Uniform Driver Interface

UDI Core Specification
Version 1.01

Volume |
(Chapters 1-18)

http://www.project-UDI.org/specs.html

|

“\U DI "
UDI Core Specification

Abstract

The UDI Core Specification defines the core set of interfaces and semantics that are available to all
UDI drivers and that are required to be provided in all UDI environment implementations. This
book also defines the fundamental UDI architecture and interface requirements, and is the
normative specification upon which all other UDI specifications depend. Additional UDI
specification books are or will be defined as outlined in Chapter 2Document Organization’, as
optional extensions to this specification.

UDI drivers and libraries must be written to conform to this specification, and can assume that all
services described herein are available.

The intended audience for this book includes UDI driver writers, environment implementors, and
metalanguage implementors, as well as developers of additional UDI definitions such as bus
bindings and ABI bindings.

The UDI Core Specification is divided into two volumes for ease of handling. Volume | contains
Chapters 1-19. Volume Il contains Chapters 20-34 and the Appendices.

Status of This Document

This document has been reviewed by Project UDI Members and other interested parties and has
been endorsed as a Final Specification. It is a stable document and may be used as reference
material or cited as a normative reference from another document. This version of the
specification is intended to be ready for use in product design and implementation. Every attempt
has been made to ensure a consistent and implementable specification. Implementations should
ensure compliance with this version.

UDI Core Specification - Version 1.01 - 2/2/01 i

Preface

Copyright Notice

Copyright © 1999-2001 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard
Company; International Business Machines Corporation; Interphase Corporation; Lockheed
Martin Corporation; The Santa Cruz Operation, Inc; Sun Microsystems (“copyright holders”). All
Rights Reserved.

This document and other documents on the Project UDI webwsiter.project-UDI.org) are

provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the followingAlrn_ copies of the document, or portions

thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn't exist, a Project
UDI copyright notice of the form shown above.

3. If it exists the STATUS of the Project UDI document.

When space permits, inclusion of the full text of tRI®TICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

ii UDI Core Specification - Version 1.01 - 2/2/01

http://www.project-UDI.org

Preface

Acknowledgements

The authors would like to thank everyone who reviewed working drafts of the specification and
submitted suggestions and corrections.

The authors would especially like to thank their significant others for putting up with the many hours of
overtime put into the development of this specification over long periods.

Thanks to the following folks who contributed significant amounts of time, ideas, or authoring in
support of the development of this specification or in working on the prototype implementations which
helped us validate the specification:

Richard Arndt (IBM) Man Fai Lau (SCO)

Bob Barned (Lockheed Martin) John Lee (Sun)

Mark Bradley (Adaptec) Robert Lipe (SCO)

Darren Busing (Adaptec) Mike Lyons (IBM)

Steve Bytnar (STG) Alex Malone (DEC)

Thomas Clark (Sun) Lynne McCue (IBM)

Deven Corzine Bill Nicholls

Jack Craig (SCO) Guru Pangal (Starcom)

Betty Dall (HP) Mark Parenti (DEC)

Tim Damron (IBM) James Partridge (IBM)
Burkhard Daniel (STG) Scott Popp (SCO)

Don Dugger (Intel) Hiremane Radhakrishna (Intel)
Mark Evenson (HP) John Ronciak (Intel)

Barry Feild (SCO) Kevin Quick (Interphase)
Scott Feldman (Intel) Larry Robinson (Adaptec)
Mike Firman (STG) Andrew Schweig (STG)

Kurt Gollhardt (SCO) Sam Shteingart (HP)

Bob Goudreau (Data General) Ajmer Singh (SCO)

James Hall (SCO/Sun) James Smart (Compaq)

Jim Heidbrink (Lockheed Martin) Pete Smoot (HP)

Chris Herzog (STG) David Stoft (HP)

Chris llnicki (HP) Rob Tarte (Pacific Codeworks)
Bret Indrelee (SBS Technologies) Wolfgang Thaler (Sun)

David Kahn (Sun) Ramaswamy Tummala (Starcom)
Matt Kaufmann (SCO) Linda Wang (Sun)

Andrew Knutsen (SCO) Kevin Van Maren (Unisys)
Ahuva Kroizer (Intel) Mike Wenzel (HP)

Countless people have helped in one way or another and any omissions or errors on our part in the list
above are just that: omissions or errors on our part.

Thanks to Kevin Quick and the folks at Interphase for hosting the Interoperability events which have
provided a great venue for validating both prototype and production UDI products.

Finally, thanks to David Roberts (Certek Software Designs) for designing the Project UDI logo.

UDI Core Specification - Version 1.01 - 2/2/01 ili

Preface

UDI Core Specification - Version 1.01 - 2/2/01

proj ecy

“{UDJ

Table of Contents

o

Volume |

ADSITACT ... e i
(@707 0) V¢ o |1 A\ (o] 1[0l P i
ACKNOWIEAQEMENTS....ceeiie e e e e e e aes ii
Table Of CONIENLS. ... e aaas v
List of Reference Pages by Chapter........coooviiiiiii i XV
Alphabetical List of SymbOIS........ccooiiiiiiiii XXI

Section 1: Overview

1 Introductory Materialoieiiiiiiiiiie e 1-1
I R [01 1o Yo [0 o 1o] T 1-1
o o] o1 PP 1-1
1.3 NOrmMatiVe REFEIENCESovniii e e e e e e 1-1
A O 0T {01 1 4= o [1-2

1.4.1 Environment CONfOrMANCEoivvviiiiiiieiiee e 1-2
1.4.2 Device Driver CoNfOrMAaNCEcoouniiieiii e 1-3

2 Document Organizationcceuueeiieiiiiiiiineee et 2-1
2.1 Overview of UDI DOCUMENTALIONcovvniiiiiiii e 2-1
2.2 Overview of the UDI Core SPecCifiCatioNccouviieieeiiiiiiiiiiiiiiiiiiieeeee 2-2

2.2.1 Core Specification SECHONSuuuuiiiiiiiieie e 2-2
2.2.2 Core SpecCifiCation TOPICSuuuuriiriiiiiiiiiieiaee s 2-2

I I =Y 11 011 o] (oo Y 3-1
G 70 A 1 1o Yo [T3 1 o T 3-1
G T B 1< i 011 (o 3-1

T R B 11 (=Tox (A V=T =T T 3-1
3.2.2 COMIMON TEIMS it e e e e e e e e e et s e e e e st e eaneens 3-2

UDI Core Specification - Version 1.01 - 2/2/01 v

Table of Contents

Section 2: Architecture

4 EXECULION MOEL.......oooiiiiiiiiiiiie e 4-1
g R 1 11 o T [o 1 o o 1R 4-1
4.2 Driver ODJeCt MOUUIESuiiiiii i 4-1
G T B 1Y gl [15 = Vg o =T SRR 4-1
N <o [0] 0 I S PP PP P PR PPN 4-1

4.4.1 Driver Partitioningccooiooeieoei e 4-2
45 MUlti-MOAUIE DIIVEIS ..o a e e e e e 4-2
I O o -1 | =] 4-2
4.7 Driver Execution ENVIFONMENLSccciiiiiiiiiiiiiieiiiieeeee e e e e e 4-2

4.7.1 NoON-BlocKing MOAElcoeeiiiiiiiiiiiiii e 4-3
4.8 Function Call ClasSifiCatioNScccooueiiiiiiiiiiieere e 4-4

4.8.1 SErIVICE CallSuiiiiiiiiiiiiiiiiiiieie e 4-4

4.8.1.1 Synchronous Service Callscccociiiiiiiiiiii s 4-5
4.8.1.2 Asynchronous Service CallSccccuiiiiiiiiiiiiiiii, 4-5

4.8.2 Channel OPEerationNSuuuuiiiiiiiiieeee e eeeeeee et s e e e e e e e e aaaeeeeeaannan 4-5
4.9 Location INdePENdENCEccooiiiiiiiiiiiit et 4-6
4.10 Driver FAUIS/RECOVEIYuuiiiiiiiiiiiiee ettt e e e e e e 4-6

4.10.1 Overview of Region-Killcoovriiiiiiiiiiii e 4-6

4.10.2 Improper Channel Operation USAQEeeeeeeiiiiiiieeieiiniiiiiiiiiiineeeee 4-7
4.11 Metalanguage MOUEIeeiiiiiiiiiiiee e 4-7

4.11.1 Metalanguage ROIESuuueiiiiiiiiii e 4-7

4.11.1.1 Management Metalanguage ROIEScccooviiiiiiiiiiiiiiiiiiiie 4-8

5 Data MOEL.....ccooiiiiii 5-1
o0 R © 1V = V11 PSPPSR 5-1
5.2 DAta ODJECLS ...eeeiiiiiiiiiiiiiee et 5-2

5.21 Memory ODJECIS ...cccoiiiiieeeeeee et 5-2

5211 Using Memory Pointers with Asynchronous Service Calls 5-2
5.2.2 CONIOI BIOCKS ... 5-3
5.2.2.1 SCratCh SPACEcceiiiiiiie e 5-3
5.2.2.2 1] T[S B - U 5-3
5.2.2.3 Control BIOCK GrOUPScccoiiiiiiiiiiiiiiiiiiii ettt 5-3
5.2.2.4 Control Block Synchronizationccccovviiiiiiiiciiieeeeeeeeeee 5-4
5.2.2.5 Control BlIock RECYCIINGcooiiiiiiiiiiiiiiiee e 5-4
5.2.2.6 Control Block Pointer INvarianceccccceeeeeeeeeeiiiveeeiiiiiinennn 5-4

5.2.3 REQION DAtAccoeiiiiiieeeee it e e e 5-5
5.3 Channel CONEXL ...cccoeii e e e e e e e e e e e e eeeeas 5-5
5.4 Transferable ODJECIScccooiiiiiiiiii e 5-5
5.5 Implicit MP SyNchronizationccccceooiiiiiiieee i 5-5

Vi UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

6 Configuration MOAEloouuuiiiiiii e 6-1
B.1 OVEBIVIEW .ttt e e e e e e e e e e e e e s sttt ettt et e e e e e e e e eeeeeeaaaaannnnnnerbrenees 6-1
6.2 Static CONfIGQUIALIONcooiiiiiiiiiiii e 6-1

6.2.1 StatiC Driver PrOPEITIESooiiiiiiiieiiiiii et e e 6-1
6.2.2 INitialization SITUCIUIEScooeeiiiiii i 6-1
6.2.3 BUIlAING UDI DIIVEIS ...coiiiiiiiiiiiieeei ettt 6-2
6.2.4 UDI PACKAGINGuuiiiiiiiiiiiiiiiiiee ettt e e 6-2
6.2.5 UDI Package Installationccoooiiiiiiiiiiiiiicicee e 6-2
6.3 DynamiC CONfIQUIALIONooiiiiiiiiiiiiiiiiiiie e 6-3
6.3.1 DEVICE TIEE ...oeeeiiiiiiiiie ettt e e e e e e e e e e e e e e e 6-3
6.3.2 Driver INSTantiationceoeiiiiiiiiiiiii e 6-3
6.3.3 Device Node Enumeration and Attributesccccoiiiiiiiiiiiiiiiiee, 6-3
6.3.4 Driver Inter-Instance BiNdINGeuueiiiiiiiiiiiiieaaeaeeeiieeeeeeeee 6-3

7 Calling Sequence and Naming ConventionsS.........ccccccveevveviiiieeeceevnnnnn. 7-1
4% R © Y oV = P 7-1
7.2 Channel OPEeratiONScccoiiiiiiiiiieeee e e e e e e e e e aaeaaees 7-2

7.2.1 Channel Operation INVOCALIONSccoeiiiiiiiiiiiiiiiiiiiiieeee e 7-2
7.2.2 Channel Operation Entry POINtScoooiiiiiiiiiiiiiiieeeeeeee e 7-2
7.3 Asynchronous Service CallSoooovviiiiiiiiiiiiee e 7-4
7.3.1 Asynchronous Service Call INVOCAtIONSccceeviiieiiiiiiiiiiiiiiiiiieee, 7-4
7.3.2 Associated Callback FUNCLIONSoeiiiiiiiiiiiiiiiiie 7-4
7.3.3 Control Block Type CONVEISIONcuuuiiiiiiiiiieieeeeeeeeeeeeee e 7-5
7.4 Channel Operations VECIOISccooiiiiiiiiiiiiiiiiiiiti et e e e 7-6
7.5 CONtrol BIOCK GIOUPSutiiiiiiiiiiiiieeee ittt e e 7-6

Section 3: Core Services

8 General ReQUINEMENTS......coiiiiiiii ettt e eaaa 8-1
S TNt R V= €1 o] o1 o P PPPPUPPRR 8-1
8.2 HeEAUEr FIlES ..o 8-1
8.3 C Language ReQUIFEMENEScccoceeeiiiiiiiiieeeiies s e e e e e e 8-2
8.4 ENndianness REQUIFEMENLScoovviiiiiiiiiiiiii e e e e e e ee e e e et e e e e e e e e aaaeeees 8-2

9 Fundamental TYPEScoovuuiiiiiiieece e 9-1
S R N O 1 =T V1= P UPPPPUPPPRPRRR 9-1
9.2 Usage of Standard ISO C Data Types and Macrosceeeeeeeeeeieeeeeannnnnnns 9-2

9.2.1 ISO CCNAI TYPE wereeiiieiiiiiiiiee ettt e e e e e e e e e e e e e e e e annees 9-2

S 2 1510 @ Vo] (o B Y/ o 1= TP EPP 9-2
9.2.2.1 NUITPOINTEIS it e e e e e e e e e e e eeeeeeeeenne 9-2

9.2.3 ISO Gsizeof andoffsetof operatorsccccccvvvveiiiiiiiiiiieeeeeeeee, 9-3

UDI Core Specification - Version 1.01 - 2/2/01 Vi

Table of Contents

0.2.4 VArargs TYPES .eeeeiiiiiiiiiei ettt e e e 9-3
9.3 Notation for Implementation-Dependent Types and Constants 9-3
9.4 SPeECIfiC-LeNGtN TYPES ..oiii it 9-4
0.5 ADSITACT TYPES it a e e e 9-6
0.5, SHZE TY P ittt e e e e e e e e e e e e 9-6
0.5.2 INAEX TYPE orriiiiiii i ettt e e e e e e e e e et aaaaas 9-6
9.5.2.1 Control BIoCK INAEeXccoeeiiiiieee e 9-6
9.5.2.2 Metalanguage INUEXccuuuuiiiiiiiiiiiieieee e 9-7
9.5.2.3 OPS INUEX .oevviiiiiiiii i 9-7
9.5.2.4 RegION INUEX .ooiiiiiiiiieit e 9-7
0.6 OPAQUE TYPES ittt ettt e e e e et e e 9-8
9.6.1 Opaque HaNdIESoooriiiieic e 9-8
9.6.2 Self-Contained OPagUE TYPESeeeiiiiiiiiiiiiieeeeeee s 9-13
9.6.2.1 TIMESIAMP TYPE ittt 9-13
9.7 SEeMI-OPAGUE TYPES ..oeeeeeieerruiiiiiaseaaaeeeaaeeeeeeeeeteeeearaasaa e e aaaaaaaaaeereeernrnn 9-13
9.7.1 CONMrOl BIOCKS ...t e e 9-13
9.7.1.1 BUI IS e 9-13
9.8 Structures Requiring a Fixed Binary Representationcccoevvevvvvvvvnnnnne 9-14
9.9 CommMON DENVEA TYPES ..oeveiieiieiiiieeee ettt e e e e e e e 9-15
9.9.1 UDI SEALUS ..ccoiiiiiieieee ettt ettt e e e et e e e e e e e e e e nnnees 9-15
9.9.1.1 CommON StatuS COUEScevriiiiiiiiiieieieeiieieireee e 9-18
9.9.2 Data Layout SPECITIErcoii i 9-21
9.10 Implementation-Dependent MACIOScccccuuiiiiiiiiiiiiiiieee e 9-27
10 INIHANZALION ...uueiiiiiee e 10-1
L1O.1 OVEBIVIEW .ttt ettt e e e e e e e e e eeeeeaeeeeeensnnennnnns 10-1
10.1.1 Per-Driver INitIaliZationcccoiiiiiiiiiiiiiceeeceeee e 10-1
10.1.2 Per-Instance INItIaliZationcccoooiiiiiiiiiiiii e 10-1
10.1.3 Per-Region INitializationcccccuiiiiiiiiiiie e 10-1
10.2 Per-Driver Initialization SIrUCIUIeccooveiiiiiiiiiiiiiiieeeee e 10-2
10.3 Initial Region Data StrUCLUIESeeeiiiiiiiiiiiiieeee e 10-16
11 Control Block Managementc.uuiiiiiiiiiiiiiee e 11-1
I3 R O 1Y = V1 R URRURPRT 11-1
11.2 Control Block Service Calls and MacrOSoouvvuviiiiiiiiineeeeeeeeeeeeeeeeeinnenns 11-2
12 Memory ManagemMeNnt........oovuu i e 12-1
12,1 OVEBIVIEW ..ottt et e aaaa e e e e e e e e eeeeeeaeeeeeeennnennnnns 12-1
12.2 Memory Management Service Callsoooovvviviiiiiiiiiiii e, 12-2
13 Buffer Managementcooeuuiiiiiiiiiiin et 13-1
13,1 OVEIVIEW ooiiiiiieeeeei ettt e e e e e e e e e e e e e e e ettt e e e e e e e e aaaeaeaaeeeeenanns 13-1

viii UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

13.2 BUI B TY P it 13-2
13.3 Transfer CONSIIAINTSoeuuuiiiiiiiiiiiaas e e e e e e et e e e e e e e e e e e e aeeeeeeanneees 13-4
13.4 Buffer Management MAcCIOScceiiiieieeeeiiiieeeeeeiiiiiis e e s e e e e e e e eeeeeeeeannnnns 13-7
13.5 Buffer Management Service CallSccccciiiiiiiiiiiiiiieee e 13-12
13.5.1 Buffer Usage MOAEISooiiiiiiiiiiiiiiiiii e 13-12
13.5.2 Buffer Recovery Mechanismccccccceiiiiiiiiiiiccceee e, 13-13
13.6 BUfEr PAthSeeeiiiieeeeeec e 13-21
13.6.1 Buffer Path MUItpIEXINGuvviiiiiiiiiiiiii e 13-21
IR R U (=T g =T 13-26
13.7.1 Buffer Tag Cat@QOrIEScciiiiiieieiiiiiiaaiieiiie et e e e e 13-26
13.7.2 Buffer Tag ULIITIESoeeiiiiiiiiiieiiee e 13-35
14 Time ManNagemEeNtuii i i e e et e e e e e e eraa e e e e e 14-1
I R T 4 1= Y= Y o] L PSP 14-2
14.1.1 TiMed DEIAYSccooiiieeieeeeeee et e e e e e e e e e e aaaaaaes 14-2
I I 10 0 T=T G O]] (=)« S 14-2
14.2 TIMESIAMP SEIVICES ...oooiiiiiiiiiiiii ittt ettt e e e e e e e e e e 14-7
15 Instance Attribute Management............coouueiieeiieiiiii e 15-1
15,1 OVEIVIEW ..ottt s e e e e e e e e e e e e e e e e e e et e aa e e e e e e e e eeeeeeaeeeeeensnnnnnnnns 15-1
15.2 Instance ALrbUe NAMESuuiiiiiiiiiiiiiiiieee e 15-1
15.3 Persistence of AUMDULESccoooiiii i 15-1
15.4 Classes Of AtHDULIESuuiiiiiiie e 15-2
15.4.1 Instance-Private AUINDULESoovviiiiiiiiiiiii e 15-2
15.4.2 Enumeration AttrDULEScooiiiiiiiieeee e 15-2
15.4.2.1 Generic Enumeration AttribUteScccoevviiiieeeiiiiiiieei e 15-2
15.4.2.1.1 identifier attributecccoiiiiiiiiiiie e 15-3
15.4.2.1.2 address_locator attributeoooeviiiiiiiiiiiiies 15-3
15.4.2.1.3 physical_locator attributecccceeeeiiiiiiiiiiiiie 15-3
15.4.2.1.4 physical_label attributecccoooiiiiiiiicc e 15-3
15.4.2.1.5 Generic Enumeration Attribute Exampleccccccceeeeen. 15-3
15.4.3 Sibling Group ALDULESuuiiiiiiiiiiiiiee e 154
15.4.4 Parent-Visible AtriDULES ... 15-5
15.4.5 Attribute ClasSifiCatioNeeiiiiiiiiieeee e 15-5
15.5 Instance AHrDULE SEIVICESuuuiiiiiiiiiii e 15-6
16 Inter-Module CommUNICALIONccovviiiiiiie e e 16-1
L16.1 OVEIVIEW ..ottt e e e e e e e e e e e e e e e e e e et taasss e e e e e e e e e eeeeeeeeeeeeesnnennnnns 16-1
16.2 SEIVICE CallS ...uiiiiiiiiiiiiiiiiiiee ettt e e e e e e e e e e e 16-1
16.3 Channel Event Indication OPerationcccccceeiieeeaiiininiiniiiiiveeeeeee 16-9

UDI Core Specification - Version 1.01 - 2/2/01 iX

Table of Contents

17 Tracing and LOQQINGcccuuuuiieiiiiiiiiie et eeeiie e eeeeatan e eeeeenee 17-1
L17.1 OVEIVIEW ...eiiiiiiieeeeiite ettt e e et e e e ek e e e e s s e e e e e e e anbneeeas 17-1
17.2 Tracing and Logging Service Calls ..o 17-1

