bindings

Each ABI must specify the following binary bindings related to the source-level specifications or the
UDI architectural model:

®* Maximum stack usage per call into the driver.
® Maximum instruction (code) size per driver object module, and per driver.
® Maximum static data size per driver object module, and per driver.

® Maximum binary object file size per driver object module.

33.5 Building the Driver Object

The Core Specification defines the generic aspects of building UDI driver object code. Each ABI
specification defines the binary bindings of building the driver object code: i.e., the object file format,
and the encapsulation of the static driver properties in the driver’s object files.

33.5.1 Object File Format

Each ABI specifies an applicable object file format. Typically this is defined in a non-UDI specification,
and is simply referenced in the UDI ABI specification.

33.5.2 Static Driver Properties Encapsulation

Each ABI needs to specify how the static driver properties (provided by the driver in its
udiprops.txt configuration file— see Chapter 30Static Driver Properties”) are attached to the
driver's object files.

33-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 8: ABI Bindings

ect

UDI Core Specification

Section 9: Appendices

UDI Core Specification - Version 1.01

Glossary A

abortable operation is a channel operation request that may be aborted by the initiator at any time prior
to receiving the completion or exception operation for that request. Not all channel
operations are abortable and the metalanguage definition will specifically define
which operations are abortable.

anchored channel a channel end that has been permanently associated with a region, a set of channel
operation entry points, and a channel context. Inter-module communication can
only occur over a channel that has both ends anchored.

asynchronous service calln environment service call that indicates its completion through an
asynchronous callback. The service is not necessarily complete and/or the callback
may not have been called upon return from the initial environment function call to
the calling code.

bind channel first communication channel between two driver instances, which results from the
bind process.

bind process the process of associating two driver instances in a child-parent relationship,
typically reflecting the relationship of the associated hardware components. This
process takes place as part of driver configuration, via a set of channel operations,
and results in initialization of a communications channel between the two driver

instances.
binding seebind process
buffer an opaque object used to carry “application” or “wire” data within the UDI

environment. A UDI buffer is logically contiguous but may be virtually or
physically segmented.

buffer handle an opaque reference to a UDI buffer.

buffer tag a tag associating a type code and a value with a particular range of data in a logical
buffer, which moves with the data in the presence of insertions and deletions prior
to the tagged range. If data associated with a buffer tag is modified or deleted, the
tag is removed and discarded. Buffer tags are often used for network checksums.

callback a driver-provided procedure that may be called immediately or at some later time
when a requested service has been performed. The callback procedure is always
invoked within the same driver region as the original service request, but possibly
on a different thread.

Example: Procedurtoo requests a service, e.g., allocation of a block of memory.
This service request specifies the address of procddareallback , in

addition to the amount of memory requested. If the resource is immediately
available, the callback may be invoked on the requestor’s thread before the request

UDI Core Specification - Version 1.01 - 2/2/01 A-1
Section 9: Appendices

Glossary

channel

channel context

channel handle

channel operation

procedure returns. Otherwise, when the resource becomes available,
foo_callback will be invoked by rescheduling the same region’s processing on
a (possibly different) thread.

a bidirectional communication channel between two drivers, or between a driver
and the environment. Channels allow code running in one region to inkiekael
operationsin another region. Example of channels includektimel channel

between an adapter driver instance and its parent driver instance, and the
management channbktween a driver instance and the Management Agent.

a pointer to a driver-defined storage area, used by a driver to store state
information, resources that it has allocated, etc. This pointer is associated with the
end of a channel (each anchored channel end has a context associated with it), and
is passed to the driver as the first parameter for every channel operation that is
invoked on that channel. A channel context pointer is local to the region containing
the endpoint, and is not visible from the other end of the channel.

an identifier used by a driver to refer to a channel. This handle is opaque and local
to the driver region in which it is held. Channel handles are used in channel
operation invocations to designate the destination of the operation.

the unit of inter-module communication over a channel. This is a function call
made from one driver region that invokes a similar function call in another region
on the other end of the channel. Channel operations are strongly typed. Also known
as “ops”.

channel operations vectorthe set of metalanguage-defined driver entry points for a given channel or set

of channels. When the driver’s init_module routine is called during initialization, it
sets up at least one channel operations vector for each type of channel supported by
the driver. Also known as “channel ops vector.”