17.2.1 Tracing CallScooeiiiiiiiiiiiii e 17-1
17.2.2 Logging CallSuuiiiiei i 17-1
17.2.3 Trace EVENE TYPES ..ot 17-2

18 DebUQQING SEIVICESoiiiiiiiiiiii et eeeeaenes 18-1
L18.1 OVEIVIEW ittt e e e et e e bbb e e ettt e e e e e eeeaeeeanaaann 18-1
18.2 Debugging Service CallS ... 18-2

Volume ll

Section 4: Core Utility Functions

19 Introduction to Utility FUNCLONS..........ccoiiiiiiiiiii e 19-1
191 OVEIVIEW oiiiiiiieieee ettt e e e e e e e e e e e e e e e et e e e e e e e e e aaaeaeaeeeseenaans 19-1
20 String/Memory Utility FUNCLIONS.........cooviiiiiiiiiiccc e 20-1
20,1 OVEIVIEW ..eieiiieiiiiiie ettt et e e e e e e e e e e e e e e s s s bbbttt e e e e e e eaeeeeeas 20-1
20.2 General String/Memory FUNCLIONSooooiiiiiiiiiiiiieie e 20-1
20.3 String Formatting FUNCLIONScccooiiiiiiiiiieeeeeeee e 20-10
21 Queue Management Utility FUNCLIONSccoovviiiiiiiiiiii e, 21-1
21,1 OVEIVIEW ittt et e e e e e e e e e e e e e e e s s s bbbt e e e e e e e aaeaeeas 21-1
21.2 QUEUE MANAGEMENTiiii ittt e e e e e e e e e e e e eaaaaees 21-2
21.2.1 Queue Element StrUCIUIEoooiiiiiiiiiiiiiiiee e 21-2
21.2.2 QUEUING FUNCLIONSccoiiiiiieeeee e e e e e e e e e 21-4
21.2.3 QUEUING MACIOScceeeiiiiiiieeeiiit e e e e e e e e e e e e s e e e e e e e aaeeeeees 21-7
22 Endianness Management Utility FUNCHIONScc.coiviiiiiiiiiiieeeennn, 22-1
22. 1 OVEIVIEW ..ottt ettt e e e e e e e e e e e e e e s s sttt e e e e e e e e aeeaeeas 22-1
22.2 ENdianness ManagemENToueiiiiiiiaiiiiieieiii e e e e e 22-2
22.2.1 Rules for C Structure DefinitioNSeeeeiiiiiiiiiiieeiiiiiiiiiiieeee, 22-2
22.2.1.1 Byte-by-byte structure layoutccccceeieiiiiiiiieeeeeeeceeees 22-2
22.2.2 HEIPEI MACIOSooiiiiiiiieeeeee ettt 22-4
22.2.2.1 Bit-field MACIOSuuuiiiiiiiiiiiiiieiee e 22-4
22.2.3 Endian-Swapping ULIlILIEScoovviiiiiiiiiiie e 22-11

X UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

Section 5: Core Metalanguages

23 Introduction to UDI Metalanguagesccccovvvvviiiieeeeviiiiieeeeeiineeee, 23-1
P2 TR R O VT YT S 23-1
23.2 Standard Metalanguage Functions and Parametersccccceeeeeeeiviiiiennnnnns 23-1
23.3 Channel Operation SUfIXESccooiiiiiiiiiiii e 23-2
23.4 General Rules for Handling Channel Operationsccccccviiiiieeieieiiineeenn. 23-3
23.4.1 Normal Operation Handlingccoovviiiiiiiiiiiiiiii e 23-3
23.4.2 Operations That Are Not Understoodcccccooviimiiiiieniiiiiiieeec e 23-3
23.4.3 Operations That Are NOt SUPPOIEAeureimiieiiiiiiiiiiieeeeeaaeees 23-3
23.4.4 Operations Received In An Invalid Stateccccceeeiiieiiiiieieiiiieeeeeeen, 23-3
23.4.5 Operations With Mistaken 1dentitycccccooerieeriiiininiiiiiieeee 23-4
23.4.6 Extended Channel Error Handlingooooiiiiiiiiiiiiiieeeeeeeeee 23-4
24 Management Metalanguage...........ccovuvviieiiiiiiiiin e 24-1
2 R O VT YT S 24-1
24.2 ManagemMEeNT AQENT ...uuiiiii e 24-1
24.2.1 Driver INStantiationccooeeeiiiiiieeeeeeeiir e 24-2
24.3 Management Metalanguage Considerationsccccccoeeriiiiiiiiiiiiiiinnnnennne 24-5
p [o1 F= 1172 U1 o] o PP PP PP 24-6
24.4.1 Tracing Control OPErationSccccuuuviiiiiiiiiiiiiiieeea e 24-6
24.4.2 Resource ManagemeNntcouviiiiuiiiiiiiiieee e 24-6
24.5 ENnumeration OPEratiONSuueuiieiiiiieeeeeeeieeieeeeeiiesrisss s s e e e e eeeaaaeeaeeeennnn 24-13
24.5.1 Enumeration AtribDULESooiiii e 24-13
24.5.2 Child ID oo 24-13
24.5.3 ENUMEration FiltersS ... 24-13
24.5.4 PArentID ... 24-14
24.5.5 Dynamic Enumeration (HOt PIUQ)cuuvmmiiimiiiiiiiiiiiiieeeeeee 24-14
24.5.6 UNENUMETALIONuiiiiiiiiiiiiiiiieiee e e s e e e e e e e e e e e e e e e e e neanns 24-15
24.5.7 Directed ENUMEIAtIONoovuuuiiiiiiiiiaeeee e e e e e e 24-15
24.6 Device Management OPEratioNSeeeeeeiiiiiieeeaaaainiaiaaeiiiereeeeeeeeees 24-27
24.6.1 Prepare TO SUSPENAcoooviiiiiiiiiiieee e e e e e e e 24-27
24.6.2 SUSPENA ..ottt e e e e e e e e e e e 24-28
24.6.3 SRULHOWN ..t a e e e 24-28
24.6.4 Parent SUSPENAEMccoooiiiiiiiieeeeeee e 24-29
24.6.5 RESUIME ..ottt e e e e et e e e e e e b e e e e e eneaans 24-29
24.6.6 ADrUpt UNDINGoooiiiiiiiiiiii e 24-29
24.7 Metalanguage-Specific Trace EVENLSovvvvviiiiiiiiiiieeeiieeeeeee 24-36
24.8 Management Metalanguage Statesccccuuviiiiiiiiiiiiieiieee e 24-37
24.8.1 Management Metalanguage Statesccccooeieiiiiiiiiiiiiiiiiieee 24-39
24.8.1.1 Operational SUb-Statesoiiiiiiiiiiiiii e 24-39

UDI Core Specification - Version 1.01 - 2/2/01 Xi

Table of Contents

25 Generic I/O Metalanguageccuuuiiiiiiiiiiiiieee e 25-1
25. 1 OVEIVIEW ..ottt e e e e e e e e e e e e e e s e sttt e e e e e e e eeaeeeas 25-1
25.1.1 VEISIONING eeeeiiiiiiiiiiieae ettt e e e e e e e e e e e e e e e e e e e 25-2
25.1.2 ROIES o a e e e e e e 25-2
25.2 Metalanguage BindINGScccoooiiiiiiiicccceeeeer e 25-2
25.2.1 Bindings for Static Driver Propertiesccccoooviiiiiiiiiiiiiiiiiieeeeeeeeeeen 25-2
25.2.2 Bindings for Instance ANbULESccooiiiiiiiiiiiieeeeeeeee e 25-2
25.2.2.1 Enumeration AtINDULEScoooiiiiiiiiiiiiiiiieeeeeee e 25-3
25.2.2.2 Filter AUMNDULESoooiiiiiii e 25-3
25.2.2.3 Generic Enumeration Attributes ... 25-3
25.2.3 Enumeration Attribute Rankingccccooviiieiiiiiiiiieecs e 25-4
25.2.4 Bindings for Trace EVENLS ... 25-4
25.3 Metalanguage State DIiagramcceeceiiiioeeioiiiiie e 25-5
25.3.1 GIO Metalanguage StateSceevvviiiiiiiiiiiiiiieeeeeee e 25-5
25.4 Channel OPS VECIOIScoiiiiiiiiiiiiiieii ettt 25-7
25.5 Binding and Unbinding Operations ... 25-10
25.6 Data Transfer and Control Operationsccccvvvvviviiiiiiiiiiiee e, 25-16
25.7 Event Handling OPerationsccccuuuuiiiiiiiiiiiiiieieee e 25-24
26 DIagNOSHICS SUPPOIT ..cvueiiiieieiiie ettt e e e 26-1
26.1 DiagNOSLICS SEALEuuiiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e s 26-1

Section 6: MEI Services

27 Introduction t0 MEL..........oooiiiiiiiiiiiiii e 27-1
27. 1 OVEIVIEW ..ottt ettt e e e e e e e e e e e e e e s s s bbb ettt e e e e e e e e eaeaeeas 27-1
27.2 Requirements on Metalanguage Specificationscccccvvvviiviiiiciciieee e, 27-2

27.2.1 General Requirements & CONVENLIONSuuviiiiiiiiiiiiiiiiaeaaeeeaaeaaannns 27-2
27.2.2 Bindings to the Core Specificationcccccooviiiiiiiiiiiciciieee e 27-2
27.2.2.1 Bindings for Static Driver Propertiescccccceeeeeiiieiiieeeiiiiinnnnnn, 27-2
27.2.2.2 Bindings for Instance AttribUtesccccooiiiiiiiii 27-2
27.2.2.3 Bindings for Custom Parameterscccceeeeeiieiieeeeeeeeeeeeeeeiiiinnns 27-3
27.2.2.4 Bindings for Trace EVENLSouvvvviiiiiiiiieieeeeeeeeeeeee 27-3
27.2.2.5 ADOMADIE OPS ...oiiiiiiiiiiiiiie e 27-3
27.2.2.6 Recoverable OPSccccooeeiiieiiieeeeeee e 27-3
27.2.3 Operation Ordering ReqUIreMENtScccoeeeeeeeiiiiiiiiiiier e 27-3
27.2.4 StAte DIAQIaMoooiiiiiiiiiiie e 27-4

28 Metalanguage-to-Environment Interfacecccccoeeeveiiiiiiiniieeeenn, 28-1

p2 S TR R O VT T 28-1
P T N R V=T €3 o1 T ISR 28-1

Xii UDI Core Specification - Version 1.01 - 2/2/01

Table of Contents

28.2 INItIAliZAtION SITUCTUIESceiiiiiiiiiieiee e 28-2
28.3 MarsShallingcoeiiiiiiiiiiiiiie e 28-12
28.4 MEI STUDS ... 28-13
28.5 MEI Stub Implementation ... 28-19

Section 7: Packaging and Distribution

29 Introduction to Packaging and Distributioncccccceeevveevevnnnnnn. 29-1
P24 0 A [o1 o o [Fox 1 o] o PP PPPPPPPPTUPPR 29-1
30 StatiC Driver Properties..........uuii i 30-1
0.1 OVEIVIEW ..eeiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e s s s bbbttt ettt e e e aaeaeeaeaeaassasaannnnssneeeeeees 30-1
30.1.1 UDI MOUUIES ..ottt ettt s et e e e e e e 30-1
30.2 BASIC SYNTAX ettiiiiiiiiieieeiiii ittt e e e e e e e e e e e e a e e e e s 30-3
30.3 Property Declaration SYNTAXeceeiiiiiiieeeeeeieeeeeeieiiviins s e e e e e e e eaaeeeees 30-4
30.4 Common Property Declarationsooovviiiiiiiiiiiiiei e 30-5
30.5 Property Declarations for LiDrariesccccouiiiiiiiiiiiiieeeeeeeee e 30-10
30.6 Property Declarations for DIVEIScccoiiiiieeeiiiiieeeeeeees e 30-13
30.7 BUIild-Only Propertiesccccoiiiiiieiiiieeeeeeeeeie s 30-23
30.8 Sample Static Driver Properties File ... 30-25
31 Packaging & Distribution Format.............cccovviiiiiiiiiiiiii e, 31-1
31 00 R O YT = S 31-1
31.2 Packaging FOrMaALtcooooiiiiiiiice e e e e e e e e 31-1
31.2.1 DIreCtory StIUCIUIEcovviieiiiiiiiiiieee e e e e e ee et a e e e e e e e e eees 31-1
31 G T N o o AV o 1 - S 31-2
31.4 Distribution FOIMALccooiiiiiiiiiiiiiiieecieeee et e e e e 31-3
31.4.1 Floppy Storage FOrMALceeiiiiiiiieeeiiieieieeeeies e e e e e e e e e e eeeeeaeeenes 31-3
31.4.2 CD-ROM Storage FOrmatcooooiiiiimimiiiiiii e 31-3
32 Build & Packaging Utility Programsccoeuiiiiiiiiiiiiieeeeeeeeeee 32-1
N R @ Y =SSP 32-1
32.2 The udibuild ULIlILYoovvrieeiiiieieee e e e e e e e e e eeeaeeenns 32-1
32.3 The udimKpKg ULIIILYcooeeieieeeeeeeeeeeeeeeeee e 32-1
32.4 The udiSetup ULIILYoeeiiiiiiiiee e 32-2

UDI Core Specification - Version 1.01 - 2/2/01 Xiii

Table of Contents

Section 8: ABI Bindings

33 Introduction to ABI BindiNgScccuviiiiiiiiiiiiii e 33-1

G 700 R | 01 1o Yo [1 [£ T o IR 33-1

33.2 Processor ArChItECIUIEccoveiiiiiiiiiiii ettt e e 33-1

33.3 RUNME ArChItECIUIE ... 33-2

33.4 Binary Bindings to the Source-Level Specificationsccccccccceeieieeeennn. 33-2
33.4.1 Sizes of UDI Data TYPES ..ccoevviiiiiieeeeeeiiiie e 33-2
33.4.2 Implementation-Dependent MacCroSeeeeeeeeiiiiiiiiiieniaaaaaaeiieens 33-3
33.4.3 UDI Functions implemented as MaCrOSccccuuuriiimiriiiieeeieeaeeaaaaaaannns 33-4
33.4.4 Miscellaneous Binary BindingScccooiiiiiiiiiiiiiiiiiiiee e 33-4

33.5 Building the Driver ODJECTcooiii e 33-4
33.5.1 ODbject File FOrMALccooiiiiiiieei e 33-4
33.5.2 Static Driver Properties Encapsulationcccccceeeviiiiiiiiiiiiiiiiicieeeen, 33-4

Section 9: Appendices

Xiv UDI Core Specification - Version 1.01 - 2/2/01

proj ecy

L ;U D E -y

List of Reference Pages by Chapter

Volume |

Chapter 9 Fundamental Types

udi_channel t ----------------- UDI inter-module communications handle........... 9-10
udi_buf path t--------mmmmmo--- Buffer path routing handle.............cccccceeiviiiiinnnnn. 9-11
udi_origin t -----------mmmmaa- Request origination handle...............ccocivvveeinennnns 9-12
udi_status t ------------------- UDI status Code.........coooeeiiiiiiieiieee e 9-16
udi_layout t --------comeeaa o Data layout SpecCifier.........coovvviiiiiiiiiiiiiiieieeee e 9-22
UDI_HANDLE_ IS NULL ---------- Determine whether a handle value is null............ 9-28
UDI HANDLE ID ---------mmn--- Get identification value for specified handle......... 9-29
UDI. VA ARG ------------------ Varargs macro for UDI data types..........ccccuvveeennn. 9-30

Chapter 10 Initialization

udi_init_info == --------ccm-- Module initialization structure.....................coeeeeenn. 10-3
udi_primary_init_ t -------------- Primary region initialization structure.................... 10-5
udi_secondary_init t ------------ Secondary region initialization structure............... 10-7
udi_ops_init t -----------aao o Ops vector initialization structure............c.cevvveeee.. 10-9
udi_cb init t --------me o Control block initialization structure..................... 10-11
udi_cb select t ---------------- Control block selections for incoming channel diis14
udi_geb_init t ----------aaa oo Generic control block initialization properties....10-15
udi_init_context t -------------- Initial context for new regions.............cooeeeeeeeiennns 10-17
udi_limits_ t - -------c-eeaao o Platform-specific allocation and access limits....10-18
udi_chan_context t ------------- Initial context for bind channels............................ 10-20
udi_child_chan_context t -------- Initial channel context for child-bind channels...10-21

Chapter 11 Control Block Management

udi cb t - --- e Generic, least-common-denominator control blo@i -3
udi_cb alloc ------------------ Allocate a new control blocK............ccccvvvieninenn 11-5
udi_cb_alloc_dynamic ----------- Allocate a control block with variable inline layout1-7
udi_cb_alloc_batch ------------- Allocate a batch of control blocks with buffers.....11-8
udi_cbh free ------------------- Deallocates a previously obtained control block11-10
UDIL.GCB ----------------om- - Convert any control block to generic udi_cb..£..11-11
UDI_MCB ----------mmmmmmm oo - Convert a generic control block to a specific ong1-12
udi_cancel -------------------- Cancel a pending asynchronous service.call.....11-13

Chapter 12 Memory Management
udi_mem_alloc ---------------- Allocate memory for a virtually-contiguous objeci2-3

UDI Core Specification - Version 1.01 - 2/2/01 XV

List of Reference Pages by Chapter

udi_mem_free - ---------------- Free amemory Object...........cccccveeiiiiiiiiie s 12-5

Chapter 13 Buffer Management

udi buf t ----mm s Logical buffer type.........ccccoviiiiieiiiiieiiieee e 13-3
udi_xfer_constraints t - ---------- Transfer constraints structure................................. 13-5
UDI BUF_ALLOC --------------- Allocate and initialize a new buffer........................ 13-8
UDI_BUF_INSERT ---------mm--- Insert bytes into a logical buffer..............ccccccoee 13-9
UDI_BUF _DELETE -------------- Delete bytes from a logical buffer....................... 13-10
UDI BUF DUP ------mmemeee e o - Copy a logical buffer in its entirety..............c........ 13-11
udi_buf copy ------------------ Copy data from one logical buffer to another.....13-14
udi_buf write - - - - - - - - - - oo oo Write data bytes into a logical buffer................... 13-17
udi_buf read ------------------ Read data bytes from a logical buffer................. 13-19
udi_buf free ---------coo-- Free a logical buffer....................... 13-20
udi_buf _best path ------------- Select best path(s) for a data buffer.................... 13-23
udi_buf _path_alloc ------------- Buffer path handle allocation................ccccoecnnnnnes 13-24
udi_buf_path_free -------------- Buffer path handle deallocation...................ccc...... 13-25
udi_tagtype t------------------ Buffer tag type......cooo oo 13-27
udi_buf tag t------------------ Buffer tag StrUCtUre........cooeeevvieeiiiiiiie e, 13-31
udi_buf tag set ---------------- Sets a tag for a portion of buffer data.................. 13-33
udi_buf tag get---------------- Gets one or more tags from a buffer................... 13-34
udi_buf tag_compute ----------- Compute values from tagged buffer data........... 13-36
udi_buf tag_apply -------------- Apply modifications to tagged buffer data.......... 13-37

Chapter 14 Time Management

udi_time_t ------------oo - Time value StrUCtULE..........ccuueeeieiiiiiiiiiiiiiiiieeeeeeeeeee 14-3
udi_timer_start ---------------- Start a callback timer............cooo i 14-4
udi_timer_start_repeating -------- Start a repeating timer........cccccvvvvieviiieiiiiiieeieeeeeeee 14-5
udi_timer_cancel --------------- Cancel a pending timer..........cccccooeeieee e, 14-6
udi_time_current - - - - - - - - - - - - - - - Return indication of the current relative time........ 14-8
udi_time_between - - ------------ Return time interval between two points............... 14-9
udi_time_since ---------------- Return time interval since a starting paint.......... 14-10

Chapter 15 Instance Attribute Management

udi_instance_attr_type t --------- Instance attribute data-type type..........ccceeeeeeeeeenn. 15-7
udi_instance_attr get ----------- Read an attribute value for a driver instance....... 15-8
udi_instance_attr set ----------- Set a driver instance attribute value.................... 15-10
UDI_INSTANCE_ATTR_DELETE - - - - Driver instance attribute delete macra................ 15-12
udi_instance_attr_list_ t---------- Enumeration instance attribute list..................... 15-13
UDI_ATTR32_SET/GET/INIT ------- Instance attribute encoding/decoding utilities....15-14

Chapter 16 Inter-Module Communication

udi_channel_anchor ------------ Anchor a channel to the current region................. 16-2
udi_channel_spawn - ------------ Spawn a new channel...........cccocviiieeeniiiiniiiieeeeen, 16-4
udi_channel_set_context - - - - - - - - - Attach a new context to a channel endpaint........ 16-6
udi_channel_op_abort - ---------- Abort a previously issued channel operatian....... 16-7
udi_channel close -------------- Close a channel............ccccccviiviiiiiiiiiiiiiieeeee e, 16-8
udi_channel_event cb t --------- Channel event control block............................. 16-10
udi_channel_event_ind ---------- Channel event notification (env-to-driver,)........... 16-13

XVi UDI Core Specification - Version 1.01 - 2/2/01

List of Reference Pages by Chapter

udi_channel_event_complete - - - - - - Complete a channel event (driver-to-env).......... 16-14

Chapter 17 Tracing and Logging

udi_trevent t ---------ooooooo- Trace event type definition...........cccccovviiiiiieeennnnnns 17-3
udi_trace_write - --------------- Record trace data..................coooe e, 17-6
udi_log_write - ----------mmmaan- Record 10g data..........cccvveeiiieeiiiiiiieiieee e 17-7

Chapter 18 Debugging Services

udi_assert -------------------- Perform driver internal consistency check........... 18-3
udi_debug_break - - - ------------ Request a debug breakpoint at the current locatibé+4
udi_debug_printf --------------- Output a debugging message..........coooevveeeeeeeenennnns 18-5

Volumelll

Chapter 20 String/Memory Utility Functions

udi_strlen - ---------------- - Determine string length.............cooiie 20-2
udi_strcat, udi_strncat - ---------- String concatenation..............oooeee e 20-3
udi_strcmp, udi_strncmp,

udi_memecmp --------------- String/memory CompariSon...........cceeeeeeeeieeceeeeieennns 20-4
udi_strcpy, udi_strncpy,

udi_memcpy, udi_memmove --- String/Memory COPY........cceveeieieeeeeeeeiieieeeeeeeeeee e 20-5
udi_strncpy_rtrim - ------------- Copy char array to string, removing trailing spac28-6
udi_strchr, udi_strrchr,

udi_memchr - - - ------------- String/memory searching..........ccoooeceeeieeinieneinninnns 20-7
udi_memset ------------------- Memory initialization.............cccccoeiiiiiiiiiie e, 20-8
udi_strtou32 - - - ------------ - Convert string to unsigned 32-bit value................ 20-9
udi_snprintf - -----------oo---o Format printable String........cccccccvvveeiiiee 20-11
udi_vsnprintf - ----------oooo--- Format printable string with varargs.................... 20-14

Chapter 21 Queue Management Utility Functions

udi_queue t ------------------ Queue element StruCtUre..........cooevvveieeiieiieeeeeeeee, 21-3
udi_enqueue ------------------ Insert a queue element into a quele..................... 21-5
udi_dequeue ------------------ Dequeue a queue element.........ccoccvvvvveeeeeeesininnee 21-6
UDI_QUEUE_INIT,

UDI_QUEUE_EMPTY --------- Initialize queue; check if it's empty.......c.ccoeevvnneen. 21-8
UDI_ENQUEUE_XXX,

UDI_QUEUE_INSERT XXX ----- Insert an element into a qUEUE...............coeeeeeeeenn. 21-9
UDI_DEQUEUE_XXX,

UDI_QUEUE_REMOVE -------- Remove an element from a queue...................... 21-11
UDI_FIRST/ LAST/

NEXT/ PREV_ELEMENT ------- Get first/last/next/previous element in queue.....21-12
UDI_QUEUE_FOREACH ---------- Safe mechanism to walk a queue.............c...u...... 21-13
UDI_BASE STRUCT ------------ Find base of structure from pointer to member.21-14

UDI Core Specification - Version 1.01 - 2/2/01 XVii

List of Reference Pages by Chapter

Chapter 22 Endianness Management Utility Functions

UDI_BFMASK,

UDI_BFGET, UDI_BFSET ------ Bit-field helper macros...............ccocceeeiee e, 22-5
UDI_MBGET, UDI_MBGET_2/3/4 - - - Multi-byte extract helper macros..............ccccccuvvnnns 22-8
UDI_MBSET, UDI_MBSET_2/3/4 - - - - Multi-byte deposit helper macros............ccccccceeenee 22-9
UDI_ENDIAN_SWAP_16/32 ------- Byte-swap 16 or 32-bit integers..........oecvvveeeennn. 22-12
udi_endian_swap - - ------------- Byte-swap multiple data items...........ccccccceeeeiinnne 22-13
UDI_ENDIAN_SWAP_ARRAY ------ Byte-swap each element in an array................... 22-14

Chapter 24 Management Metalanguage

udi_mgmt_ ops_ t--------------- Management Meta channel ops vectar................. 24-7
udi mgmt cb t ---------------- Common Management Control Block................... 24-8
udi_usage cb t --------------- Resource indication and trace level control block4-9
udi_usage ind ----------------- Indicate desired resource usage and trace levets1-10
udi_static_usage --------------- Proxy for udi_usage_ind............ccoooeiiiiiiiiiiiiinninns 24-10
udi_usage res ----------------- Resource usage and trace level response operadici?
udi_filter_element_t ------------ Enumeration filter element structure................... 24-16
udi_enumerate_cb t ------------ Enumeration operation control block................... 24-18
udi_enumerate_req ------------- Request information regarding a child instance.24-21
udi_enumerate_no_children ------ Proxy for udi_enumerate_req........ccccceeeveveeeennnnn. 24-21
udi_enumerate_ack - ------------ Provide child instance information....................... 24-24
udi_devmgmt_req -------------- Device Management reqUest...........cccceeeeeeeeeeeennn. 24-30
udi_devmgmt_ack - ------------- Acknowledge a device management request....24-32
udi_final_cleanup_req ----------- Release final resources prior to instance unloa®4-34
udi_final_cleanup_ack ---------- Acknowledge completion of a final cleanup reqlés35

Chapter 25 Generic I/O Metalanguage

udi_gio_provider_ops_t ---------- Provider entry point 0ps VECtOr............cceeeeveeeeeeenns 25-8
udi_gio_client_ops_t ------------ Client entry point 0ps VeCtar..............evvvevevveeeeeeennen. 25-9
udi_gio bind cb t -------------- Control block for GIO binding operations........... 25-11
udi_gio_bind req --------------- Request a binding to a GIO provider................... 25-12
udi_gio_bind_ack -------------- Acknowledge a GIO binding..........ccccceeeeiieeienninnn, 25-13
udi_gio_unbind_req ------------- Request to unbind from a GIO provider.............. 25-14
udi_gio_unbind_ack ------------ Acknowledge a GIO unbind request.................... 25-15
udi_gio xfer cb t -------------- Control block for GIO transfer operations........... 25-17
udi_gio op_t ------------------ GIO operation type.........cooeveeeeeiiieeeeeee s 25-18
udi_gio_rw_params t ----------- Parameters for standard GIO read/write ops.....25-20
udi_gio xfer req --------------- Request a Generic I/O transfer..........ccoeeeivinnnnnns 25-21
udi_gio xfer ack --------------- Acknowledge a GIO transfer request.................. 25-22
udi_gio_xfer nak - -------------- Abnormal completion of a GIO transfer request25-23
udi_gio event cb t ------------- Control block for GIO event operations.............. 25-25
udi_gio_event_ind -------------- GIO event indication...........ccccceeveeeeeeeeeiiee, 25-26
udi_gio_event_ind_unused ------- Proxy for udi_gio_event_ind.........................oo. 25-26
udi_gio_event res -------------- GIO event reSPONSE.......ccoueuiiiiiiiiee et 25-27
udi_gio_event res_unused ------- Proxy for udi_gio_event_res...........cccccceeeeeeeeennnnn. 25-27

Chapter 26 Diagnostics Support
udi_gio_op_t (Diagnostics) ------- Diagnostics control operations...........ccccooovvvvvvenen. 26-3
udi_gio_diag_params_t ---------- Parameters for standard GIO diagnostic ops....... 26-5

Xviii UDI Core Specification - Version 1.01 - 2/2/01

List of Reference Pages by Chapter

Chapter 28 Metalanguage-to-Environment Interface

udi_meta_info ----------------- Metalanguage initialization structure..................... 28-3
udi_mei_ops_vec_template t - - - - - - Metalanguage ops vector template....................... 28-4
udi_mei_op_template_t ---------- Metalanguage channel op template.............c........ 28-6
udi_mei_direct_stub_t ----------- Metalanguage direct-call stub type..............cc........ 28-9
udi_mei_backend_stub_t - -------- Metalanguage back-end stub type.............ccc...... 28-10
udi_mei_enumeration_rank_func_t - Metalanguage library device enumeration ranki2@r11

UDI_MEI_STUBS --------------- Metalanguage stub generator macra.................. 28-14
udi_mei call - -------cemmoaaaon- Channel operation invocation................cc.c.evvvvneee. 28-16
udi_mei_driver_error ------------ Metalanguage violation by the driver.................. 28-18

UDI Core Specification - Version 1.01 - 2/2/01 XixX

List of Reference Pages by Chapter

XX

UDI Core Specification - Version 1.01 - 2/2/01

r

‘J'E‘IJ'\ U D !! [..'1IU

Alphabetical List of Symbols

I e 4. 9
LI L P 94.......
UDI_ANY _PARENT 1D .ttt ttteeeeeetee et e ee e et e s e e e e e e et e etee et eete e et e et e et eeteeeeteeeteeeeneenees 24-18
0o = E=11=1 o SRR 18-3
UDI_ATTR_ARRAYS ... teeeeete et e et et e et et e et e et e et e et e ettt et e et e et e et et e e e e et e e e e eeee e 15-7
UDI_ATTR_BOOLEAN ...t eetee et et e et eee et e et e et e et e et e et e et e et e et e ree e e et e et e et e neeeeeee e 15-7
UDI_ATTR_FILE et ettt et eee et ettt e e e ettt e et e et e et e et e et e et e et e et e et e et e et e neeeeeeenans 15-7
UDI_ATTR_NONE .ttt ettt et e et e ettt et e e et e et e et e et e et e e et e et e et e et e st e et e e e e e eens 15-7
UDI_ATTR_STRING .. evteteeeeee et e et e e e e et e st e et e st eete e et eeee e et e et e st e et e e et e et e st e eeneenneens 15-7
UDI_ATTR_UBIT32 .t eute et e eee et e et ettt e et e et e et e et e et e et e et e et e et e et e et e e e eereeneeens 15-7
UDI ATTREZ SET/GET/INIT ittt ittt et et r e s e e e r e e e e e s e e e aaaas 15-14
UDI_BASE._STRUCT +.etteteeeeeeetee et e e e et e et et e e et e et e et e et e et e et e e et e et e et e et e eeeeeeeenes 21-14
UDI_BFMASK,

UDI_BFGET, UDI B SET ittt ittt st e st et ae s e e s e e a s e e e a s e e e nn e anennanens 22-5
0o Yo o] (== 1N S PPTN 9-4
UDI_BUF_ALLOGC .ttt e ettt et e et e et e et e e e et e et e et e et e et e et e et e et e et e e e et e e e neneeens 13-8
0o [o0 o Y=Yy A L1 PP 13-23
0o T ete) oY AR 13-14
UDI_BUF _DELETE .ttt etteeeeeeetee et e ee e et et e et et e st e e et e et e et e st e et e e st e et e et e et e neeeeeee e 13-10
UDI_BUF_DUP .ttt ettt ettt e ettt e et et e et e et e et e et e et e et e et e et e et e e e eeeeenans 13-11
0o [LV =T T TP 13-20
UDI_BUF_INSERT e tutteetee et eeeee et e et e e e et e et e et e et e et e et e et e et e et e et e et e et e et eeeenere e e 13-9
0o I TN 1= L1 T [L PP 13-24
UDI_BUF_PATH_END ettt et e et et e et e et e et e et e et e st e et e e e et e e e e et e ree e e et e neneeaees 13-23
0o [T = L1 T (1= T U PSP 13-25
0o I 1V - L1 o T P 9-11
0o I 1 1= 1o AR 13-19
0o 1 1 S P 13-3
0o [L= Yo =Y o) o) P 13-37
0o [T = Yo T ele 0] o101 1= PR 13-36
0o I TN Yo TN =L SR PN 13-34
0o TN Yo TR=1=) PPN 13-33
0o I o1 o T S 13-31
0o I LU 1 (= 13-17
UDI_BUFTAG_ALL .evtetee et et et ee et e et et e ettt e et e e e et e et e et e et e et e e e e et e neeeeeee e 13-27
UDI_BUFTAG_BEL6_CHECKSUMeveeiteeeee et ettt e e et eee et ree et erneeeeerene s 13-27
UDI_BUFTAG _DRIVER L ittt e et e e et e e e e et e e e e e e e e e e e s e e eananeananens 13-27
UDI_BUFTAG _DRIVERZ ..ottt ittt et et s e et e e e e e s s e e e n s e e e aaeanenen 13-27
UDI_BUFTAG _DRIVERS ..ttt ettt e e e e e et s e e e e e a e e e e n s e e s aneanenens 13-27
UDI_BUFTAG _DRIVERZ ..ottt ettt ettt e et a e e e e s e e e aneanaaen 13-27
UDI_BUFTAG _DRIVERS ..ttt ettt et e et et e e e e s s e e e e s e e e e aaeanenn 13-27
UDI_BUFTAG_DRIVERG ..ttt et et et st se s st s e e s s sae s s e anea s s e e e s aneanannn 13-27

UDI Core Specification - Version 1.01 - 2/2/01 XXi

Alphabetical List of Symbols

UDI _BUFTAG DRIVE R 7 ittt ittt et ettt e e e ettt e e et a e ettt e et e an e st eaeeaneaneaanans 13-27
UDI_BUFTAG _DRIVERS ..ottt sttt ettt et e e et a e e et st et e et e e e aa e e e e aaeaanenns 13-27
UDI _BUFTAG _DRIVERS ittt ittt ettt ettt et e e e et a s e et e e e e eaeeaneaneaans 13-27
UDI_BUFTAG_IP_CKSUM_BAD ...cueetteeeete et e eeeeeeeeeeeee et e et e et e e et eeeeeneseeereeeeeaeneenes 13-27
UDI_BUFTAG_IP_CKSUM_GOOD ..veeuvtteeeeeeeeeeeeee et eeeeseee et eereeeee s e eeeeereeereeneeeeene s 13-27
UDI_BUFTAG_SET iBE16_CHECKSUM ...veeiueeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeee e e eeeereeenennen, 13-27
UDI_BUFTAG_SET_TCP_CHECKSUM ...evteeeeeeeeee st eee et et et e et e e e e neeeeeeee e e aeeeeene 13-27
UDI_BUFTAG_SET_UDP_CHECKSUMvteueeeeteeeeeeeeeee et eeee et eere e e e seeee e e seeeaneeeens 13-27
UD I BUF T AG ST ATUS ottt ittt ettt a ettt e e e et s e a e et et e e e e e aaneaneaaeaaneaneans 13-27
UDI_BUFTAG_TCP_CKSUM _BAD ..eeeeteeeeeeeeee et eeeeeeeeeeeee et eeseeee et eeeeseeseeeeneseneseennes 13-27
UDI_BUFTAG_TCP_CKSUM_GOOD ..veeuveeeeeeeeeeeeeeeeeeeeeeeeee et e et seeeaeeeeeeeeseeeseneeeans 13-27
UDI_BUFTAG_UDP_CKSUM_BAD eeetueeeteeeeeeteeeeeeeeeeese et eereeteeeneeeeeseeseeeeneseresnennes 13-27
UDI_BUFTAG_UDP_CKSUM_GOOD ...euvteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeaeeeeeeeesenesneeennes 13-27
UDI _BUFTAG _UP D AT ES ittt ittt ettt ettt e r et e e et e e a e e e s st e e nraeane e aananenes 13-27
UDI_BUFTAG _VALUES .ttt ettt ettt e et e e at e e e e e e e e e e e st e eeneaananenes 13-27
0o [2= 1T =) PP 11-13
0Te [< TR 1o o P 11-5
0o [o] =11 o Yol o Y=Y o] s HE PPN 11-8
0o [o] oY 1o Yol Y20 =Y 1 £ o P 11-7
0o [< TN { =1 PR 11-10
0o o] 11 A P 10-11
0T o] Y =T=) (ot P 10-14
0T [T« T S PPPTRPNY 11-3
0Te [et Y=Y T o1 1 (=% A PPN 10-20
0Te [l Y= 13T = =V ot oo RPN 16-2
UDI_CHANNEL_BOUND .ttt ree e tee st s st sea s sasse e s s e s e aa s s s e s aaeaneassaeaneananeanennnn 16-10
0Te [o] Y=Y T =] N o (oY== P 16-8
UDI_CHANNEL_CLOSED .. etteetee et e et e et e e et e et e et e e e et e et e et e nee e et e neeeeeeenee e, 16-10
Ui_CRANNEI_BVENT_CD T 1iitiiiiiii i e e e e et e e e e et e eb e et e s e ea e et e eneeaneeaaes 16-10
Udi_Channel_EVENnt_COMPIELE ..u.iiuiiiiiieiiieeiee et et et e et e e et e et e et e s e et e eaeenseaneesnaensaes 16-14
0o [l Y= 10 o U= I =Y<L LA Lo 16-13
0o [o1 Y= 12T 0= I o T o Yo « AP 16-7
UDI_CHANNEL_OP_ABORTED ...uetteetteteeeeeeeeee st e eee s eeeteeaeee e et e s e e e e st eeeeseneeeeenns 16-10
UDi_CNANNEL_SEE_CONEXE 1uivuiitietiiteiteetierteeteeate et eetesn et e etaessesaressetaesstesnsesneetiesneesnes 16-6
0Te [l Y= 10 Vo L= IR o 1= 1o 16-4
0o [o1 T=12 T =1 N P 9-10
0o [l a1 o ol g PV g J o 101 (= A AP 10-21
UDI _CORRELATE _MA SK ittt it s et ettt e e e e e e e s s e e e e aaeeneanannanennnns 9-16
UDI_CORRELATE _OF F SET ittt ittt et s et s e s st e e e e ae s e e e s s e e e neaeaneanennannans 9-16
0o [[=] o TU T T o1 1= SRS 18-4
0o [=] TU T TN o111 1« P 18-5
0o e =10 [=11 L= P 21-6
UDI_DEQUEUE_XXX,

UDI_QUEUE_REMOVE ...ttt et eeeee et e ettt e et e et e et e et e et e et e et e et e reeeeeenaee 21-11
0Te [[=AY 0T L1 L A 1o P 24-32
0Te [1=AY 0T T2 1 =T [P 24-30
UDI_DL_ARRAY . et etee et eeee et e et e e e et e et et e e et e et e et e et e et e et e et e et e e e et e r e e 9-22
UDI_DL_BOOLEAN_ T +eutteette et e etee st et et e e et e et e et e et e et e et e et e et e st e et e et e e et e neeeeeeenes 9-22
UDI_DL_BUF et ettt e et e e et e et et e et e et e et e et e et e et e et e et e et e et e et e et e e e e eneenee e, 9-22
UDI_ DL _CB ettt ettt et e eeee et e et e et et e et e et e et e et e et e et e et e et e et et e et et r et ree s 9-22
UDI_ DL CHANNEL. T teutteetee et et e sttt e e e et e et e et e et e et e et e et e et e et e et e et e e et e e e eeeee e 9-22

XXii UDI Core Specification - Version 1.01 - 2/2/01

Alphabetical List of Symbols

UDI_DL_END .ttt ette et et eee et e et et e et e et et et e eee et e e e et e et e ea e e et et e eteeee e e e e ee e et e et e e nneneeen, 9-22
UDI_DL_INDEX_T vttt et eeee et e et et et e et e e et e eee et et e et e ee e e e e et e eee et e e et e et eeneeeeereeeeeeeee e 9-22
UDI_DL_INLINE_DRIVER_TYPED ...ueeuteeteeteeeeeeeeeeeeeeeeeeeeeeeeeeee et eeneeeeeseeeseeeneeeneseneaneas 9-22
UDI_DL_INLINE_TYPED .t tuteeuteeeteeeeeeeeeesee et eeee et e eeeeeaeeeeeaee st e et et eeee st e et eeee e e enenres 9-22
UDI_DL_INLINE_UNTYPED .ttt tutetteeeee et e et e et eeeeeeee et e et e e et e eeeeeeeseee et e et e et aeeeseneereeene e 9-22
UDI_DL_MOVABLE_TYPED ..ttt euteeet et e et e et eeee et e et e et e e e see et e et eere e e eee e et eenesenesneene e 9-22
UDI_DL_MOVABLE _UNTYPED .ottt it ettt ettt et e e e st et e e e e s e e e e sanaaneaneans 9-22
UDI_DL_ORIGIN T vteetteee et et eeee et e et e e et e et et e et e et e et e seee et e ee e e e et e et e ese et e saeeeeeeeneeneaneas 9-22
UDI_ DL SBITLO_ T veeueetueeeueeeeeeeeeeeeeeteeeseeeeeeeeeeeeeteeese e teseee et eeeeeee et e et eeseeeesaeeeneeeneeneaneas 9-22
UD L DL SBITB2. T ettt tee et et e e et e et e e et e et et e et e et e et e see e et e ee e et e et e et e s e et e st e et eenenneaneas 9-22
UDI_DL_SBITS T tvtetteeeeeeeeeeeeeeeeee et e et e e st e eee et e et e et eeee e e e eeeeeeeeeee e e et e et eeneeeeereeeeeeeee e 9-22
UDI_ DL STATUS T ettt ettt et et et e et e ettt e et e et et e et ettt e e et et et e et e et e ee e et e et e ee e e e e neeeeeens 9-22
UDI_DL_UBITL6_ T veeueeeueeeueeeeeeeeeeee et e e eeeeeeeeeeeeteeeseeeeseee st eeeeeeeeeee et eeseseeeseeeereeeneeneeneas 9-22
UDI_DL_UBIT32_ T euvteette et e eeee et e et et e et e et et e et e et e et e et e et e et e et e et e et e e e eeneereenns 9-22
UDI_DL_UBIT8_ T euvettuteeetee et e eee et e e e et e e et eee e et e et e et e et e e et e et e et e et e et e e e e e e e e nereeens 9-22
UDI_DMGMT_NONTRANSPARENT .ttt ittt ittt s s sae e s e seaaea e easaaeaneneaananens 24-32
UDI_DMGMT_PARENT_SUSPENDED ...ttt ve s e senssennsneansnnsneensnnnnes 24-30
UDI_DMGMT_PREPARE_TO_SUSPENDuvteittteetteeeeeeee st eeeeseeeeeee st e eeeseeeeeeesennenns 24-30
UDI_DMGMT _RESUME ..t ettt et eeee e et e e et e et et e et e et e et e et e et e et e et e e e eeneenee e, 24-30
UDI_DMGMT_SHUTDOWN .. ttitiitiititeit et asesssassssaeassassasassassseassaeaneassaeassaneneassnnrnenes 24-30
UDI_DMGMT_STAT _ROUTING_CHANGE «...eveeeteeteeeeeeeeeeeeee e e eeeeee e e e seneesreeeeennens 24-32
UDI_DMGMT_SUSPEND «..evteeteeeeee ettt et e et e e e et e s e e et e et e e et e s e e et e seeeeeteeeeeeeteeseeeaneas 24-30
UDI_DMGMT _UNBIND 1ttt ieee et ae e e ae it s e s e et e s e s s e s e e s e e s e s ee e s e e e eneannanennns 24-30
0o TR =Y 0L [T VAL -« DS 22-13
UDI_ENDIAN_SWAP_16/32 +eeveeeueeeeee e et eeee e e e et e ete e ettt et e et e et e et e et e e et e et e e eeeeeeennes 22-12
UDI_ENDIAN_SWAP_ARRAY ..t eeteeete et e et e et e et e et e st e et e et e et e et e et e et e e e e eeeereenenes 22-14
0o IR =Y 06 6= U L= P 21-5
UDI_ENQUEUE_XXX,