child driver instance of a pair of communicating driver instances, the one whose position in the device

client

tree is farther from the root of the tree. For example, a SCSI disk is usually the
child of a SCSI host bus adapter.

a UDI module that issues requests foravider via channel operations. A client is
a type ofinitiator .

communications channelseechannel

completion operationis a type of channel operation that completes a corresponding request channel

control block

operation. Many channel operations are “in progress” or “pending” when they have
been sent from the initiator to the responder and may need to be aborted or
otherwise tracked by the initiator until such time as the request is fulfilled by
receipt of the completion operation from the responder.

a semi-opaque object used by the UDI environment to store channel operation
parameters in a region queue, when the region is busy or operating at a lower
priority, or asynchronous service call parameters when the service call cannot be
completed immediately. It can also used by the driver to store channel operation
parameters and other contextual information internal to the driver when the
operation cannot be handled to completion in one invocation. Segeaisoic

control blockandmetalanguage-specific control block

A-2

UDI Core Specification - Version 1.01 - 2/2/01
Section 9: Appendices

Glossary

destructive diagnostic requestan operation that may have effects external to the driver to which the

request was directed.

exception operationis an alternate type of completion operation that indicates an abnormal or exception

external mapper

handle

initiator

IMC

condition occurred when processing or preparing to process the request. The
responder must complete an initiator’'s request via an exception operation rather
than a completion operation when the metalanguage provides such a facility. These
types of operations are typically provided to separate the response handling from
the normal datapath handling to improve performance.

an OS-specific software module having a native OS interface on one side and a
UDI interface on the other. This module provides the interface between the native
operating system and the “top-most” or “bottom-most” UDI driver. Since it
straddles the UDI boundary, it must be viewed as two halves: half in and half out of
the UDI environment. The half that is within the UDI environment must obey all
rules for UDI drivers (e.g., non-blocking calls only), whereas the other half is not
so restricted and may do whatever it must to satisfy the embedding system.

seeopaque handle

the UDI module that initiates a channel operation request. The other end of the
channel is known as thresponder or provider.

inter-module communication. The set of system services providing the complete
data path for implementing channel operations between drivers, including all
translations through metalanguage libraries, environment agents and metalanguage
mappers. The process and path is totally transparent to both caller and callee

implicit synchronization UDI guarantees that only a single call to one channel operation or callback

will be activated at any one time for a given region. This causes each service
routine to be a critical section; safe in uniprocessor and multiprocessor systems.
The region instance inherently controls thread execution within a UDI driver, and
so the granularity of UDI synchronization is defined by the granularity of the
regions defined by the driver.

internal metalanguage a driver-defined metalanguage used to communicate between multiple regions

logical buffer

loose end

MA

in a multi-region driver instance. Some drivers may choose to use the Internal
Management Metalanguage as an internal metalanguage.

seebuffer.

a channel end that has not yet been anchored. Channel handles for loose ends may
be transferred between regions, but those for anchored channels may not.

seeManagement Agent

Management Agentthe agent or set of cooperating agents within the environment that is responsible for

managing drivers, including creating driver instances and binding them together to
reflect the system configuration topology, including the device tree.

management channethe channel between the Management Agent and the primary region of a driver

mapper

instance, used for management operations.

a UDI software-only driver that maps one metalanguage to another, for example a
Fibre Channel to SCSI mapper. A mapper is 100% UDI code, unlilkxtemal
mapper Also known as amternal mapper

UDI Core Specification - Version 1.01 - 2/2/01 A-3
Section 9: Appendices

Glossary

marshalling

MEI

metalanguage

module

see parameter marshalling.

Metalanguage-to-Environment Interface. Defines the interfaces needed to
implement portable metalanguage libraries. See Chaptém2mduction to MEI”.

the communication protocol used by two or more cooperating modules. A
metalanguage includes interface definitions for associated channel operations,
control block structures, and service calls, as well as bindings to the use of UDI
trace events and the definition of various types of UDI instance attributes. E.g., the
SCSI Metalanguage is used for communication between SCSI peripheral drivers
and SCSI HBA drivers; and the USBDI Metalanguage is used for communication
between USB peripheral drivers and the USBD driver layer. When refering to a
metalanguage used by a particular type of driver the adjectives "top-side" and
"bottom-side" are sometimes applied: e.g., the SCSI Metalanguage is the top-side
metalanguage for SCSI HBA drivers; the USBDI Metalanguage is the bottom-side
metalanguage for USB peripheral drivers.