UDI_QUEUE_INSERT XXX ettt teteetueeseeeeeeeeseeeeeeeseeeaetee st e et e seeeeeeeeneeeaeeeeseeeeeeeenne e, 21-9
UG ENUMEIALE _BCK vivuirniiterteiteiteettestieeteesaeeteetesns et setesseesnsssnsesaesnsssnsesasensesnsesnsennaes 24-24
0o [TR0 T=T = (=T o o R TP 24-18
UDI_ENUMERATE_DIRECTED .tiuiitiitiiiiii ettt et s e e s s e senasesnenaseansansenneneaneenanes 24-21
UDI_ENUMERATE _DONE ..ttt iitee st et st te et aae e s s s s e s s e e e s s e e e e aeanannaneananens 24-24
UDI_ENUMERATE_FAILED .ottt et r e st e e s e s e s e s e e san s e s e snnannenns 24-24
UDI ENUMER AT E LB AR i a et e s et e e e s n s e s aaesaneaneananneanens 24-24
UDI_ENUMERATE _NEW ittt s ae e e s e e s e se s e e e n s e s anesnsnneaneannns 24-21
UDI _ENUMER AT E N E X T ittt it ar e e e e e s e s s s e e s n e s n s e e anesansansannanneanens 24-21
udi_enumerate_NO_CHIlAIrBN ..u.iiuiiii i e e e e e e e e e b e er e enreanns 24-21
UDI _ ENUMERATE _OK ittt ittt et et st e et e e e s e et e s e e e e e a e e e e e n e e eneasaneanennannns 24-24
UDI_ENUMERATE _RELEASE ..ottt sttt et et et e e e e e a s e e e nananens 24-21
UDI_ENUMERATE_RELEASED ..ottt ettt ettt et st et s e e s e s e e aa e enennanens 24-24
UDI_ENUMERATE_REMOVED ...uiiiiiiiii ittt e st s e s e eena s e e s e s eane e aennenes 24-24
UDI_ENUMERATE_REMOVED _SELF ..uiiiiiiii i et ee e e e e e sennsnnanennans 24-24
UCI_ENUMEIALE FEO vevutrneererurrneeseesesuesneesnsesestassnsesnsstsssessnsssersaesnsssnsesasensesnsesnsennees 24-21
UDI_ENUMERATE _RESCAN .ttt ettt e ettt e e s e e e s e et e ar e e aaananenes 24-24
UD I ENUMERATE ST AR T ittt ettt ettt e sttt e e e e e a s e e nennaeananeanenes 24-21
UDI_ENUMERATE_START _RESCAN ..ttt iies ettt sena s e e s e sen s e aennans 24-21
0o [{11 =T A= L= 11 =T L P 24-16
0o [(g T I (=TT a LU o T Lo < 24-35
0o [(g = I (=TT a0 o T = PP 24-34

UDI_FIRST/ LAST/

UDI Core Specification - Version 1.01 - 2/2/01 xXiii

Alphabetical List of Symbols

NEXT/ PREV _ELEMENT ot e e et et et et et e e et e e e e e e e e e e e e e aeanans 21-12
8 o]I cTo3= TSRS 11-11
0o 1o Tod o TN 1 S TP 10-15
0o I o TN o] To = ot PPN 25-13
UDI_GIO_BIND_CB_NUM ...eeeteeeteeeeeeee et e et e eee et e et e e e e et et et e seee et e et e e eeeeseeeeneeeeeaens 25-11
0o [o TN o)1 To I « T S 25-11
0o I o TN o)1 To I =T PP 25-12
UDI_GIO_CLIENT_OPS_NUM «.vtevteeeeeeeeeeeeeeeeeee et e e et e et e e eee st e et e e et e et eene e e seeeeeene e 25-9
0o oo T [1=Y 0 Ao o T S PP 25-9
0o [(o T [= Yo I o T2 V- U2 - P 26-5
UDI_GIO_DIR_READ ... tete et et ettt e et e et et e e e et et e et e et e et et e et e et e et e e et e eeeeeneeeeeeeneeneas 25-18
UDI_GIO_DIR_WRITE .ttt eeeeeee et e eee et e et et et e et e e e et e et et et e et e et e e et e et e et eeeeeeeere e 25-18
UDI_GIO_EVENT_CB_NUM «..eeteetteete et eee et e et et e et et et e eeee et eeeeeeeeeaeeereeeeseeeeeeeneaeeeaees 25-25
OTe [o T =3 C= 1 o) o N TP 25-25
0o TR o T =17Z=1 1AL 11 I P 25-26
Udi_gI0_EVENE_INA_UNUSEO .uiieuiiiiiiiieit et eite et ietteeet e et e et e et esn et e et esnsetae et eensesneeteenaeenns 25-26
OTe I o =3 C= A L = TP 25-27
Udi_gI0_BVENT_TES_UNUSEA .uiivuiiriiitieitierneiteetestaeeteesneeteetesneetsetaesnsereetaeensesneetaeenaeenns 25-27
UDI_GIO_OP_CUSTOM .etteetee et e eee e e e e e et et e et e et e et e e e et e et e et e e e eeeeenee e, 25-18
UDI_GIO_OP_MAX .ttt et et et e e et e et e et e et e et e et e et e et et e et e et e et e eteeneeeeeee e 25-18
UDI_GIO_OP_READ ...t tteeeee et et e e et e e et et e et e et e et e et e et e et e et e et e et e et e e e neneas 25-18
0o [1o YN) NN S PP 25-18
Udi_gI0_OP_t (DIAGNOSHCS) tvuieuieuiirneereetieeneeserenteteettesnesneetasestesnrssnresassntesnseseetaesnaesnres 26-3
UDI_GIO_OP_WRITE .. utteteeeeeee et e et et e et e et e et e et e et e et e et e et e et e e et e et e et e et e eeeeeneenes 25-18
UDI_GIO_PROVIDER_OPS_ NUM ...ttt st et eee et e eee e et e et e et e seee e st e seee e et e eeeeeeeenenens 25-8
0o [Lo TN o1 {01V, [[=Y g o) o 1= TN PP 25-8
0o [(o T A A o= L= 122 - SRR 25-20
0o [Lo 013 o113 Te HE= T <P 25-15
0o [Lo Y010 o112 Te I =Y RPN 25-14
0o I [0 T 1= (= o <SPPSR 25-22
UDI_GIO_XFER_CB_NUM ...ttt et e et et eee et et e et e et e et e e e et e et e et e e e et e eaeeeee e e 25-17
0o [o T 1= S « T S PPN 25-17
0o I o T 1= S LT LS PSP 25-23
0o [Lo T (=LA =1 EE T 25-21
UDI_HANDLE_ID ettt et et e e e et e e e et e et e et et e ettt e te e et et e et e et e e e e e et e e e e e eneennens 9-29
UDI_HANDLE IS NULL .ttt ettt ettt et eee et e et et e ete e e e e e e st e e et e et e et e eseeetneseneeeteeeeneeneees 9-28
0o T T 1= G P 9-6
0o [T et e 01 =2« A S PP 10-17
0o 1T (o TR 10-3
UDI_INSTANCE_ATTR _DELETE ittt ittt e et ve et saesaea s saeansasseanansaneananeanennanes 15-12
0o [T £= T gL ==Y 11 o 1= A 15-8
0o [T 1=] o= T g Lot c= 4 g L1 S S PR 15-13
0o [1]t T a Lot Y L =] SRR 15-10
Ui _INSTANCE_ AL TYPE T ouiitiiitieit it eiteetieeteeteeane et eetesntstae et sesesasesnsetaesnsesnsesseriesneesnnes 15-7
0o I F= Yo 1V A 9-22
0o [T 0112 P 10-18
UDI_LOG_DISASTER «.evttteeteeeeeeeeeee e et e et e et e et e et eete e et e et e et e et e et e eete e et eeteeeeneeeeenaneas 17-7
UDI_LOG_ERROR ... eteeetee et e e et e e et e et e et e et e et e et e et e et e et e et e e e e e e et e nee e 17-7
UDI_LOG _INFORMATION 11ttt ettt eeatsaeeesesssassssseassaetaeastaeassasasassaeeeassaneneansnnrnes 17-7
UDI_LOG_WARNINGevteeeee et e et e e e e e et e et e et e et e et e et e et e et e et e et e et e et e e et e e e e e e nns 17-7
0o (o T T L L= PR 17-7

XXV UDI Core Specification - Version 1.01 - 2/2/01

Alphabetical List of Symbols

UDI_MAX_ATTR_NAMELEN ...t tuteeteeeeeeeeee et et et et e e e et et et eeeeeeeee et et eeeeeeeeeeeeeeeeeeeenens 15-13
UDI_MAX_ATTR_SIZE vttt et eeeeeee et et et et et et e ee e et e et et e ereeteeee et et e eee et et et e e e e e eteeneeens 15-13
UDI IMAX S C R AT CH ittt ittt r e et e et e e e et e et et e e e et san e e e et aaneaneaanaaneanes 10-5
UDI_MBGET, UDI_MBGET _2/3/4 ...ttt e e e et et et e e e a e e e aeaeaas 22-8
UDI_MBSET, UDI_MBSET _2/3/4 ettt e et et et et e e et e e e e aaaeaas 22-9
UDI_IMCB. ettt ettt et e e e e et et et ettt 11-12
Udi_mei_backend_STUD T ...iuuiiiiii i ee e e et e e e e e e e aas 28-10
0o I 32 T=Y o= P 28-16
0o I 32 T=Y I 1= A (1o Y S 28-9
0o I 32 Y=Y I LY Z=Y (= £ o P 28-18
udi_mei_enumeration_rank_fUNC_ Tiiiiiiiiiiii e e e e e e 28-11
UDI_MEI_MAX_MARSHAL_SIZE ..veeeetteee et eeeeeeeeee e et eeeeee e et et et et e et e e e et et eee e e saeeeeenens 28-6
UDI_MEI_MAX_VISIBLE_SIZE uveevttuteteeeeeeeee et et et eeeeese et et et aeeeeee et et et eeeeereeeeeeeaeeeerens 28-6
UDI_MEI_OP_ABORTABLEeve et ttee et et e et e et e e et e et e et e e et e eeeeeee et e et e et e eee e e seeeeaeeeae e 28-6
UDI_MEI_OP_RECOVERABLE ...ttt et et eeee et e et e et eee et e et e e e e e et e ete e e e e e et e et eeeeeeenees 28-6
UDI_MEI_OP_STATE. CHANGE .. et teeeeeeee et e eee et e ettt e et e et e et eeee et e et e eeeeeee e e neeeae e, 28-6
0Te [21T T (1001 o) = L 2= PR 28-6
UDI_MEL_OPCAT ACK .ttt ettt eeeeeee et e et eee et e et e et et e et e et e et et e et e et e et e e e et e et e eeeeeneanes 28-6
UDI_MEL_OPCAT _IND .ttt et e et e e e e e e e e et et et e et e et et e et e et e eee et e et e eteeeee et e eeeeneeans 28-6
UDI_MEL_OPCAT NAK .ttt ettt et ettt e e eee et e et e et e e e et e et e et et ee e et e et e eeee et e et e eeeeeneaaes 28-6
UDI_MEI_OPCAT _RDY et teeeeeeeeeeeeeeeee et e e e et e et e ee et e et e et e e e e et e eet e st et e eeee et e et eee et eeeeene 28-6
UDI_MEI_OPCAT _REQ .ttt ettt e et ettt e e eeeeee et e et e et e e et e et e et e et e e et e eeeeeee et e et e eaeeeneanee 28-6
UDI_MEI_OPCAT _RES .ttt euee et e e eee et e et e et e ee et e et e eee e e et e et e et et e et e et e et eeee et eeee e 28-6
Udi_MEI_0PS_VEC tEMPIALE T teviivtiiiniiiiireitieet ittt et eeteentesneeae et testeeareteeteesnrrrestaernesnns 28-4
UDI_MEL_REL_BIND ..ttt tueeetteeeeeeee e et eeee et e eee e e et e et e eeae e e e et e eeeeeee e e e et e et e eae e reeeeneenaeens 28-4
UDI_MEI_REL_EXTERNAL et teeeetee et eeee et eeeeeee et e et et e et e eteeeae et e et e st e et et e st esaeaeeeseenaeens 28-4
UDI_MEI_REL_INITIATOR vevtteteeeeeeeeeeeeseeeeeeeeee e e eeeeeteeee et e et e see e e e et e et eseeeeeeereneeeeaeans 28-4
UDI_MEI_REL_INTERNAL vevttetteeeeeeeeeteseeeeeeeeeeeeeeeeeeeeaee et e aaeeseeeeee et e eteeneeeeeeseeeseeenaeans 28-4
UDI_MEI_REL_SINGLE .ttt ettt eeee et ettt e et e et e et et e et e et e et et et e et e et e et eee et e eaeeeneanes 28-4
UDI_MEL_STUBS . tteett et eee et e et e e e e et et e et e et e e et e et e e e et et e et e e et e et e et e st e eaeeeee e e et enaeenns 28-14
0o [0 T=Y 0 =1 Lo T RPN 12-3
0o [00 T=Y 0 (N (== 12-5
UDI_MEM_MOVABLE ...ttt eee et et et e ettt ee et e et et e et eeteeeee e e e et e et e et et e et e eaeeeeeeeeeens 12-3
UDI_MEM _NOZEROD ...ttt teeeeeeeeee et e et e et e et et et e ete e e et et e et e et e eeeeee e et e et e et e eeeeeeneeneeens 12-3
0o 21 1= £ 1= S 20-8
0o [22 1=3 ¢= L1 o YRR 28-3
0o [2o T 1T ot o N RPN 24-8
0o [1T [T o) o K- P 24-7
UDI_MIN_ALLOC_LIMIT . teeeteeeeeeee et et e e et et e e e et e et et et e eeeeeae e e et e et e eae et e et e eaeeeeeeees 10-18
UDI_MIN_INSTANCE_ ATTR_LIMIT «vteetttteeeeeeeeeeeeeeeeseeeseeeeeeseeeateeseeeeeeseeseeeeeeseeeseeenees 10-18
UDI_MIN_TRACE_LOG_LIMIT +vteeteeee et e e eeeeeeeeeeeeeeeee st e eteeeae s e et esaeeeeeeeeseeeseeeeneaees 10-18
UDI_NULL BUF_PATH ettt ettt e ettt eeeeee et e e et e et e e e et e et e et e ee et e et e eteeeeeeee et e eeeeeneenee 9-11
UDI_NULL _CHANNEL 1 1utitiitiit ittt et e st eaea e s e e e e sae s e e s e e e a s e ea e s e e e n e e aeaaaananennenes 9-10
UDI_NULL_ORIGIN .ttt ette et et et et e et e e et e et e eeeeeee et et e e et e eae et e et e et e eee e e et e steeeeeeeenenens 9-12
UDI_OK ettt et ettt e e e et et e et e et et e et et e e et e e et e e et et et e et et e ettt e et e et ettt e et e e e e e rnens 9-16
UDI_OP_LONG_EXEC ..ttt et teeeeeeeeee e e e e e e e e e et et et e et e e et et e et e et e e ee et e et e et eeee et e eeeeeaeans 10-5
0o [o) o F-I L1 S S 10-9
0o o) o112 TN SR 9-12
0o [N T8 aT=T 5V L1 S S P 10-5
UDI_QUEUE_FOREACH ettt et eee et et e et ee et e et e et et e et e et e e et e et e eteeeee et e eeeeeeeans 21-13
UDI_QUEUE_INIT,

UDI Core Specification - Version 1.01 - 2/2/01 XXV

Alphabetical List of Symbols

UDI_QUEUE_EMPTY «tteete et et e et e et et et e et e e et e et e et et e et e et e e et et e et e e e e e eeneneeeee e, 21-8
0o [[V L= U= 21-3
UDI_ RESOURCES CRITIC AL ittt ittt ettt e et et e e e et a e e e n e aeeaeeane e 24-10
UDI_RESOURCES LOW ittt ettt et e ettt e e e e e et a s e e et e e e n e eeaaneaneaans 24-10
UDI_RESOURCES NORMAL ittt ittt ettt ettt et e et s e e e e et e e e et an et eataaneaeaananns 24-10
UDI_RESOURCES PLENTIFUL ettt e e vt e e e vt e e et s e r e se s a e e s aaneaneaananns 24-10
0o] ot 1 T S PPN 9-4
0o] o e 2 PPN 9-4
0o] o) ¢ < S PP 9-4
0o [IE=T=YoTo 0 o b=V 0 2R 3L A PP 10-7
0o =T 2= PN 9-6
T TR 0T o4 T 20-11
UDI_SPECIFIC _STATUS MASK ittt ettt e a e e a e e e e e e e aanaaneanes 9-16
UDI_STAT ABORTED «..uetteetteeeeeetee s e e et e see e et e e e e st e e et e et e et e et e e et e nee e e et e et e e et e neeeeeeee e 9-16
UDI_STAT _ATTR_MISMATCH «eeeeeeeee et et e e eee e e et e e e et e et e et e et e et e et e e e e et e neee e 9-16
UDI_STAT _BAD_PARENT _TYPE ..ueteute st eeeeeee et e eeeseee et e et e eee et e see e et e et e e e eeeenenens 9-16
UDI_STAT _BUSY .ttt ttteeee et e et et e et et e et e ettt e et e et e et e et e et e et e et e et e et e e e e e e neneeens 0-16
UDI_STAT _CANNOT _BIND «ettetueeeetee st eeee et et e et e st e et e et e et e et e et e e et e et e et eneenenee e 9-16
UDI_STAT_CANNOT _BIND_EXCL .ttt ttteeeeeetee et eeeeeeeeeseeeeeeeeee e et e see e et e s e e et e neeeeneenens 0-16
UDI_STAT _DATA_ERROR ..veetteetee et e et e et ee e e e et e et e et e et e et e et e et e et e et e e e eeeeeeee e, 9-16
UDI_STAT _DATA_OVERRUN «..eetteeeee et e et et et et e et e et e et e et e et e et e et e et e enenae e 0-16
UDI_STAT _DATA_UNDERRUN «...eeeetteeee et s et e et e et e et e s e e et e s e et e st e et e s e eeeeenee e, 0-16
UDI_STAT _HW_PROBLEM ..etteitee et e et et e et e et e et e et e et e et e et e et e et e et e et e e e eene e e 9-16
UDI_STAT _INVALID_STATE +ettueteeteeeeteeeeeeeeeeeeeeee e e e st e e e e et e e et e st e et e e s e eet e e s e eeeesnens 9-16
UDI_STAT _META_SPECIFIC ettt et e eee et e eee e et e et e et e et e et e et e et e st e et e e e eeeesnens 9-16
UDI_STAT_MISTAKEN IDENTITY titititiitiiieitieita ettt as e e e se e e e seaasanaeasaneaneasanens 9-16
UDI_STAT _NOT_RESPONDING «.vvtttteeeteeteeeeeeeeteeseeseseeseeaeeeeseeeeseeseeeeeeesreeereeseeeaeeeeens 9-16
UDI_STAT _NOT_SUPPORTED ..evteuttttteeee et e et e et e et e st e et e st e et e st e et e st e et e s e ennenns 9-16
UDI_STAT_NOT_UNDERSTOODeveeeteeeeeeeeeseeeeeeeeeee st e e e seee e et e st e aeee st e et enereeneenns 0-16
UDI_STAT_PARENT_DRV_ERROR «...utteteteetesoee st e et e et e seee st eseee s et e see e et ereeeeeeeneneeenes 9-16
UDI_STAT _RESOURCE_UNAVAIL «..eetteeeee et eeee e eeee e e e e e et eee et e s e et e reee e 0-16
UDI_STAT _TERMINATED .eiuiitiitiiitiit ettt st st e s s e s e e s s ae s e e e e e s s e e e s aaeeneanannanennans 9-16
UDI_STAT _TIMEOUT eeveetee et et e et e et et e et e et e et e et e et e e e e et e et e et e et e et e et e eeeeenteenaneas 0-16
UDI_STAT_TOO_MANY_PARENTS ...utteteteeteesoee et eeeeseeeesee st eseee s et e seeeeeeeereeeeeeereneeeees 9-16
0o IR L[Y- Vo L= T 24-10
UDI_STATUS_CODE_IMASK +.ueteeteeeeeeeeee et e eeeeee et e et e e et e e ettt e et e et e et e et e et e e e e eeeesnens 9-16
0o =1 7= LU 1= R 9-16
0o IR or= A o Y10 [ox=Y AP 20-3
udi_strchr, udi_strrchr,

0o 32 1=Y 1T oG PSRN 20-7
udi_strcmp, udi_strncmp,

0o [1=T 1 (o181 o PN 20-4
udi_strcpy, udi_strncpy,

Udi_mMemcpy, UdI_MEMMOVE ..uuiveiiiiiiieii et ieeieete et e et ea e et e et e et ssn et e et esneaneeteeneens 20-5
0o =14 [=Y o P 20-2
0o IR0 Te3 o)V 114 TR P 20-6
0o =11 o101 7 20-9
0o [=Te1 1Y/ o= TN 13-27
0o [T (L= T oY= =) PP 14-9
0o LI (T (L= T o1 L= 0| ST 14-8
0o LI (T (L= T ot = P 14-10

XXVi UDI Core Specification - Version 1.01 - 2/2/01

Alphabetical List of Symbols

0o]33 T= N S 14-3
0o 104 L= g o= g ot=Y KPPt 14-6
0o [(T 0 =Y =1 = 14-4
0o LI (T = Q= =V A (=) 0 =X= 10T 14-5
0o =YL= TN L (1 =T TSP 17-6
UDI_TREVENT_EXTERNAL_ERROR ...ttt it ettt e s et s e e et s e s e e e e aaneaneaas 17-3
UDI_TREVENT INTERNAL L ettt it e st e e et e e e st e e et aae e e a e et aan e e e aaneaneannaanens 17-3
UDI_TREVENT INTERNAL 10 .ottt titeee et e e et e e et sae e eae et saaesae et e e e e e aaneaneannanns 17-3
UDI_TREVENT INTERNAL ottt tit ettt e et e e e et s e e e e st s n e e e st e e e e e aaneaneaanaans 17-3
UDI_TREVENT INTERNAL 12 ittt ettt e et a ettt e e e et s e e e et e e e et aaneaeannaans 17-3
UDI_TREVENT INTERNAL 13 ittt ettt ettt e et a e et e e et et e e et aaneaeaanaans 17-3
UDI_TREVENT INTERNAL 4 ittt i ettt e et e a e et e et et e e e et aaneaeannaans 17-3
UDI_TREVENT INTERNAL 15 ittt ittt e et e et e e e et e et st e e e e e aaneaaeannaans 17-3
UDI_TREVENT INTERNAL_ 2 .veetteeeeeeeeee et e et et eeee et e et eeee s e st eeee et e st e ete e e e e seeeeeeeene e 17-3
UDI_TREVENT INTERNAL_ 3 .veeuvtteteeeteeeeee et eeeeaeee et eeeeeeeeseeeseeeeeeaee st esteeeaeaeeseeeseeeeneees 17-3
UDI_TREVENT _INTERNAL 4 .ot ittt e ae st e e e st e e an e s raaneaneannaaneannannens 17-3
UDI_TREVENT _INTERNAL S e sar e an e aan e aneannanens 17-3
UDI_TREVENT INTERNAL_ 6 .veeuveteeeteeeeeeee et eeeeaeeeeteeeeeeeeeseeeseeesaeaeeeseeeseeeeeeaeeseeeseeaeneaes 17-3
UDI_TREVENT _INTERN AL 7 ettt ettt e et s ae s s e e e st e e s n e s naaneaneaansaneannannans 17-3
UDI_TREVENT _INTERNAL_ 8 .veeuvtteeeeteeeeeee et eeeeaeee et eeeeeeeeseeseeeeeeaee st e st eeeeaeeseeeeeeeeneees 17-3
UDI_TREVENT INTERNAL_ O .ottt teeeeteeeeeee et e et aeee et e et eeeeeeeeseeeeeeaeeseeesteeeaeeeeseeeeeeaene e 17-3
UDI_TREVENT IO _COMPLETED .vuvteeetteeeeeeeeeeee et e et e e eeee st et eee et e et aeeeseesaeeseeeeneaenas 17-3
UDI_TREVENT IO _SCHEDULED .vuvteetetteeeeeeeeeeee et e eeeeeeeseeeeeeeeeeeeeesee st aeeeseesaeeseesereaenas 17-3
UDI_TREVENT_LOCAL_PROC_ENTRY .uttettteettteeeeeeeteeeeeseeeeeeeeseeesee st eeeeseeseeseeaenesens 17-3
UDI_TREVENT _LOCAL_PROC_EXIT +etttueeeteeeeaeeeeeeeee st eeee st eeeeseeeseeseeeeeeseeeseeesaeeeneaens 17-3
UDI_TREVENT _LOG 1 ttettetteeeeeee et eeee et e et et e et e et eeee e e e st e eeeeeee et e et e et e te et e et enteeeneeeeaees 17-3
UDI_TREVENT _META_SPECIFIC L «vttueeueteeeeeeeeeeeeeeeeseeeeeeseeesee st eeeeseeeseeeseeeeeeseeeseennes 17-3
UDI_TREVENT _META_SPECIFIC 2 «vtueeteteeeeeeeeeeeeeee et eeaeeeeesee st eeeeaeeeseeeseeeeeeseeseennes 17-3
UDI_TREVENT _META_SPECIFIC 3 «vttueeteteeeeeeeeeeeeeeeseeeeeeaeseseeseeeeeeaeeeseeeseeeeesseeeseennes 17-3
UDI_TREVENT _META_SPECIFIC 4 veueeeeeteeeeeeeeeeeeeeeeteeeeeeeeeeee et eeeeeeee et eeeeeeeeeeeeseenaes 17-3
UDI_TREVENT _META_SPECIFIC 5 vueeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeeaeeeeteeseeeeneseeeseennes 17-3
0o IR 4=02=1 2L S P 17-3
0 Te T o1 1 < PN 9-4
0Te T o1 7 S PN 9-4
0o [T o] < TN PP 9-4
0o [T E=T= Yo T= T ol « T S P 24-9
0o [T IST= T 1= Lo E P 24-10
UGD_USBOEB FBS wuivuiitneeterneeteetesneesaeetesteetaesnsssaeetsessesnstaseteessesnsetsetiesneeansetiernaesnresnns 24-12
UDI VA ARG .eeeeeeeeeeee et e ettt e et e et et e et et e e e et e et e et et e et e et e et e et e et e eee et e et e et e ee e e 9-30
UDI_ VA BOOLEAN T ovteeettueeeeee et eeee et e e et e et e et et e e ete e et et e et e et e et et e et e et eeee et e eeeeeeans 9-30
UDI_ VA CHANNEL T vttt ettt et e et e e et et e et eeee et et e et e e et et e et e e et e e et et e et e eteeeee et e eeeeneeans 9-30
UDI_ VA INDEX_T ettt et et e et e e e et e et e et e et et e e e et e e et e et et e ete e et e e et e et e eee e ee et e eeeeeeeenee 9-30
UDI_ VA _ORIGIN_ T ettt teee et et ee et e et e e et et e e e et e et e et e et eeee e e et et e et e et e e e et esaeeeeeeeeeneeenes 9-30
UDI_ VA _POINTER ..ttt ettt e et et eee e e e eee et e et e et e e et e et e et et e eteeeee e e et e et e eeeeeee e e eeeeeeeenes 9-30
UDI VA _SBITLO. T vetueetueeeue et eeeeeeeeee e e e eeeeeee e e e et e ete et e eeeeeeeeeee et e et e et e eee et e saeeeeeeeeenneanes 9-30
UDI_ VA _SBIT32 T ettt tueeeee et eee et e et e e e eee et e e et e e et e et e e e eaeeee e et e et e et e eee et e eaeeeeeeeeenneanes 9-30
UDI VA _SBIT8_ T eeeteeeeeteeeeee et et et e et et e et e ee e et e et e e et e eee e e e eee e e et e eae et e et e e et eeee et e eereeeeeeee e 9-30
8]0 TIRNZ NI 4 = OO UO PR URRIORRRRRS 9-30
UDI_ VA _STATUS T eteeeeeeeeeeeeeeeeeeeeee et e et e et e e e e et e eteeeee et e et e et e eeeeee e et e et eeaeeeae e e neeneeens 9-30
UDI VA _UBITLO_ T veeeetueeeee et eeeeeeeeee e e e eeeeeee e e e et e e et et e et eeeeeeee et e et e et e eae et e saeeeeeeeeenneenes 9-30
UDI_ VA _UBITB2. T ettt teee et et ee e e e et et e et et e e et e et e et e et e e et e e et et e et e et e e e et e eae e et eeeenneenes 9-30

UDI Core Specification - Version 1.01 - 2/2/01 XXVil

Alphabetical List of Symbols

UDI VA _UBITS_ T +veveeeeeeeeeeeeeeeeeeeeeee et et et e eee e e et eeeeaeee et et eeeeteeee et et et et ete et e eeeeee et eeeeeeeee 9-30
L 1 T Y4 8 3] []\ PP 8-1
8T T V2S] T T4 P 20-14
0o I L= Aot e 01 1 1 01 £ 13-5

XXViii UDI Core Specification - Version 1.01 - 2/2/01

e cy

UDI Core Specification

Section 1: Overview

UDI Core Specification - Version 1.01

projecy

“\UDI*

Introductory Material 1

1.1 Introduction

The Uniform Driver Interface (UDI) specifications define a complete runtime environment for device
drivers. This includes the complete set of services and other interfaces needed by a device driver to
control its device or pseudo-device, and to interact properly with the rest of the system in which it
operates. This runtime environment in which a UDI driver operates is referred to@Blthe

environment

The UDI interfaces allow UDI drivers to be completely portable from one OS or platform to another. All
OS and platform specifics are contained in the UDI environment implementations for those OS’s and
platforms and are thus isolated from driver code.

These specifications also define requirements on UDI build environments used to build UDI drivers and
packages from source. Some environments will be both runtime environments and build environments.

1.2 Scope

The UDI Core Specification defines the core set of UDI interfaces that are available to all UDI drivers
and that are required to be provided by all UDI environment implementations. The UDI interfaces
defined in this document represent the interfaces that are always provided to a UDI driver by the UDI
environment and may safely be used by any UDI driver implementation.

The UDI specifications are defined in terms of the C language and establish a C language binding for
the UDI interfaces. Thus the UDI specifications support device driver portability at the C source code
level. When combined with a UDI ABI binding, the UDI specifications support device driver portability
at the binary level.

Other language bindings could be created for UDI; some of the syntax would differ, but the principles
and the UDI-defined names would be the same. In particular, UDI interfaces can be accessed from
assembly language code, as long as the shape of data structures and calling conventions are made to
match the C language conventions for the target platform.

1.3 Normative References

The UDI Core Specification references the following non-UDI standards, listed below. These standards
contain provisions that, through reference in this document, constitute provisions of the UDI Core
Specification.

1. ISO/IEC 9899-1990 (ISO C Programming Language Standard).
2. 1SO 10646 (Unicode), Annex P (UTF-8 Character Encoding Standard).

UDI Core Specification - Version 1.01 - 2/2/01 1-1
Section 1: Overview

Conformance Overview

. ISO/IEC 9945-1 (POSIX locale specifier format).
. 1SO 639-2/T (Language Codes).
. 1ISO 3166 (Country Codes).

. 1ISO 9960 (CDROM filesystem specification).

3
4
5
6. IEEE Std. 1003.1-1988 (Archive/Interchange File Format)
7
8. IETF RFC 1071 Computing the Internet checksum”

9

. IETF RFC 114Z%Incremental updating of the Internet checksum”
10. IETF RFC 1624Computation of the Internet Checksum via Incremental Update”
11. IETF RFC 1936Implementing the Internet Checksum in Hardware”

Other UDI specification books rely on the UDI Core Specification, and may rely on additional nhon-UDI
standards. For example, the UDI SCSI Driver Specification relies on the ANSI SCSI Standards, and the
PCI Bus Binding depends on the PCI Local Bus Specification. The degree to which a UDI specification
depends on these other standards, or specific versions of those standards, is indicated in the applicable
UDI specification document.

1.4 Conformance

1.4.1 Environment Conformance

A conforming UDI environment implementation shall provide all of the interfaces defined in the UDI
Core Specification, with their associated rules and semantics, including the architectural requirements
defined in “Section 2: Architecture”. Environments that support related functionality that is covered by
other UDI specifications shall also provide all of the interfaces and semantics defined in those
specifications.

A conforming environment shall also provide the header fii.hh " for the interfaces in the UDI
Core Specification, and additional header files as required by other UDI specifications supported by the
environment. These header files must be ISO C conforming programs.

To provide portability guarantees to UDI drivers, conforming UDI environment implementations must
provide all the interfaces defined in the UDI Core Specification. However, static environments, in which
it is not possible to load new drivers or otherwise modify the configuration of the system, mag know
priori that certain interfaces are not needed by any of the applicable drivers. Such a static environment
that doesn’'t completely implement the relevant UDI specifications is not consiuélyedonformant it

is however considerestatically conformantf it conforms to the requirements of the UDI interfaces that

are applicable to it i.e., if the applicable drivers are completely conformant UDI drivers. Note that in
this case the applicable drivers would be portable tofaihy comformantUDI environment, but not
necessarily to anothetatically conformanenvironment.

Note —UDI environment implementations may vary in the way that they implement a particular UDI
interface, the amount of internal debugging and interface consistency checking provided, the
underlying address or protection or synchronization domain in which UDI drivers execute, etc.

1-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

Overview Conformance

However, as defined above, fully conformant UDI environments must implement the full set of
interfaces defined in this Core Specification, and all UDI environments must adhere to the
requirements of the UDI architectural model as defined in this Specification.

1.4.2 Device Driver Conformance

A conforming UDI device driver implementation shall not, at the source code level, reference any
interfaces external to the driver except those defined in the UDI specifications or exported explicitly to
drivers via UDI-defined mechanisms. A conforming UDI device driver shall also follow all the rules and
semantics defined for the use of these UDI interfaces. In particular, conforming UDI drivers must adhere
to the general requirements regarding UDI_VERSION, header files, and the use of ISO C, as defined in
Chapter 8,'General Requirements”

UDI Core Specification - Version 1.01 - 2/2/01 1-3
Section 1: Overview

Conformance Overview

1-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

proj ecy

“{UDJ

Document Organization

o

2.1 Overview of UDI Documentation

The UDI documentation is organized into several related specifications. The UDI Core Specification is
mandatory for all UDI implementations; all other UDI Specifications define optional sets of interfaces
that may be available for supporting specific sets of functionality.

In addition to the UDI Specifications, there are several other documents referred to as Guides or White
Papers. These Guides and White Papers provide additional information and descriptions for using UDI
but are supplementary to the UDI Specifications and define no additional interfaces. All UDI
Specifications shall be considered as normative material and all Guides and White Papers shall be
considered to be informative material.

'Informative;--- oo 'Normative'- - - ----------mm e
UDI Network] UDI SCSI | OpenUSBDI
ubl Driver Driver (USB Driver)
Technical Specification] Specification] Specification
White Paper !
h ~ Device-Model Specifics ~ 7 uDlI
~N e Bus Binding
uDI N (Metalanguages) P pind
Driver Specification
ert_er’s UDI Core Bus (PCI, VME, etc|
Guide e o
Specification Bindings .
uDI _ _ o :
Environment - Physical 1/0 N
Implementor’ _ - (DMA, PIO, Interrupts) N N
Guide
UDI Physical I/O Specification
. ABI Bindings
IA32 IA64 PowerPC res

This picture is intended to show the types of books in the UDI document set: driver-type specific
specifications, bus bindings, ABI bindings, physical 1/O interfaces, etc., all of which are centrally
supported by the UDI Core Specification. Not all of the books mentioned in this figure will be available
coincident with the publishing of the UDI Core Specification.

UDI Core Specification - Version 1.01 - 2/2/01 2-1

Section 1: Overview

Overview of the UDI Core Specification Documents

2.2 Overview of the UDI Core Specification

2.2.1 Core Specification Sections

The UDI Core Specification is organized into the following main sections:

Overview The current section, providing an overview of the UDI specifications.

Architecture Defines the fundamental UDI architectural concepts, including the UDI execution
model, data model, function call types and associated standard calling sequences.

Core Services Defines the core environment services that all UDI environments are required to
provide.

Core Utility Functions Defines the core utility functions that all UDI environments are required to

provide. Some utility functions that are very specific to particular environment
services are defined instead in the appropriate chapter of the Core Services
section, but are also required to be provided by all UDI environments.

Core Metalanguages Provides an introduction to the concepts, requirements, and conventions
applicable to all metalanguages; defines the interfaces that are common to all
metalanguages; and defines the core metalanguages which all UDI environments
must provide.

MEI Services Defines the interfaces needed by portable metalanguage libraries.

Packaging and Distribution Defines the methods by which UDI drivers are packaged and distributed through
electronic or physical means for installation into target systems.

ABI Bindings Describes the type of material that would need to be specified by an ABI
specification for UDI.

Appendices Contains the glossary and auxiliary details not covered in the main specification.

2.2.2 Core Specification Topics

Some of the topics covered in the UDI Core Specification include:
* Memory management
® Buffer management
® Timer functions
® Context and execution control (Control Blocks)
® Tracing and Logging functions
® Utility functions

® Configuration, Distribution, and Packaging

This Core Specification also defines the set of data types and objects used within a UDI environment
and the execution model for UDI drivers running in a UDI environment.

2-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

Documents Overview of the UDI Core Specification

Topics not found in this UDI Core Specification but covered in other optional UDI specifications
include:

®* Non-Core Metalanguages (e.g., SCSI, Networking)

® Physical Device Access Interfaces (e.g., PIO, DMA, and Interrupts)
® Bus Bindings (e.g., PCI, EISA, etc.)

* ABI Bindings (e.g., IA32, IA64, PowerPC, etc.)

These topics are not found in this UDI Core Specification because they are specific to the needs of a
given 1/O technology, device class, hardware or bus type, or processor type; the Core Specification
provides interfaces that can apply to any type of driver or hardware. A typical UDI driver for a PCI
adapter would make use of UDI Specifications for Physical Device Access and the PCI Bus Binding,
while a compliant UDI driver for a USB device (an OpenUSBDI driver) would use the USB
Metalanguage defined in the OpenUSBDI Specification, but no physical device access or physical I/0
bus bindings.

UDI Core Specification - Version 1.01 - 2/2/01 2-3
Section 1: Overview

Overview of the UDI Core Specification Documents

2-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

r

“\WUDF
Terminology 3

3.1 Introduction

This chapter defines common terminology used in the UDI Core Specification. There are two categories
of terminology defined here: terms whose purpose is to provide directives on the behavior, features and
semantics of the UDI Specification, calldilective termsandcommon termshat are not UDI-specific.

This chapter clarifies how these terms are used in this Specification.

UDI architectural terms and other UDI-specific terms are defined in the Glossary in Appendix A.

3.2 Definitions

3.2.1 Directive Terms

These terms provide directives on the behavior, features, and semantics of the UDI Core Specification.
Other UDI specifications are encouraged to reference and use these directive terms for consistency with
the Core Specification, but may choose to define their own set of directive terms (e.g., for consistency
with a related hardware standard).

can indicates that the existence of a particular feature or behavior of a UDI driver is
optional; UDI drivers may choose whether or not to use the feature or behavior.

ignored indicates that the contents of a particular field cannot be usefully examined; UDI
drivers must not examine such fields.

illegal indicates a violation of the Specification. The consequences of illegal actions on the
part of a UDI driver are implementation dependent, and may include abrupt
termination of the driver or catastrophic system failure.

implementation-dependent indicates that a particular feature or behavior is not consistent across all
environment implementations and must not be relied upon by UDI drivers.

invalid indicates a condition which is not valid within a given context.

may indicates that the existence of a particular feature or behavior of the UDI
environment is optional; UDI drivers must not rely on the existence of the feature
or behavior. To avoid ambiguity, the antonym of may is expressedesnot
instead ofmay not

must indicates a requirement on a UDI driver.

shall indicates that the feature or behavior described is a requirement on the UDI
environment; UDI drivers can rely on the existence of the feature or behavior.

UDI Core Specification - Version 1.01 - 2/2/01 3-1
Section 1: Overview

Definitions Terminology

should

unspecified

will

indicates that a feature or behavior is strongly recommended but not mandatory.

indicates that the contents of a particular field are not consistent across all
environment implementations and must not be relied upon by UDI drivers.

Same ashall.

3.2.2 Common Terms

The following areterms which are commonly used in the industry in a manner similar to the usage in
this Specification; these definitions clarify how these terms are used in this Specification. Other UDI
specifications are encouraged to reference and use these definitions for consistency with the UDI Core

Specification.

adapter

adapter driver

address domain

ABI

API

ANSI

big endian

I/O hardware which provides a specific function or connectivity/bridging capability
and which is accessed via a system bus. Also caltatch a controller, a NIC, or
anHBA. The adapter is typically accessed via programmed 1/O and may be capable
of generating interrupts or DMA activity (or be capable of being a DMA target).

device driver software responsible for managing an adapter.

an address space wherein the same address always refers to the same memory
object. Two software modules are in different address domains if the same address
does not refer to the same memory when used in each module, or if an address that
is accessible to one is not accessible to the other. Thus, it is useless to pass an
address across domains. Whenever information is passed across a domain
boundary, all pointers must be converted, either by copying the information to
which they point or by remapping the same physical memory to a new virtual
address.

Architected Binary Interface. This is a set of binary bindings for a programming
interface specification such as the UDI Core Specification. (When applied to
applications rather than system programming interfaces, ABI is usually interpreted
as Application Binary Interface.)