A set of ISO C routines that completely define some I/O-related functionality. The
term is also used more specifically to refer to one of possibly several independently
loadable parts of a UDI driver.

non-transferable handlea handle that is not transferable. The environment is only guaranteed to

opaque handle

operation

understand such a handle (i.e. map it to the correct object) when used from the
region for which it was originally allocated.

an opaque reference to an environment object that must not be directly referenced
by drivers. Drivers must only act on such objects by passing their handles to
environment service calls. Handles provide a domain-independent, protected
reference to an object. UDI handles are all region-local handles; i.e., they are only
useable in the context of the caller’'s region and may require translation if
transferred to another region (seensferable handleandnontransferable

handle). See also the definitions for specific types of handles: leuffer handle
channel handle andconstraints handle

Seechannel operation

parameter marshalling taking parameters of a channel operation and saving them in a storage area,

such as in @&ontrol block When performed within the same address domain, this
merely involves copying information, but when performed in a domain-crossing
operation, the parameters may need to be converted to a portable, storage-format-
independent format; for example, ASN.1 or XDR.

parent driver instance of a pair of communicating driver instances, the one whose position in the device

primary region

provider

tree is closer to the root of the tree. For example, a SCSI host bus adapter is usually
the child of a SCSI disk. The parent driver instance is typicallysémeerin this
relationship.

the region created by the Management Agent (MA) when it creates a driver
instance. Drivers may create additional regions for a given driver instance, but this
one comes for free. Only primary regions have management channels, to interact
with the MA.

is a type ofresponder and refers to a UDI module that provides a service to a
client.

A-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 9: Appendices

Glossary

recoverablle operationis a channel operation request that is automatically returned to the initiator if the
responder is unloaded czgion killed while holding the request. The recoverable
operation is returned, along with its associated resources, to the initiator by the UDI
environment via thexception operationfor that request with an appropriate status
indication.

region a UDI-internal data structure containing a synchronization queue to hold incoming
channel operations and callbacks when they are delayed because a non-reentrant
portion of the driver code is busy or operating at a lower priority. A region may be
associated with, and hold (queue) channel operations for, one or more channels.
The driver-writer specifies the grouping of channels to regions when channels are
anchored. Region structures are not directly visible to UDI drivers.

region attribute a driver region classification based on the general type of usage of a region and
associated operational parameters. For example, there might be normal, interrupt,
and low-priority regions. These properties (provided by the driver writer) are used
by the platform to determine OS-dependent parameters like priority and capability
privileges. These values may also be mapped to OS parameters configured by the
system operator. The OS parameters that are indirectly determined by the region
attribute are attached to the region at run-time and affect its handling by the UDI
environment.

region Kill is an operation performed by the UDI environment on a UDI driver instance when
that driver instance must be removed from the environment. This is typically an
abrupt operation caused by the UDI driver performing an illegal service call or
channel operation. When this occurs, aagoverable operatiors that the killed
region held will be returned to their initiator regions by the UDI environment.

responder the UDI module that receives and operates on requests received fliaitizdor
via a channel operation. A responder is typically passive in that it responds to
requests but does not typically initiate requests.

scratch space a block of driver-private space associated with a control block.

semi-opaque objecta data structure that is shared between drivers and the environment but may contain
environment-private data that is hidden from drivers. The UDI documents specify
the “visible” fields a driver may access. The environment may store additional data
before or after the visible fields. éontrol blockis an example of a semi-opaque
object.

service call a call to the environment to perform a particular service. UDI has two types of
service calls: synchronous and asynchronous.

synchronous service calln environment service call that is complete upon return from the function call
to the environment service and does not block.

system abort an action causing a drastic, and immediate, termination of the OS and normally
stalling or rebooting of the host CPU(s). No UDI device driver is allowed to
directly (and intentionally) generate a system abort.

target channel a channel handle used as the destination of a channel operation. The operation is
sent to the other end of the target channel. The target channel is passed to the
channel operation via thehannel member of the control block.