Architected Programming Interface. This is a programming interface defined in a
UDI specification; e.g., a function call interface or structure definition with

associated status or function codes, as well as associated semantics and rules on the
use of the interfaces. (When applied to applications rather than system

programming interfaces, APl is usually interpreted as Application Programming
Interface.)

American National Standards Institute. ANSI is a United States national standards
body, and is the sole U.S. representative and dues-paying member of the two major
non-treaty international standards organizations, the International Organization for
Standardization (ISO), and, via the U.S. National Committee (USNC), the
International Electrotechnical Commission (IEC).

data storage format in which a multi-byte data value is stored with the most-
significant data byte through least-significant data byte in the lowest through
highest byte addresses, respectively. This is the storage format traditionally used by
the Motorola 680x0, HP PA-RISC, Sun SPARC, and AMD 29000-series
processors.

3-2

UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

Terminology Definitions

blocking

byte

capability domain
card

ccNUMA

controller

the process of suspending a thread of execution until an event occurs, possibly
switching to other threads in the meanwhile. To the programmer, this appears to be
a procedure call that may not return for a long and indeterminate amount of time.
Also known assleeping Can also be used as an adjective describing OS service
calls that can cause such a suspension.

UDI usesasynchronous service calisstead of blocking service calls, so there is
no way for a UDI-compliant driver to block. Note that this doesaffect the
embedding OS and its users’ applications, since native synchronous or
asynchronous operations are supported by external mapper implementations
independently of the UDI drivers.

A unit of data storage made up of eight binary digits (bits)ogtet UDI does not
use the archaic meaning of “byte” to refer to anything other than 8-bit data units.

seeprotection domain
seeadapter

Cache Coherent Non-Uniform Memory Access, an architecture for highly parallel
systems with shared memory of varying latencies.

seeadapter

data encapsulation a method of maintaining the functional independence of separately designed and/or

device

device driver

compiled code modules by hiding all the data relevant to a module in an abstract
object that may only be manipulated by calls to the module itself.

physical hardware, under software control, which is typically attached either
directly to an I/O bus or to an auxiliary bus (e.g. SCSI) attached to a directly-
connected adapter. The device typically combines a hardware controller with the
raw mechanism (disk controller with disk, display controller with frame buffer,
etc.).

a software module that turns I/O requests into control of a specific physical device
or a hardware or protocol interface. A device driver contains all the device-specific
code necessary to control and communicate with its hardware or logical function
and provides a standard interface to the rest of the system. A driver may or may not
control “raw” hardware.

device endiannessthe endianness of the device’s accesses to memory (typically either its own memory

device ID

device instance

device model

device node

or system memory).

a numeric or string value with a device-interconnect specified format used to
provide device identification. Usually stored in I/O card ROM.

an instance of a physical device, such as an adapter, or a pseudo-device. A single
UDI driver may manage multiple device instances, however, UDI implements
instance independence which makes these multiple device instances invisible to
each other.

a semantic model for accessing and controlling a particular class of /O device,
such as SCSI or Network.

a node in thealevice tree

UDI Core Specification - Version 1.01 - 2/2/01 3-3
Section 1: Overview

Definitions Terminology

device tree an abstract data structure that represents the physical and logical topology of an I/O
system. This data structure is usually thought of as an n-ary tree structure, but can
occasionally have multiple parents for the same node, so is really an acyclic
directed graph. Even with multiple parents, however, the graph ultimately has a
single root. Each node represents a device instance.

domain A physical or logical area that shares some common characteristiad@esss
domain andprotection domain

driver seedevice driver

driver endianness the endianness of the driver's accesses to its data. This is sometimes referred to as
the endianness of the driver’s region.

driver instance a set of one or more regions, all belonging to the same driver, that are associated
with a particular instance of the driver's device. There may be multiple instances of
a given driver, one for each physical device controlled or (in the case of software-
only drivers) one for each logically-separate replication of a function. Each active
device node has exactly one corresponding driver instance.

embedding systemthe surrounding Operating System in which the UDI environment is contained.

endianness seedriver endiannessdevice endiannesgrotocol_endianness
entry point a function within a driver that is called from outside that driver.
environment the UDI Environment: a description of all interfaces surrounding the driver and the

implementation thereof. Includes system services, scheduling and synchronization,
as well as inter-module communication mechanisms.

FIFO First In, First Out

handle an opaque reference to an environment object that must not be directly referenced
by drivers. See the UDI architectural definitionhaindle, transferable handleand
nontransferable handlen the Glossary.

HBA Host Bus Adapter. Another name for aapter but most commonly used for SCSI
adapters.
informative provides information, guidance, instruction. Informative documentation describes,

instructs, and provides guidance on the use of required interfaces, but does not
define those requirements; normative documentation defines the requirements. See
alsonormative.

instance a single, logically separate replication (associated with a thread of execution, not a
physical copy of code) of a module along with its associated data, methods and
services (see “driver instance”).

IEC International Electrotechnical Commission.
IETF Internet Engineering Task Force.
ISA 1) Instruction Set Architecture. Defines the binary machine language syntax and

semantics for a particular type of processor or processor family.

2) Industry Standard Architecture. An I/O bus type originally designed for the IBM
AT and used in many PCs. Also known as the ATA bus.

3-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 1: Overview

Terminology Definitions

ISO International Organization for Standardization. ISO is a worldwide federation of
national standards bodies from some 130 countries, one from each country. Note
that ISO is not an acronym, but is an international term used to refer to the
International Organization for Standardization independent of national language,
and is derived from the Greek word meaning “equal”.

little endian data storage format in which a multi-byte data value is stored with the least-
significant data byte through most-significant data byte in the lowest through
highest byte addresses, respectively. This is the storage format used by Intel and
Digital processors.

natural alignment alignment of a field in a structure on a boundary (offset) within the structure which
is a multiple of the size of the field’s data type. Thus, a naturally aligned 1 byte
field begins on a byte boundary; a naturally aligned 2 byte field on a 2 byte
boundary, etc.

non-blocking an interface or execution model which does not require blockingo(seking).

normative establishes a standard or norm. Normative documentation defines required
interfaces and semantics. Often the teronmative is used in juxtaposition to the
terminformative. E.g., the UDI Specifications are normative; the UDI white
papers and implementation guides are informative.

object an instance of a data structure, encapsulating a logical instance of a software
function, that is operated on with specific, defined function calls.

opaque type a type of data object whose fields are not visible to drivers, used in defining UDI
data structures and handles.

Operating System the primary code executing on a hardware platform which is responsible for
managing that platform and providing the environment under which applications
may be run on that platform.

oS Operating System.

platform the overall system that embeds UDI, consisting of all the hardware, together with
the native operating system.

protection domain (also called “capability domain”): a collection of software which shares the same
memory access protection level (e.g. kernel v.s. user). When it is necessary for
software running in one protection domain to invoke an operation in another
domain, special provisions must be made in the environment for checking
permissions and passing parameters across the domain boundary.

protocol endiannesghe endianness of hardware protocol data such as SCSI commands or networking
protocol headers.

pseudo device a logical “device” which has no associated hardware. Pseudo-device drivers present
the view of a device to their children even though they do not control an actual
device. Pseudo-device instances are roots of their own device trees, separate from
the hardware device tree.

RFC Request For Comment.
SCSI Small Computer Systems Interface, a standard storage architecture and protocol.
UDI Core Specification - Version 1.01 - 2/2/01 3-5

Section 1: Overview

Definitions Terminology

sleeping

thread

trusted code

seeblocking.

an instance of execution consisting of a procedure stack and OS scheduling
structures. A thread, together with an address space and permissions, is equivalent
to a traditional “process”. On multiprocessor systems, multiple threads execute
simultaneously.

code that the operating system is minimally suspicious of. Drivers are commonly
trusted in that there are fewer run-time error checks included in the system
interfaces in exchange for higher performance. UDI, however, allows for
environments with low trust in drivers, and gives such environments the opportunity
to do any error checking they might wish.

uDl Uniform Driver Interface. In some contexts, this is a short-hand term for the UDI
environment and the entities in the embedding system that the UDI environment
supports.

3-6 UDI Core Specification - Version 1.01 - 2/2/01

Section 1: Overview

e cy

UDI Core Specification

Section 2: Architecture

UDI Core Specification - Version 1.01

|

“\UDI*

Execution Model 4

4.1 Introduction

UDI drivers are prepared for execution in a target environment by compiling driver source code for a
target system, either directly on the target system or by separate compilation into relocatable object files.
The result is one or more independent executable modules, ddited modulesvhere each module is
comprised of a set of object files (as defined by the driver’s static driver properties file, see Chapter 30).

4.2 Driver Object Modules

A driver’s executable is composed of one or more diller moduleseach of which can be separately
loaded and executed (e.g., into separate addressing domains or protection/privilege domains). Driver
writers need to consider the partitioning of their driver into modules in conjunction with the partitioning
of driver instances into regions, as described in “Multi-Module Drivers” on page 4-2. Each driver
module handles some (mutually-exclusive) subset of the driver’s region types. Each driver has one
module, called th@rimary module which handles the driver’s primary region. Additional modules,
calledsecondary modulesnay be defined by the driver. The driver specifies its modules via the
“module” property declaration in the driversliprops.txt configuration file (see Chapter 30).

Each UDI driver module has a single well-known global variable, nardednit_info that
describes the module’s entry points and size requirementsu@térit_info on page 10-3.) There are
no global entry points into UDI drivers; all entries are through function pointardiimnit_info

4.3 Driver Instances

In general, aninstancerefers to a specific occurrence of a generic item. An instance of a device, or
device instancerefers to a specific occurrence of that device in a system. An instance of a driver, or
driver instancerefers to the driver code attached to a particular device or pseudo-device combined with
a set of driver state (control values, queues, control memory, etc.) that serve that device. The driver state
associated with a particular device is often referred feasnstance stateEven though driver instance

are logically separate, environment implementations may use a single copy of the driver code for
multiple instances of the same driver.

4.4 Regions

A driver instance is composed of one or more well-defined sub-divisions cedfeehs A region is
implicitly serialized by the UDI environment, and thus defines the unit of concurrent execution. There is
no shared memory between regions. This allows driver regions to be separately replaceable and locatable

UDI Core Specification - Version 1.01 - 2/2/01 4-1
Section 2: Architecture

Multi-Module Drivers Execution Model

(e.g., in different address or protection domains), supportintnstence-independen@ndlocation-
independencef UDI drivers. (See Chapter H)ata Model” for a discussion ofhstance-independence
and Section 4.9 for a discussionlo€ation-independenge

4.4.1 Driver Partitioning

Driver writers need to consider the partitioning of their driver into regions when designing the driver. A
simple driver may be composed of a single region; more complex drivers may be composed of multiple
regions. The former is calledsingle-region driverthe latter amulti-region driver but in either case it

must be emphasized that regions are sub-divisions of a driver instance.

Many driver instances are composed of multiple state machines, roles, or cooperating functions. For
example, a driver may have a somewhat distinct state machine that handles outbound packets, another to
handle inbound packets, a third to handle timeouts, etc. When a driver is designed, such separable pieces
of the driver may be defined to run in separate regions.

When a driver is instantiated, an initial region is created by the environment; this is called the driver’s
primary region If requested by the driver, additional regions, cadledondary regionsare also created.

4.5 Multi-Module Drivers

Each module in a multi-module driver contains the code and static data for one or more mutually-
exclusive region types. Each module contains its adininit_info structure.

The primary module must contain all of the code and static data for the primary region and may contain
the code and static data for one or more secondary regions as well. Other modules (“secondary
modules”) must not specify@imary_init_info structure in theiodi_init_info initialization
structures.

4.6 Channels

A channelis a point-to-point communication and connection mechanism between two regions. This
point-to-point design allows for simplicity of connection build-up and tear-down and low-overhead of

the communication path. Attached to each end of a chanwblamel endpointis a set of driver entry

points called a channel operations vectoops vectar The definition of the channel operations
implemented by these entry points (along with associated service routines, attribute bindings, etc.) for a
particular type of channel is referred to ametalanguage

Channels form the basis of all communication between regions, since regions cannot share data directly.
Channels are also used to communicate with the Management Agent and other logical entities within the
environment that act as though they were executing in UDI driver regions. (The Management Agent
manages driver and device instance configuration, and is described in more detail in Chapter 24,
“Management Metalanguagey

4.7 Driver Execution Environments

All execution of driver code within UDI is done orpar-instancebasis. Each instance is said to execute
in the context of a regiomr in region contextand has access to driver and environment state associated
with the particular region for which it was invoked.

4-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Execution Model Driver Execution Environments

Note —The UDI Physical 1/0 Specification defines a special type of region, call@temupt region
that has additional restrictions in its execution environment.

4.7.1 Non-Blocking Model

While executing in the context of a region, UDI drivers are non-blocking; i.e. any service call that may
require access to external resources or delayed completion is defined with a callback function so that the
UDI environment does not have to block the thread from which the driver was called while waiting for
resources. See the discussion of asynchronous service calls below for additional details.

UDI Core Specification - Version 1.01 - 2/2/01 4-3
Section 2: Architecture

Function Call Classifications Execution Model

4.8 Function Call Classifications

Function calls used by UDI drivers can be categorized as either calls into the dhiver €ntry pointy,

calls from the driver to the environment to request environment services (envirsendné call}, or

calls over channels between driver or environment regions (metalanguage-sphesifiel operations
Channel operations are specified in terms of both the caller dd@riel operation invocatigrand

callee side¢hannel operation entry pointSome service calls complete asynchronously and re-enter the
driver viacallbackfunctions.

A UDI driver executes within the context of a region at all times and all driver entry points (channel
operation entry points and callbacks from service calls) are called with region context. All channel
operation invocations and service calls are called within the context of a region.

UDI environments also provide a setutility functions which are convenience functions defined for the
driver. These convenience functions do not perform any operations that the driver could not do directly
via its code and therefore do not set or test any environment state. These utilities may be implemented
as environment function calls or as macros that result in inline code in the driver itself.

The following figure illustrates these function call categories.

driver entry points UDI Environment

Channel Channel _ external
Operations O channel Operauons’() channel » mappers
Region

Context

I [
Callback : :
| Other I

UDI |«
! UDI Driver Regions| |
! [
R }

UDI Service Calls

4.8.1 Service Calls

UDI drivers request services of the UDI environment by calling environment service calls. These are
functions provided by the environment and exported to all UDI drivers.

Service calls are common to all types of drivers. They are not metalanguage-specific.

4-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Execution Model Function Call Classifications

4.8.1.1 Synchronous Service Calls

Service calls that can reasonably be expected to complete “immediately” (or at least in a small, finite
amount of time) on all environment implementations are specified in the fosymolfironous service

calls. Synchronous service calls run entirely in the context of the calling region and complete all
processing required to satisfy the request before returning to the calling driver.

Synchronous service calls are identifiable by the lack cd/thack argument.

4.8.1.2 Asynchronous Service Calls

Service calls that might not complete “immediately” are specified in the formsysfchronous service

calls. These need to operate asynchronously, returning results and/or completion stedlibatcis

(calls “back” into the driver) rather than as output parameters or return values from the service call
itself. Any service call that might require allocation, access to external resources, or delayed completion
shall be asynchronous. (This is required by UDI's non-blocking model—drivers executing in a region
context cannot block the calling thread in order to wait for resources or I/O events.)

When an asynchronous service call returns to the calling driver, the service may or may not be complete.
The associated callback may happen immediately, before the service call returns to the driver, or later,
after the driver itself returns to its caller and the resource subsequently becomes available. The only
restriction on callbacks is that they must not violate the region execution model and therefore delayed
callbacks (ie. callbacks that occur after the service call has returned to the driver) must wait for any
current execution in the region to complete before being scheduled to execute in that region (also see
Section 5.5, “Implicit MP Synchronization”). Immediate callbacks may execute immediately before
returning from the service call without violating region synchronization because only one thread of
execution remains active in the region.

In the case of a delayed callback, the environment needs to be able to queue the pending request or
callback and the driver must be able to continue the operational context that indicated the asynchronous
call. In order to provide space for queuing the request (if needed) and maintaining the driver context a
control block is passed to each asynchronous service call.

Control blocks are a finite resource that are provided to or allocated by the driver. Between the time that
the service call is made and the time that the callback is called, the control block is under the control of
the environment and must not be used in any way by the driver, except to cancel the service call (see
udi_cancel on page 11-13). Only one allocation request must be pending on a given control block at a
time. Any attempt to start another request using a control block that is already in use will produce
indeterminate results.

Any type of control block can be used for this purpose. Because of this, the service calls are defined in
terms of a least-common-denominator control block, which is itself part of every actual control block.
This generic control blocks denoted with the data typedi cb_t (see page 11-3).

4.8.2 Channel Operations

Channel operations are invoked by a driver or by the environment on one end of a channel and result in
a procedure call to an operation entry point in another region at the other end of the channel.

UDI Core Specification - Version 1.01 - 2/2/01 4-5
Section 2: Architecture

Location Independence Execution Model

Like asynchronous service calls, channel operations require control blocks, so the environment can
gueue them if the target region is busy. Control blocks used with channel operations can also be used by
the environment to marshal and unmarstwaher parameters and data passed to the operations if they
need to be queued or transferred between separate domains.

Any channel operations queued by the environment will be delivered in FIFO order to the region; the
region is unaware of the queueing. The environment must ensure that operations queued to a region are
delivered in FIFO order relative to the channel on which they are queued, but there is no ordering
between channels, therefore requests arriving to a region on different channels may be presented to the
region in any order as long as they order preserves the FIFO ordering of the individual channels. There
are also no ordering requirements imposed on callbacks which enter the region as a result of
asynchronous call completions. If a metalanguage requires that the driver process operations in the order
received, the metalanguage specification will indicate this requirement and the driver must insure that
ordering is maintained with regards to forwarding or responding to those operations.

4.9 Location Independence

The UDI execution model also provides for location independence, which is the ability to instantiate and
execute a driver’'s code without requiring that code to be run in a particular domain (e.g. kernel, user,
etc) or even on the same node in a cluster. Within UDI the fundamental unit of execution is defined as
the region (see Section 4.4) and this is therefore the level at which location independence can be applied.
Two regions within the same driver may be located independently since there is no shared memory or
other external access by either region outside of the UDI specified interfaces (which are expressly
designed to allow for location independence).

The location of a region instantiation is determined by the environment implementation and may be
affected by a number of considerations, including environment architecture, resource availability or
utilization, and driver-specified region attributes (see Section 30.6.8, “Region Declaration”).

4.10 Driver Faults/Recovery

Any improper usage of the UDI service calls or illegal usage of UDI control blocks or other illegal
actions on the part of a UDI driver (see the definition of "illegal” in Section 3.2.1, “Directive Terms”)

will lead to implementation-dependent and, in some environments, indeterminate results. Since the
driver cannot in general be expected to recover from its own misbehavior, it's left to the environment to
determine appropriate actions in such cases. One such action, which has been defined and enabled in
various parts of the UDI Specifications, is to abruptly terminate the corresponding driver instance. Such
abrupt termination is sometimes referred to as being "region-killed" or "instance-killed", the latter
referring to region-kills of all the regions in an instance.

4.10.1 Overview of Region-Kill

When an illegal action is detected by the UDI environment that results in an abrupt termination (region-
kill) of the offending region, the region will typically be exited immediately and will be marked to
disallow any further entries into the region. If the offending region is part of a Physical I/O Driver that
has registered a "P1O Abort Sequence" handle widi gpio_abort_sequence then the associated

P10 sequence will be executed to shut down the corresponding device. All channels attached to the
1. Marshallingis the activity of identifying and possibly collecting all of the information related to the request so that the
information may be moved to a different domain (via an unspecified mechanism) where iunithaeshalleack into
operational form to deliver to the recipient.

4-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Execution Model Metalanguage Model

region will then be closed, notifying any neighbors that the region has abruptly terminated. Any control
blocks marked "recoverable" (vidaDI_MEI_OP_RECOVERABLEwiIll be returned to the initiating

region via the corresponding response operation, where applicable, along with associated transferable
objects. Lastly, all other data objects owned by that region, including control blocks, allocated memory,
and buffers, will be freed and the region destroyed. As a result of the channel closes, any neighboring
regions must cease operation on channels to that region.

4.10.2 Improper Channel Operation Usage

UDI channel operations involve the source region, the associated metalanguage library, environment
support code, and the target region. lllegal actions detected by the environment while between regions
doing a channel operation may result in a region-kill of the source region. lllegal actions detected by the
metalanguage library (considered to be a portable metalanguage library for purposes of this discussion,
since a non-portable metalanguage library can be considered to be part of the environment) should result
in a call toudi_mei_driver_error by the metalanguage library code. This may result in either an
immediate error response operation back to the source region with status
UDI_STAT_NOT_UNDERSTOQID a region-kill operation by the environment.

lllegal actions by the source driver that end up being detected in the target driver must result in an
appropriate status such @®l_STAT _NOT_UNDERSTOUi2ing sent back in the corresponding

response operation, when applicable, to the offending source region, and as defined in UDI Tracing and
Logging, a call taudi_log_write

4.11 Metalanguage Model

4.11.1 Metalanguage Roles

Each metalanguage defined in the UDI environment is typically bilaterally asymetric. In other words, the
region at one end of the channel will typically initiate operations and the region at the other end of the
channel will typically respond to operations. This is exemplified by the metalanguage-specific bind
operation where one side initiates the metalanguage-specific binding and the other side responds to that
binding.

In this context, each end of the channel is referred to as playwg m the overall metalanguage
design. This role is often referred to as either the “parent” role or the “child” role based on the typical
device node tree representation of the device drivers, but this sense of orientation does not always apply.