UDI Core Specification - Version 1.01 - 2/2/01 A-5
Section 9: Appendices

Glossary

timeout distortion the exact delay of a timeout is delimited only by the requested “floor” value

provided by the original timeout call. Thus, a callback routine is subject to both the
system event timing resolution of 10 mS (typical), the processing time for higher-
priority actions preceding the timeout servicing, and the minimum delay requested.

transferable handle a handle that can be passed from one region to another, and subsequently be used

by the other region to access the object (via environment service calls).
Transferable handles in UDI must only be transferred via strictly-typed channel
operation parameters, so the environment has a chance to translate the handle as
appropriate for the destination region. Handles must not be passed between regions
without environment intervention, since the bit pattern representing a handle for a
particular object may vary from region to region.

URI Universal Resource ldentifier. Identifies a specific resource in a universal fashion.
See www.w3c.org for more details on URI's and associated concepts.

visible fields those members of the C structure representing the driver-visible part of a semi-
opaque object.

A-6 UDI Core Specification - Version 1.01 - 2/2/01

Section 9: Appendices

proj ecy

“UDI
Index

o

A

abortable 16-7

abortable operation A-1
Abstract Types 9-6

abstract types 9-1

anchored channel A-1
asynchronous service call A-1

asynchronous service calls 11-1, 11-4

attributes 15-1

B
bind channel A-1
bind process A-1
binding A-1
Bindings
for Instance Attributes 25-2
for Trace Events 25-4
for Transfer Constraints 25-2
buffer 9-13, A-1
buffer handle A-1
Buffer Recovery 13-13
buffer tag A-1
bus bindings 8-1

C
callback 4-4, A-1
callee side 4-4
caller side 4-4
channel A-2
channel endpoint 4-2
definition 4-2
ops vector 4-2
channel context 16-1, A-2
channel event indication 16-1
channel handle A-2
channel operation A-2

channel operation entry point 4-4
channel operation invocation 4-4
channel operations 4-4, 11-4
channel operations vector A-2
channels 16-1

child driver instance A-2

client A-2

common terms 3-1

common trace event 17-2
communications channel A-2
completion operation A-2

control block 9-13, A-2

control block groups 5-3

control block index 9-6

custom metalanguages 23-1

D

destructive diagnostic request A-3

device instance
definition 4-1
Directed Enumeration 24-15
directive terms 3-1
driver endianness 8-2
driver entry points 4-4
driver execution
per-instance 4-2
driver instance
definition 4-1
per-instance state 4-1
driver instance attributes 15-1
driver modules
definition 4-1
module property 4-1
primary module 4-1
secondary modules 4-1
driver-specific trace event 17-2

UDI Core Specification - Version 1.01 - 2/2/01

X-1

Index

E

enumeration 6-3
enumeration attributes 6-3
Enumeration, Directed 24-15
exception operation A-3
external mapper A-3

F

Filter Attributes 25-3
fundamental data types 33-1
Fundamental Types 9-1

G
generic pointers 9-2

H
handle A-3

I

IMC A-3

implicit synchronization A-3
initiator 16-9, A-3

instance 4-1
instance-independence 4-2
internal bind channel 10-8
internal bind channels 24-3
internal metalanguage A-3
interrupt region 4-3

ISO C 9-2

L

line terminator 30-3

list head element 21-2
location-independence 4-2
logical buffer A-3

loose end A-3

loose ends 9-10

M
MA A-3
macros

implementation-dependent 33-1

definition 33-3
Management Agent 24-1, A-3

management channel A-3

mapper A-3

marshalling A-4

MEI A-4

metalanguage 4-2, 8-1, A-4
metalanguage index 9-7

metalanguage library 30-2
metalanguage-selectable trace event 17-2
metalanguage-specific trace events 17-2
module A-4

modules 30-1

movable memory 5-2

N

non-transferable handle A-4
NULL 9-2

null handle 9-8

O

opaque handle A-4
opague handles 9-8
Opaque Types 9-8
opaque types 9-1
operation A-4

ops index 9-7

orphan drivers 24-2, 30-14

P

parameter marshalling A-4
parent driver instance A-4
placeholder 9-3

posting 24-2

primary region A-4
property declaration 30-4
provider A-4

proxy 23-1

R
recoverable operation A-5
region 16-1, A-5
context 4-2
definition 4-1
multi-region driver 4-2
primary region 4-2

X-2 UDI Core Specification - Version 1.01 - 2/2/01

Index

secondary regions 4-2
single-region driver 4-2
sub-instance 4-1
region attribute A-5
region data 5-5
region data area 10-6, 10-7
region index 9-7
region kill A-5
region-global 5-1
responder 16-9, A-5

S
scratch pointer 5-3
scratch space 5-3, A-5
semi-opaque object A-5
semi-opaque types 9-1, 9-13
service call A-5
service calls 4-4
Specifications
binary-level 33-1
source-level 33-1, 33-2
Specific-Length Types 9-4
specific-length types 9-1
standard metalanguages 23-1
static driver properties 30-1
static properties 6-1, 17-6
structures
fixed binary representation 9-14
hardware-defined 9-14
synchronous service call A-5
synchronous service calls 11-1
system abort A-5

T
target channel A-5
timeout distortion A-6
token 30-3

Trace events 17-2
transferable handle A-6

U
UDI environment
implementations
portability 1-1

statically conformant 1-2

UDI package file 31-2

udi_init_info 6-1

UDI_TREVENT IO_COMPLETED 25-4

UDI_TREVENT _I0_SCHEDULED 25-4

UDI_TREVENT_META_SPECIFIC_1
25-4

UDI_TREVENT_META _SPECIFIC_2
25-4

UDI_TREVENT_META _SPECIFIC_3
25-4

UDI_TREVENT_META_SPECIFIC_4
25-4

UDI_TREVENT_META _SPECIFIC_5
25-4

UDI_VERSION 8-1

udibuild 6-2

udimkpkg 6-2, 30-2

udiprops.txt 6-1, 30-2

udisetup 6-2

URI A-6

utility functions 4-4

\Y
visible fields A-6

w
whitespace 30-3

UDI Core Specification - Version 1.01 - 2/2/01 X-3

Index

X-4

UDI Core Specification - Version 1.01 - 2/2/01

	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	List of Reference Pages by Chapter
	Section 4: Core Utility Functions
	Introduction to Utility Functions
	19.1 Overview

	String/Memory Utility Functions
	20.1 Overview
	20.2 General String/Memory Functions
	NAME udi_strlen
	NAME udi_strcat, udi_strncat
	NAME udi_strcmp, udi_strncmp, udi_memcmp
	NAME udi_strcpy, udi_strncpy, udi_memcpy, udi_memmove
	NAME udi_strncpy_rtrim
	NAME udi_strchr, udi_strrchr, udi_memchr
	NAME udi_memset
	NAME udi_strtou32
	20.3 String Formatting Functions
	NAME udi_snprintf
	NAME udi_vsnprintf

	Queue Management Utility Functions
	21.1 Overview
	21.2 Queue Management
	Figure 21�1

	NAME udi_queue_t
	NAME udi_enqueue
	NAME udi_dequeue
	NAME UDI_QUEUE_INIT, UDI_QUEUE_EMPTY
	NAME UDI_ENQUEUE_XXX, UDI_QUEUE_INSERT_XXX
	NAME UDI_DEQUEUE_XXX, UDI_QUEUE_REMOVE
	NAME UDI_FIRST/ LAST/ NEXT/ PREV_ELEMENT
	NAME UDI_QUEUE_FOREACH
	NAME UDI_BASE_STRUCT

	Endianness Management Utility Functions
	22.1 Overview
	22.2 Endianness Management
	NAME UDI_BFMASK, UDI_BFGET, UDI_BFSET
	NAME UDI_MBGET, UDI_MBGET_2/3/4
	NAME UDI_MBSET, UDI_MBSET_2/3/4
	NAME UDI_ENDIAN_SWAP_16/32
	NAME udi_endian_swap
	NAME UDI_ENDIAN_SWAP_ARRAY

	Section 5: Core Metalanguages
	Introduction to UDI Metalanguages
	23.1 Overview
	23.2 Standard Metalanguage Functions and Parameters
	23.3 Channel Operation Suffixes
	Table 23�1 Channel Operation Categories