Each metalanguage will therefore define the role for each end of the channel and will typically define
the metalanguage operations and states in terms of those roles.

Example metalanguage roles:
®* Bridge Metalanguage: interrupt dispatcher and interrupt handler
® SCSI Metalanguage: HD (HBA Driver) and PD (Peripheral Driver)
* Network Interface Metalanguage: ND (NIC Driver) and NSR (Network Service Requester)

UDI Core Specification - Version 1.01 - 2/2/01 4-7
Section 2: Architecture

Metalanguage Model Execution Model

4.11.1.1 Management Metalanguage Roles

The Management Metalanguage is somewhat unusual in that there are three parties rather than the usual
two: the Management Agent (MA), the Parent, and the Child. There are also three channels involved:

1. MA--Parent channel (a.k.a. the parent’s management channel)
2. MA--Child channel (a.k.a. the child’s management channel)
3. Parent--Child channel (a.k.a. the child’s bind channel)

In this configuration the Management Metalanguage accordingly defines three roles: the “MA”, the
“parent”, and the “child”. For more information, see Chapter‘B¥anagement Metalanguage”

4-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

r

“\UDI*
Data Model 5

5.1 Overview

Data available to a UDI driver can be categorized as (1) module-global data, (2) per-instance data, (3)
per-request data, or (4) function-local variables.

Module-global data hadriver-scopei.e., it is global to all instances of a driver within a given domain,
and for that reason is sometimes calfiednain-global dataAll non-automatic variables in the driver,
whether local to particular functions or compilation units, or truly global to the driver, are considered
module-global data. Module-global data is read-only throughout the execution of a UDI driver,
regardless of whether or not it is declared with the IS@dhst ” keyword. Environment

implementations may choose to share a single copy of a driver's module-global constant data between
multiple instances of that driver within a particular domain.

Per-instance data hasgion-scopeand is often referred to asgion-local dataor simplyregion data A

driver instance is composed of one or m@gions each of which has its own private data which isn’t
visible to or shareable with other regions. Tagion data model allows drivers to lestance
independentmeaning that the driver state for each device instance is independent of all other instances
so that a new instance can be added at any time or an instance can be removed and the remaining
instances will continue independently. It is also critical that, when a driver is entered on behalf of a
particular device instance, it does not access any hardware of another device instance; this allows the
driver instances to be independently bound to different CPU’s (or, on ccNUMA configurations, CPU
groups) or otherwise constrained to specific locations.

Any data objects allocated by the driver when executing within a driver region are attached to the region
and are region-local.

Data that is not specific to a particular channel or individual operation is sometimes referred to as
region-globaldata, since it is global to the region.

Data objects such as control blocks passed into the region from another region pentaguesdata.

The ownership of these objects is transferred to the target region and they therefore also become region-
local to the target region and no longer accessible from the source region. Objects which can be
transferred from one region to another are catltadsferable.

Function-local variables are C variables of function or block scope. C global variables (i.e., C variables
defined outside of any function) may only be used for module-global data, and therefore must be read-
only. It is recommended that all such variables be declared as static constants using the C language
const andstatic keywords.

While executing in a region, module-global data space (including static variables with function scope as
well as global variables) is read-only, but dynamically allocated region data is read-write.

UDI Core Specification - Version 1.01 - 2/2/01 5-1
Section 2: Architecture

Data Objects Data Model

5.2 Data Objects

In general, the teryDI data objectsefers to allocated data objects which are obtained via a call to a
UDI allocation interface. UDI data objects include driver-addressable memory areas, metalanguage
control blocks, and opaque objects referenced via handles. UDI data objects have the following
properties associated with them: scope, transferability, and opaqueness. The scope cannedttieiebe
global or region-localas described above. Secondly, region-local objects can eittieniséerableor
non-transferableas described previously. Thirdly, UDI data objects canribible, semi-opaqugeor

opaque Allocated driver structures axésible control blocks arsemi-opaquehandles reference
opagueobjects. Visible and semi-opaque objects are both referenced by pointers; however, semi-opaque
objects are defined such that the environment may—and probably will—store additional data, which is
not available to the driver, before or after the driver-visible fields of the object.

5.2.1 Memory Obijects

Blocks of driver-addressable memory may be allocated by the driver at any time, using
udi_mem_alloc . Most allocated memory is private to the region that allocated it and cannot be
transferred to other regions. However, drivers may also allasat@ble memorplocks, which can be
passed as arguments to channel operations and thus transferred to other regions. Once a movable
memory block is “given away”, however, the original driver must no longer access it. Only one region at
a time “owns” a movable memory block. Movable memory is allocated wslngnem_alloc with

the UDI_MEM_MOVABLfag.

5.2.1.1 Using Memory Pointers with Asynchronous Service Calls

Some asynchronous service calls take pointers to driver memory objects as parameters. Since the
environment might continue to access these objects after returning to the calling code in the driver (any
time until the environment completes the service call by calling the driver’s callback routine), special
care must be taken to avoid race conditions and corruptions that might happen if both the environment
and driver were using the memory at the same time.

To avoid the possibility of such race conditions, UDI requires drivers to obey the following rules for all
memory object pointers passed as explicit parameters to asynchronous service calls. These rules do not
apply to parameters that expect specific types of semi-opaque objects such as control blocks or UDI
buffers.

The memory pointed to by such pointer parameters (if non-NULL) must be either movable memory, part
of the control block’s scratch space, or part of a module-global (and thus, read-only) variable. (See
Section 5.2.2 for more details on control blocks and scratch space.) In particular, memory allocated on
the stack in local variables must not be passed to asynchronous service calls because the stack frame
may no longer exist when the pointer is finally dereferenced. If movable memory is used, the pointer
must point to the beginning of the movable memory block and the driver must not read, write, or pass to
other environment service calls or channel operations any portion of the movable memory block until the
completion callback has been called.

For some service calls, pointer parameter values may be NULL. See the definition of each service call to
determine whether or not it accepts NULL pointers.

5-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Data Model Data Objects

5.2.2 Control Blocks

A control block is a structure used within UDI to represent an asynchronous request to or from the
driver. Control blocks provide the context and associated data to describe each request. All region-
context entry points into a driver are called with an associated control block.

Control blocks are used for all metalanguage channel operations and asynchronous service calls. Each
time a channel operation is performed, the requesting driver region passes a control block specific to the
request; the receiving region receives that control block and uses it to maintain the context for the
request, typically returning the control block to the requesting region via an acknowledgment operation
once the associated task has been completed. Likewise, when a driver makes a UDI service call that may
not complete immediately it provides a control block that will be passed back to the driver in the
callback operation to provide the context for that call.

5.2.2.1 Scratch Space

Each control block contains additional space that may be used by the driver to store information related
to a request. This space is referred to assthatch spacef the control block and its contents are
determined by the driver. Scratch space is accessedsamteh pointerin the control block.

Scratch space contents will be preserved across asynchronous service calls (see Section 4.8.1.2) and the
driver's callback will always be invoked with the same control block that was originally passed to the
asynchronous service call.

When the current operation is completed by transferring the control block to another region, ownership
of the corresponding scratch space is also relinquished and the contents will not be preserved. The driver
should not expect to receive the same control block back for any future operations, nor should it expect
the same scratch space or scratch space contents to be maintained for that control block.

Drivers specify their scratch space requirements throughdheb_init_t structure as part of the
udi_init_info initialization information (se@di_cb_init_t on page 10-11). The scratch space for

a control block may actually change size (invisibly to the driver) as it is passed from region to region
and is adjusted to meet the requirements of the receiving region. If the driver’'s scratch requirement is
zero, the value of the scratch pointer is unspecified and it must not be dereferenced.

5.2.2.2 Inline Data

Some control block types haidine dataelements associated with them. These are blocks of memory
pointed to by fields within the visible portion of the control block that are automatically allocated when
the control block is allocated. Drivers specify the size and, in some cases, the structure of inline
elements through additional fields in théi_cb_init_t structure. Inline memory pointers in control
block structures are initialized by the environment and must not be modified by drivers.

5.2.2.3 Control Block Groups

Each metalanguage defines the format and contents of the various control blocks used for the interface
operations used in that metalanguage. As part of this definition, the metalanguage organizes these
control blocks into one or momontrol block groupseach with a corresponding control block group
number. The control block group defines the allocation granularity for control blocks; the

udi_cb_alloc operation (seadi_cb_alloc on page 11-5) is passed a control block index which the

UDI Core Specification - Version 1.01 - 2/2/01 5-3
Section 2: Architecture

Data Objects Data Model

driver has correlated to the metalanguage’s defined control block group number by including them in a
udi_cb_init_t structure (seedi_cb_init_t on page 10-11). Thus, when a control block is

allocated the result can be used as any of the control block types defined for that group (using
appropriate type casts); the specific type is determined by the driver’s initialization of that control block
and the subsequent channel operation to which that control block is passed.

By using control block groups a metalanguage can reduce the overall cost of managing control block
types for that metalanguage; frequently there are only a few control block groups defined within a
metalanguage whereas there may be a large number of individual control block types to match the
channel interface operations.

5.2.2.4 Control Block Synchronization

It is important to note that using a control block for a service call doesansfer ownership of that

control block to another region. The driver must not use any part of the control block, including the
scratch space, for other activities (i.e. passing it to another asynchronous service call or channel
operation, or accessing any of its contents) until returned via the callback routine, but the contents of the
control block’s visible portion and scratch space are preserved and unmodified by the service call. In this
way the driver may maintain its internal context for a request across an asynchronous service call.

5.2.2.5 Control Block Recycling

Channel operations are typically defined in pairs. For each type of initiating request or indication
operation there are one or more corresponding response operation types. When a driver receives a
control block as part of a request or indication operation, it must use the same control block in the
response operation. The initiating driver may then free the control block, but if it expects to initiate
additional operations of the same type it should instead maintain a pool of control blocks which it reuses
for subsequent operations.

When a driver forwards a request, in some form, to another region, it must use a new control block for
the layered request, rather than attempting to forward the original control block directly. This ensures
that the original initiator's context is preserved.

5.2.2.6 Control Block Pointer Invariance

The pointer value used to identify a control block and to access its visible fields remains valid as long as
the control block is owned by the same region, even across asynchronous service calls and callbacks.
Once a control block is given away via a channel operation, however, the pointer value is valid only for
purposes of aborting outstanding operations.

When a control block is returned to the initiating region as part of a response operation, the pointer
value may or may not be the same as the original control block pointer, even though it refers to the same
underlying control block. The environment may choose to reallocate and/or re-map the memory for the
control block when it passes between regions.

5-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Data Model Channel Context

5.2.3 Region Data

Each region created for the driver will have an associated block of memory referregtgmagata

This region data is a per-instance region of memory that is only accessible by the associated region and
is used by that region to store information relevant to the operation of that region. This region-specific
information often includes: state variables, request queues, PIO handles for accessing the device, and
information about the channels connected to that region.

When a region is created the initial contents of the start of the region data area are initialized to be a
udi_init_context_t structure (seadi_init_context_t on page 10-17). The driver may choose to
preserve this structure or overwrite it; once the region data has been created and initialized in this
manner its subsequent use and contents are determined entirely by the associated driver region code.

5.3 Channel Context

A channel contexis a driver-defined context value that is associated with a specific channel. The
channel context is a single pointer value and is typically used to point to the region-global data structure
for the region associated with that channel or to a more specific structure which in turn points to the
region-global data. The channel context is the only information provided to the target region for a
channel operation beyond the operation-specific data in the control block and associated parameters.

On entry to a region via a channel operation, the control block’s context pointer is set to the channel
context for the channel over which the operation was received.

5.4 Transferable Objects

Most of the data objects provided to or allocated by a region are not transferable to other regions. This
allows the management and handling of those data objects to be optimized.

Specific data objects may be identified as transferable (or allocated that way as in the case of the
udi_mem_alloc operation). When an object is transferable, there are further considerations which the
driver and the environment must make in using and transferring those objects, including remapping or
copying of parameters and associated data when the transfer crosses a domain boundary as well as
various constraints and alignment issues for the memory associated with the transferable object.

In addition, once the driver has transferred an object to another region it may no longer use or reference
that object, even if it still has a local pointer or variable reference to that object. Only one region may
“own” a transferable object at any one time.

5.5 Implicit MP Synchronization

As indicated above, a region consists of a set of allocated data private to that region and a current thread
of execution (unless it is idle). At most one thread may be active in any given region at one time; once
a driver region is entered, all other attempts to enter the region will be deferred until after the first call
returns. This deferral may be achieved through spin-waiting (on another CPU), queueing, or other
implementation-specific methods.

Three factors in the UDI execution and data models combine to achieve implicit MP synchronization.
These are:

UDI Core Specification - Version 1.01 - 2/2/01 5-5
Section 2: Architecture

Implicit MP Synchronization Data Model

1. All region data accessible to the driver is private to the region and may not be accessed
from other regions or other entry point routines.

2. All module-global data is read-only.
3. Only one thread may be executing in a region at one time.

This guarantees that all data accesses within a UDI driver are single-threaded, so no explicit locking
primitives are needed to run the driver in a Multi-Processor environment.

At the same time, a UDI driver can still take advantage of MP parallelism, since multiple driver
instances can run in parallel and the entire driver can run in parallel with other drivers and other system
activity. A driver may also increase its parallelism by using additional regions per driver instance
(secondary regions) and dividing the work into mutually parallel pieces.

5-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

projecy

“\UDI*

Configuration Model 6

6.1 Overview

There are two types of UDI driver configuration: static configuration and dynamic configuration. Static
configuration specifies the operational characteristics of the UDI driver and its related device and is set
in the distribution package for that driver. Dynamic configuration is the result of using that UDI driver
along with its static configuration in a running system.

6.2 Static Configuration

Each UDI driver is provided to end-users by distributing a driver package. That driver package includes
the driver itself along with information describing the driver and the associated device; this latter
information is thestatic configurationinformation for that UDI driver. The static configuration is

specified by the UDI driver developer as part of UDI driver development and included in the distribution
with standard UDI utilities.

6.2.1 Static Driver Properties

All UDI drivers (and libraries) have a set sthtic propertiesassociated with them and contained in a
separate file diprops.txt) that must accompany the driver installation package. These static
properties describe the driver and its associated device. They provide identification information about
the driver, including the name of the driver, the description of the device(s) that are managed by the
driver, and the relationship between UDI objects used by the driver.

To provide the required level of UDI portability, no assumption can be made about the target system
beyond the general configuration specified by the ABI binding for that target. Therefore the UDI static
properties supply all additional information needed to configure and control a device in the target
system, including obtaining operational configuration parameters from the user or system adminstrator.

All UDI drivers (and libraries) have a set of static properties associated with them and contained in a
separate filediprops.txt), which is intended to accompany the driver installation package. The
static properties file also indicates which additional files are needed to complete the package, including
specifying driver source code files and build rules for source code distributions.

6.2.2 Initialization Structures

Each driver must contain a set of static initialization structures that describe the internal structure of the
driver and the corresponding environment objects needed or referenced by the driver, as defined in
Chapter 10;Initialization” . These structures are linked together and hung off of the driver's central
initialization structure (di_init_info). This allows the UDI environment to examine the structures

UDI Core Specification - Version 1.01 - 2/2/01 6-1
Section 2: Architecture

Static Configuration Configuration Model

before executing any driver code and determine and prepare for the operational needs of that driver. The
initialization structures supplement the information specified in the static driver properties with
information, such as sizes of structures, best contained in driver source code.

A similar approach is used in UDI metalanguage libraries, basedidn meta_info global variable
in each library.

6.2.3 Building UDI Drivers

Each target environment for a UDI driver will probably have a different set of tools or names for those
tools, as well as options appropriate to that toolset or environment that are required for building device
drivers. To standardize this information, UDI defines udéuild utility which is required for all

UDI environments that support building UDI drivers from source code. The implementation of the
udibuild utility and the operations it performs are defined by the target environment and will include
compiling the various driver module source files to create the UDI driver.

Theudibuild utility is designed to be portable and applies only to UDI driver builds; it replaces more
conventional tools such as “make” and “build” which require additional system-specific information to
operate correctly. Thadibuild utility cannot be used for generic (non-UDI) purposes and uses the
udiprops.txt static properties file to obtain information about the driver’'s source files and
corresponding build options.

6.2.4 UDI Packaging

To portably distribute UDI drivers and libraries, UDI defines the packaging format and a tool that may
be used to generate that package. This packaging format is understood by various UDI tools to assist in
creating and installing packages and may be placed onto distribution media for physical distribution.

UDI defines the format of the package itself, but does not specify the methods which are to be used in

placing that package on the distribution media. Local media access methods and utilities may be used

since these activities are not covered by the UDI portability guarantees, but ultimately the package must
be delivered to the UDI tools in its original form, as a hierarchy of files.

To create packages, UDI specifies tidtmkpkg utility, which must be available on all UDI

development environments and will create a UDI package from a set of UDI device driver source code
and/or binary objects. Thedimkpkg utility uses the information in the driver’s static properties (from
udiprops.txt) to locate the components of the package and construct the package itself. The
udiprops.txt static properties file is also part of the package so that the proper information is
available to the UDI package installation tools; for source distributions, it is included as a separate file;
for binary distributions, is it encapsulated in the driver binary itself (often using a special section of the
object file) by theudimkpkg tool.

6.2.5 UDI Package Installation

Once a package has been physically distributed to the target system, the system administrator uses the
udisetup utility to install the package onto that system. Tidéesetup utility is defined to be

present for all UDI target environments but its activities will be customized to the local environment to
properly install the UDI driver and associated files.

6-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Configuration Model Dynamic Configuration

Theudisetup utility may invoke the udibuild utility for source code distributions. Not all

environments are required to support source code distributions; thus, a particular environment might not
include audibuild utility. Such environments will not be able to utilize a UDI source code

distribution.

6.3 Dynamic Configuration

6.3.1 Device Tree

The UDI target environment is typically described in terms of a “device tree”, which represents the
hardware topology for that environment. For example, the base of the tree may be the system board or
processor-memory interconnect, which has one or more buses as its branches (children), each of which
may have an adapter plugged into them as leaves (grandchildren).

The depth of the tree is system-specific and the presence of multiplexers will make this routing
significantly more complex. Each node in the tree is potentially managed by a different driver (UDI or
otherwise), depending on the type of device represented by each node.

6.3.2 Driver Instantiation

For each device tree node that is managed by a UDI device driver, the UDI environment will instantiate
an instance of that device driver. If multiple devices of the same type are present in the device tree, the
UDI environment may choose to use the same code segment for all of those devices but is required to
instantiate a separate logical instance of the driver for each device. This instantiation creates
independent driver instances that separately manage and operate their corresponding devices.

6.3.3 Device Node Enumeration and Attributes

Each UDI driver (except “leaf” drivers) assists in the creation of the device treeubyeratingeach of

its child devices for the UDI environment. During this enumeration, the driver specifieauheeration
attributesof that child, which allows the UDI environment to match those attributes with the information
supplied in the installed UDI drivers’ static properties, and therefore to locate the appropriate driver to
manage each child device.

When each UDI driver instance is instantiated, that device/driver node will receive a set of instance
attributes which describe that node. Some of these attributes will have been supplied by the parent in the
form of enumeration attributes. Other attributes are supplied in the form of persistent attributes, which
were set the last time this driver was instantiated (typically via system administrator input), and were
preserved by the system in the persistent storage database (if it exists).

6.3.4 Driver Inter-Instance Binding

Each driver should use the information provided by its instance attributes to prepare for operation and
then issue a metalanguage specific bind request to the parent device that enumerated it. Each
metalanguage describes the details of the bind request for that metalanguage. Successful completion of
that bind operation will supply all of the additional information needed by the UDI driver instance to
manage its device. The UDI driver is then responsible for managing and operating its device until
subsequently instructed to unbind, whereupon it will be removed from the device tree.

UDI Core Specification - Version 1.01 - 2/2/01 6-3
Section 2: Architecture

Dynamic Configuration

Configuration Model

6-4 UDI Core Specification - Version 1.01 - 2/2/01

Section 2: Architecture

r
"L (]

By U D [.'1IU

Calling Sequence and Naming Conventions 4

7.1 Overview

This chapter defines naming and calling conventions that apply to UDI environment interfaces in
general. All calls of certain general types have common properties.

This chapter also defines conventions for metalanguage-specific interfaces. Some of these conventions
are specified as strict requirements for all metalanguages; others are simply recommendations that may
be overridden by metalanguage designers.

Generally, conventions covering required function parameters and types are strict requirements, while
conventions covering function, parameter, and macro naming are recommendations. Metalanguage
designers are free to use different naming conventions as long as the interface requirements defined
below are met and the resulting names would be considered unique within the UDI interface namespace
(at least as unique as the recommended conventions described in this chapter).

There are two function call categories to which these conventions apply: channel operations and
asynchronous service calls. For more details on function call categorization see Section 4.8, “Function
Call Classifications,” on page 4-4.

In addition, conventions apply to the naming of metalanguage-specific channel ops vector types and
control block group numbers.

UDI Core Specification - Version 1.01 - 2/2/01 7-1
Section 2: Architecture

Channel Operations Conventions

7.2 Channel Operations

Channel operations are invoked by a driver or by the environment and result in a procedure call to an
operation entry point in another region. The calling sequence for the invocation of a channel operation
(caller-side interface) is identical to the calling sequence for the corresponding entry point (callee-side
interface). Caller-side functions have specific names, sucidiagio_xfer_req . Callee-side

functions have the same prototype as the caller-side equivalent, but will have names private to the driver,
such asmy _gio_xfer_req , and should be static symbols.