	23.4 General Rules for Handling Channel Operations

	Management Metalanguage
	24.1 Overview
	24.2 Management Agent
	24.3 Management Metalanguage Considerations
	24.4 Initialization
	NAME udi_mgmt_ops_t
	NAME udi_mgmt_cb_t
	NAME udi_usage_cb_t
	NAME udi_usage_ind
	NAME udi_usage_res
	24.5 Enumeration Operations
	NAME udi_filter_element_t
	NAME udi_enumerate_cb_t
	NAME udi_enumerate_req
	NAME udi_enumerate_ack
	Table 24�1 enumeration_result value usage

	24.6 Device Management Operations
	NAME udi_devmgmt_req
	NAME udi_devmgmt_ack
	NAME udi_final_cleanup_req
	NAME udi_final_cleanup_ack
	24.7 Metalanguage-Specific Trace Events
	24.8 Management Metalanguage States
	Figure 24�1 Management Metalanguage State Diagrams
	Table 24�2 Management Metalanguage Events
	Table 24�3 Management Metalanguage: Valid Operations by State

	Generic I/O Metalanguage
	25.1 Overview
	25.2 Metalanguage Bindings
	Table�25�1 GIO Enumeration Attributes
	Table 25�2 GIO Enumeration Attribute Ranking

	25.3 Metalanguage State Diagram
	Figure 25�1 GIO Metalanguage State Diagram
	Table 25�3 GIO Metalanguage Events

	25.4 Channel Ops Vectors
	NAME udi_gio_provider_ops_t
	NAME udi_gio_client_ops_t
	25.5 Binding and Unbinding Operations
	NAME udi_gio_bind_cb_t
	NAME udi_gio_bind_req
	NAME udi_gio_bind_ack
	NAME udi_gio_unbind_req
	NAME udi_gio_unbind_ack
	25.6 Data Transfer and Control Operations
	NAME udi_gio_xfer_cb_t
	NAME udi_gio_op_t
	NAME udi_gio_rw_params_t
	NAME udi_gio_xfer_req
	NAME udi_gio_xfer_ack
	NAME udi_gio_xfer_nak
	25.7 Event Handling Operations
	NAME udi_gio_event_cb_t
	NAME udi_gio_event_ind
	NAME udi_gio_event_res

	Diagnostics Support
	26.1 Diagnostics State
	NAME udi_gio_op_t (Diagnostics)
	NAME udi_gio_diag_params_t

	Section 6: MEI Services
	Introduction to MEI
	27.1 Overview
	27.2 Requirements on Metalanguage Specifications

	Metalanguage-to-Environment Interface
	28.1 Overview
	28.2 Initialization Structures
	NAME udi_meta_info
	NAME udi_mei_ops_vec_template_t
	NAME udi_mei_op_template_t
	NAME udi_mei_direct_stub_t
	NAME udi_mei_backend_stub_t
	NAME udi_mei_enumeration_rank_func_t
	28.3 Marshalling
	28.4 MEI Stubs
	NAME UDI_MEI_STUBS
	NAME udi_mei_call
	NAME udi_mei_driver_error
	28.5 MEI Stub Implementation

	Section 7: Packaging and Distribution
	Introduction to Packaging and Distribution
	29.1 Introduction

	Static Driver Properties
	30.1 Overview
	30.2 Basic Syntax
	30.3 Property Declaration Syntax
	30.4 Common Property Declarations
	30.5 Property Declarations for Libraries
	30.6 Property Declarations for Drivers
	Table 30�1 Enumeration Attribute Value Encoding
	Table 30�2 UDI_ATTR_STRING Escape Sequences
	Table 30�3 Region Attributes
	Table 30�4 Custom Parameter Scope

	30.7 Build-Only Properties
	Table 30�5 Compile Options

	30.8 Sample Static Driver Properties File

	Packaging & Distribution Format
	31.1 Overview
	31.2 Packaging Format
	31.3 Archive Format
	31.4 Distribution Format

	Build & Packaging Utility Programs
	32.1 Overview
	32.2 The udibuild Utility
	32.3 The udimkpkg Utility
	32.4 The udisetup Utility

	Section 8: ABI Bindings
	Introduction to ABI Bindings
	33.1 Introduction
	33.2 Processor Architecture
	33.3 Runtime Architecture
	33.4 Binary Bindings to the Source-Level Specifications
	Table 33�1 UDI Data Types whose sizes need to be defined by the ABI

	33.5 Building the Driver Object

	Section 9: Appendices
	Glossary
	Index