7.2.1 Channel Operation Invocations

Channel operations are metalanguage-specific. The invocation calls have declarations with the following
form:

void <<meta>>_<<op>> (
<<meta>>_<<cbtype>> cb t* cb,

...<<call-dependent parms>>...);
where:
<<meta>> is a distinct prefix identifying the metalanguage, usually beginning with the
prefix, “udi_ .
<<op>> identifies the particular channel operation within the metalanguage.
<<cbtype>> identifies the particular control block type within the metalanguage.
cb is a pointer to the semi-opaque metalanguage-specific control block, of

type <<meta>>_<<cbtype>> _cb_t , for this operation.

<<call-dependent parms>> are the zero or more metalanguage-dependent parameters for this particular
channel operation.

Channel operation invocation calls are required to begin with an argument with the semantics described
above forchb. The name of this argument and the naming<heta>>, <<op>>, and <<cbtype>>
are up to the metalanguage designer, but the above naming conventions are recommended.

The target channel over which to send the operation is determined by the vethiegeb.channel
The particular channel type to use for the operation is specified IFARSGET CHANNEL section of
the reference page defining the operation.

7.2.2 Channel Operation Entry Points

The corresponding operation entry point in the target driver can have any name, but by convention has
the same name as the invocation call with the initiai " prefix replaced by a driver-specific prefix,
“ddd.” In any case, the arguments will be as shown in the following declaration:

static void ddd _<<meta>>_<<op>> (
<<meta>>_<<cbtype>> _cb_t* cb,
...<<call-dependent parms>>...);

This is the same as the calling sequence for the corresponding channel operation invocation.

For example, one driver may call:
udi_intr_event_ind(intr_event_cb, flags);

This would result in an invocation of the target driver's entry point routine for the target channel for this
operation:

7-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Conventions Channel Operations

udi_intr_event_ind_op_t my_intr_event_ind;

my_intr_event_ind(intr_event_cb, flags);

For convenience in the declaration of ops vector types and operation entry point forward declarations, a
standard typedef shall be defined by the metalanguage header files for each operation type, in the form:

typedef void <<meta>>_<<op>>_op_t (
<<meta>>_<<cbtype>> _cb_t* cb,
...<<call-dependent parms>>...);
UDI Core Specification - Version 1.01 - 2/2/01 7-3

Section 2: Architecture

Asynchronous Service Calls Conventions

7.3 Asynchronous Service Calls

Asynchronous service calls are calls to the environment in which the result may not be immediately
available and is therefore supplied via a callback routine rather than as a direct return value of the
service call itself (see Section 4.8.1.2). These types of calls are a core mechanism of the non-blocking
UDI model of execution.

7.3.1 Asynchronous Service Call Invocations

Asynchronous service calls all have declarations with the following form:
void udi_ <<category>> _<<service>> (
udi_ <<category>> _<<service>> _call_t* callback
udi_cb_t* gcb,

...<<call-dependent parms>>...);
where:

<<category>> is a distinct prefix identifying the service category, suchbas * for
buffer management.

<<service>> identifies the particular service within the category.

callback is a pointer to the driver’s callback routine, of type
udi_ <<category>> _<<service>> _call_t

gch is a pointer to a generic control block.

<<call-dependent parms>> are the zero or more specific additional parameters for this service call.

7.3.2 Associated Callback Functions

Callback functions are called upon completion of the service request. The declaration for each callback
type appears on the reference page along with the associated service call, in the following form:

typedef void udi_ <<category>> _<<service>> _call_ t (
udi_cb t* gcb,
...<<callback-dependent parms>>...);

where:
<<callback-dependent parms>are zero or more additional parameters specific to this callback type.

In the driver's code, the callback routine would appear as:

static void ddd_<<category>>_<<service>>_callback (
udi_cb t* gcb,
...<<callback-dependent parms>>...)

{

}

For example, a driver may call the environment as follows to obtain a new control block:
udi_cb_alloc(&my_cb_alloc_callback, gcb, my_cb_idx, chan);

which will result in calling the following callback when the allocation is complete:

7-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

Conventions Asynchronous Service Calls

udi_cb_alloc_call_t my_cb_alloc_callback;

my_cb_alloc_callback(gcb, new_cb);

7.3.3 Control Block Type Conversion

Although the asynchronous service calls are defined to use a “generic control block”, the driver may use
any control block for this purpose because all control blocks are a superset of the generic control block
definition. The control block passed to a driver via a channel operation entry point is typically used for
all asynchronous service calls and the subsequent channel operation made while processing that
operation.

The UDI_GCB() macro (defined on page 11-11) is provided for convenience in converting a specific
control block pointer to a generic control block pointer, in order to pass it to a service call. Using this
macro, a typical asynchronous service call invocation becomes:

udi_ <<category>> _<<service>> (callback, UDI_GCB(cb), ...);

The UDI_MCB() macro (defined on page 11-12) is provided for convenience in converting a generic
control block pointer back to a specific control block type. Using this macro, a callback routine typically
begins with:
<<meta>>_<<cbtype>> _cb t*ch=
UDI_MCB(gcb, <<meta>> <<cbtype>> _cb t);

UDI Core Specification - Version 1.01 - 2/2/01 7-5
Section 2: Architecture

Channel Operations Vectors Conventions

7.4 Channel Operations Vectors

The channel operations vector structure (“ops vector”) used with each type of channel endpoint is
defined in each metalanguage. These structures generally have declarations of the following form:
typedef struct {
udi_channel_event _ind_op _t* channel_event _ind_op ;
<<meta>>_<<op_1>> op_t* <<op_1>> op;

<<meta>>_<<op_N>>_op_t* <<op_N>>_op;
} <<meta>>_ <<role>> ops_t ;

where:
<<meta>> and<<role>> are defined as above in the “ops_init” calling sequence.

<<op_1>>.<<op N>> identifies one or more channel operation entry point types that belong to
this ops vector. These have the callee-side calling sequences defined in
Section 7.2.2, “Channel Operation Entry Points”.

Each entry in the ops vector is the driver’s entry point for the corresponding channel operation.

Associated with each ops vector definition is a metalanguage-defined number that identifies this ops
vector type with respect to others in the same metalanguage. Metalanguages must define both the
numeric value and a mnemonic to use for that value. The mnemonic is typically named:

<<meta>>_<<role>> _OPS_NUM

where:
<<meta>> and<<role>> are upper-case versions of those used in the above type definition.

7.5 Control Block Groups

Associated with each control block group is a metalanguage-defined number that identifies this control
block group with respect to others in the same metalanguage. Metalanguages must define both the
numeric value and a mnemonic to use for that value. The mnemonic is typically named:

<<meta>>_<<cbgroup>> _CB_NUM

1. The Management Metalanguage deviates from this form in that it doesn’t¢teasenel_event_ind_op as the first
member; all other metalanguages must have the first member ofdiypgbannel_event_ind_op_t as shown here.

7-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 2: Architecture

ect

UDI Core Specification

Section 3: Core Services

UDI Core Specification - Version 1.01

r
(]

%]J' U D L o

General Requirements 8

8.1 Versioning

All functions and structures defined in the UDI Core Specification, except for those defined in Chapter
25, “Generic I/0 Metalanguage”and Chapter 28Metalanguage-to-Environment Interfaceare part

of the *“udi ” interface, currently at versiorD%101 ”. A driver or library module that conforms to the

UDI Core Specification, Version 1.01, must include the following declaration indifgops.txt

file (see Chapter 30Static Driver Properties”:

requires udi 0x101

In each device driver or library source file, before including any UDI header files, the driver or library

must define the preprocessor symhbdD|I VERSION to indicate the version of the UDI Core

Specification to which it conforms, which must be the same as the interface version defined above:
#define UDI_VERSION 0x101

As defined in Section 30.4.6, “Requires Declaration,” on page 30-6, the two least-significant
hexadecimal digits of the interface version represent the minor number; the rest of the hex digits
represent the major number. Versions that have the same “major version number” as an earlier version
shall be backward compatible with that earlier version (i.e. a strict superset).

8.2 Header Files

Each device driver source file must include the filelith
#include <udi.h>

”

, as follows:

This header file contains environment-specific definitions of standard UDI structures and types, as well
as all function prototypes and other definitions needed to use the core UDI interfaces and services.
Additional header files will need to be included, as required by other UDI specifications relevant to the
device driver, for interfaces such as non-core services, metalanguages, bus bindings, etc. UDI drivers
must not include any system header files not explicitly specified within a relevant UDI specification.

To maintain portability across UDI supportive platforms, device driver writers shall not assume any
knowledge of the contents afli.h with respect to implementation-dependent aspects of the UDI
interfaces (such as the definition of handles or abstract types). Similarly, drivers shall not access any
functions or objects external to the driver except those defined in the UDI Specifications to which they
conform.

1. As an exception to this version compatibility, version 1.0 (0x100) is not forward compatible with any other versions bearing
the major number of 1; version 1.0 of the specification cannot be wholly implemented as a functional product.

UDI Core Specification - Version 1.01 - 2/2/01 8-1
Section 3: Core Services

C Language Requirements General Requirements

8.3 C Language Requirements

UDI device drivers that are written in C must be compiled usingrdorming freestanding
implementatiorof ISO C and must bstrictly conforming freestanding progranits conformance with
ISO/IEC 9899:1990.

All symbols with global scope will be treated uniquely to 31 characters for UDI implementations in
accordance with the above 1ISO C specification.

8.4 Endianness Requirements

The ordering of bytes within a data value stored into memory directly by a UDI driver is referred to as
thedriver endiannes®sf the driver. This ordering is typically based on the native byte ordering of the
processor’s instruction set, but can also be influenced by the storage model of the compiler with which
the driver was compiled. UDI drivers must be compiled to execute with a driver endianness that is purely
little endian or purely big endian. (See the definitiondigfendian andlittle endian in Section 3.2.2,
“Common Terms,” on page 3-2.)

8-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

projecy

“\UDI*

Fundamental Types 9

9.1 Overview

This chapter defines the C language type declaration conventions used by UDI. Other language bindings
could be created for UDI; some of the syntax would differ, but the principles and the UDI-defined names
listed here would be the same. In particular, UDI interfaces may be accessed from assembly language
code, as long as the shape of data structures and calling conventions are made to match the C language
conventions for the target platform.

For the most part, UDI avoids the use of standard C data types, since the sizes used for these data types
are generally not specified by ISO C. Instead, UDI defines a sgiedfific-length typethat are

guaranteed to be specific sizes and a sabefract typeshat are sized appropriately for a given class of
environment implementations. UDI also defirgsaque typeshat are used to refer to objects that may

not be directly manipulated by drivers, aseimi-opaque typethat have visible parts and opaque parts.
Header files provided by each environment implementation contain appropriate definitions of each of the
above sets of data types.

All UDI interfaces and declarations are based (directly or indirectly) on the UDI-defined fundamental
types listed in this chapter. The only standard ISO C types included as UDI fundamental tghas are
void, and the varargs types listed in Section 9.2.4.

UDI drivers must use the UDI-defined types for data objects and interfaces specified by UDI. It is also
recommended that UDI drivers use UDI-defined typesn for driver-internal variables and structures

to avoid platform-dependent size assumptions. It still may be useful, however, to udetype for a
driver-internal variable that neetise most efficient size that isn't particularly lar{edearly a very

vague definition); if used, it should not be assumed that the sizeiof enbigger than 16 bits, but it is
reasonable to assume thatianis at least 16 bits since this is guaranteed by the ISO C standard. The
ISO C standard also guarantees that the sizdmiais at least 32 bits. For maximum portability, only
guantities that fit into 32 bits should be storedang variables.

While recommended for all drivers, drivers distributed as source code are particularly required to avoid
non-portable use of ISO C data types, as described above.

UDI drivers may use floating point arithmetic or data types only in very restricted circumstances. The
driver must indicate in its region attributes that floating point will be used (see Section 30.6.8, “Region
Declaration,” on page 30-18). When this attribute is present, the environment will, if possible, load the
region into a domain that can support floating-point operations; otherwise, this driver will be rejected.
Not all environments support the use of floating point in UDI drivers. Some environments may only
support floating point in user-space domains. In all cases, use of floating-point types is limited to code
within a region; there are no UDI service calls or channel operations that support floating-point types.

UDI Core Specification - Version 1.01 - 2/2/01 9-1
Section 3: Core Services

Usage of Standard ISO C Data Types and Macros

Note —Separate ABI specifications (s&hapter 2, “Document Organization”and “Section 6: MEI
Services”) define binary bindings for the UDI interfaces, including such things as the sizes of
data types, calling conventions, and object file formats. The UDI Core Specification and other
non-ABI UDI specifications support the capability of binary portability, but themselves provide
source portability.

9.2 Usage of Standard ISO C Data Types and Macros

The following standard 1SO C types and macros are used by UDI, and are available to UDI drivers and
libraries by including the UDI-defined header fileyjdi.h >. UDI drivers and libraries must not include
<stddef.h > or other ISO C header files.

9.2.1 ISO Cchar Type

UDI supports the standard ISOdBar type to refer to an 8-bit byte value.

Pointers tochar (char *) are used to represent text strings, as in ISO C. Strings are null-terminated
and may use Unicode characters encoded as a UTF-8 byte stream. ASCII as a subset of this encoding
(that is, characters that are included in the ASCII set are encoded as separate successive 8-bit bytes
using the zero-extended 7-bit ASCII encodings, and no combination of characters outside this set result
in encodings that include bytes with the high bit clear). All specific string constants specified by UDI
shall contain only ASCII characters.

9.2.2 ISO Cvoid Type
UDI supports the standard ISOWid type.

There are two uses in UDI for tweid type. The first is as the “return value” of a function that has no
value to return, or to indicate a null argument list. This is standard ISO C usage and is very common in
uDl.

The other use of theoid type is as a pointgvoid *) to an unformatted block of memory in the
driver’s virtual address space. Such pointers, cajlteric pointersmay be cast to (or from) any other
pointer type, but may not be dereferenced directly.

9.2.2.1 Null Pointers

The special symbolNULL, is an implementation-defined null pointer constant, as defined by ISO C. It

is guaranteed to compare equal to zero and unequal to any valid pointer to any statically or dynamically
allocated memory object. Some UDI service calls attach special meaning to a pointer value of NULL, as
called out in the documentation of those functions. Where not otherwise mentioned, NULL is treated as
any other illegal value: it must not be passed to any UDI service call nor should it ever be expected to

be returned by UDI services.

9-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Notation for Implementation-

9.2.31SO Csizeof andoffsetof operators

UDI drivers and libraries may us&zeof andoffsetof , as defined by ISO C. When used with UDI-
conformant data structures, the values resulting from these operators shall be compatible with the UDI-
definedudi_size t type (see Section 9.5, “Abstract Types,” on page 9-6). That is, these values can be
passed as parameters or assigned to variables ofitipgize t without loss of information.

9.2.4 Varargs Types
UDI supports the standard 1ISO C variable argument list types.

The varags types supported in UDI are provided by tidi.k> include file:

® va_listis a type defined for the variable used to traverse the list.

In addition to supporting the above varargs types, UDI environments shall provide the following macros
and functions to manipulate these argument list variables:

® va_start is called to initialize a variable of type_list to the beginning of the variable
argument list.

® va_arg will return the next argument in the list pointed to byaalist variable.

® va_endis used to terminate processing of a variable argument listvaylest variable.

For additional information on using variable argument lists the ISO C documentation should be
consulted; UDI deviates from that document only in the name of the header file used to obtain the type
and macro declarations. UDI drivers must not #inclagiglarg.h> directly; any definitions needed

for varags support will be provided by #includirgdi.h>

Warning — ISO Cva_arg has unspecified behavior when used with integral types
smaller tharint, and many compilers will disallow this. Since UDI data types are
defined as fixed sizes (e.gdi_ubit32_t), a portable UDI driver cannot know
whether or not some of these sizes are smaller shzaof(int) . Therefore, instead
of usingva_arg directly with UDI data types, UDI drivers must use tel_VA ARG
macro (defined on page 9-30). The ISQv& arg may still be used for standard types
whose size is equal to or larger than the siz@tofnotablyint and pointers), although
for orthogonality thadUDI_VA_ARGmay be used for those types as well.

9.3 Notation for Implementation-Dependent Types and Constants

Wherever possible, UDI-defined types and interfaces are represented in the text of the specification by
their actual declarations, in standard ISO C syntax, as they would appear in UDI header files. In cases
where the details are implementation-specific (usually because of platform differences in sizes of
integral data types) placeholderdesignator is used in place of the missing detail. In actual header files
the placeholder would be replaced with the appropriate valid C syntax.

UDI Core Specification - Version 1.01 - 2/2/01 9-3
Section 3: Core Services

Specific-Length Types Fundamental Types

Placeholder designators are shown with angle brackets, and will be one of the following:

Table 9-1 Placeholder Designators

Designator Meaning

<INTEGRAL> signed or unsigned integral type of appropriate size
<OPAQUE> self-contained opaque type

<HANDLE> handle type for environment-internal opaque objects

<NULL_HANDLE> implementation-dependent null handle constant value

“<INTEGRAL> " is used with specific-length types and abstract type®PAQUE>" is used with self-
contained opaque types, andHANDLE>" is used with handle types, as described below.

Mnemonic constants (C preprocessor macros) are defined usi#gdfiee syntax. Mnemonic

constants defined in UDI specifications are defined with specific values, with the exception of null

handle constants, such @®I_NULL_CHANNELSince the underlying handle type for null handle

constants are implementation-dependent, the constant expression used to create a null handle constant is
also implementation-dependent. “<NULL_HANDLE>" is used to represent such a constant expression.

9.4 Specific-Length Types

UDI specific-length typeare defined to provide basic integer types, both signed and unsigned, which
are guaranteed to be of the specified size and the specified range of valid values. These are all integral
types, to which arithmetic and logical operations may be applied.

Implementations of the UDI environment will provide typedefs for the following types that will maintain
the size and semantic definitions given below:

typedef <INTEGRAL> ud i_shit8 t; F signed 8-bit; -2 7.2 71
typedef <INTEGRAL> ud i_shitl6 t; I signed 16-bit; -2 15,2 151 %
typedef <INTEGRAL> ud i_shit32_t; I signed 32-bit; -2 81,2 31
typedef <INTEGRAL> ud i_ubit8 t; F*unsigned 8-bit: 0..2 8-1 %/
typedef <INTEGRAL> ud i_ubitl6 t; Funsigned 16-bit; 0..2 6.1 %/
typedef <INTEGRAL> ud i_ubit32_t; Funsigned 32-bit; 0..2 821 %/
typedef udi_ubit8 t ud i_boolean_t; ¥ O=False; 1..2 8-1=True */

Note —There are by design no 64-bit specific-length types. UDI is designed to work with compilers that
do not support 64-bit integral types. In the few rare cases where 64-bit quantities are needed
(such as for physical addresses) they are represented either as a pair of 32-bit values or as a self-
contained opaque type (see Section 9.6.2 below).

The following constants are defined for use with_boolean_t

#define FALSE 0
#define TRUE 1
9-4 UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

Fundamental Types Specific-Length Types

These are intended for use in assignment statements. It is not safe to compare a boolean value against
the constant TRUE since, for example, 57 is also a valid true value and 57 does not equal 1. Boolean
variables should instead be tested by direct application af #$tatement in ISO C:

if (boolean_variable) /* then true */

if ('boolean_variable) /* then false */

This is guaranteed to work since any non-zero value of the tested expressionfcautd® the “then”
branch.

Similarly, boolean variables can be tested in conditional expressions; e.g.,
x = (boolean_variable || (some_other_expression)) ? a_value : b_value;
x = ('boolean_variable && !(some_other_expression)) ? b_value : a_value;

without comparing the boolean variable agailRUEor FALSE

Care must also be taken when assigning valueslitdoolean_t variables. For example, the
following assignment statement could cause trouble:

boolean_variable = (flags & FLAG);

If the value of FLAG were 0x100 or greater, a true value (FLAG set in flags word) would be truncated
in order to fit into the 8-biboolean_variable . The value would then incorrectly become FALSE.
To avoid this problem you must either know that FLAG would never be 0x100 or greater, or use one of
the following constructs:

boolean_variable = !(!(flags & FLAG));

boolean_variable = ((flags & FLAG) != 0);

UDI Core Specification - Version 1.01 - 2/2/01 9-5
Section 3: Core Services

Abstract Types Fundamental Types

9.5 Abstract Types

UDI abstract typesre integral types whose size is implementation-dependent. Each environment
implementation chooses a size for each of these types that is appropriate for the way in which it can be
used on a given platform. By keeping the sizes abstract, UDI can efficiently adapt to the needs of
different platforms, and can evolve over time as needs change.

UDI abstract types are all integral types, to which arithmetic and logical operations may be applied.

Note —As ABIs are defined for binary portability, the sizes of abstract types will become part of each
ABI definition. All implementations supporting the same ABI will have to use the same sizes. If
a size were to change at some point, that effectively produces a new ABI, and all affected
modules would require recompilation to use the new ABI.

9.5.1 Size Type

A driver refers to the number of bytes needed in, being read from, or written to, a buffer by using a size
type. The size type is also used for buffer offsets, device memory offsets, and memory object sizes (zero
offset refers to the first byte position). This type will be used in many places and it may need to vary
across different classes of platforms depending on platform needs and constraints. Therefore, UDI refers
to size with the following type:

typedef <INTEGRAL> ud i_size_t; f* buffer size */

Because of architectural minimums on some of the defined size limits (e.gdisémits t on page
10-18)udi_size_t is guaranteed to be at least 16 bits in size. Sincedhsize_t type can
represent different ranges of values in different domaids,size t variables are not transferable
between regions.

9.5.2 Index Type

A driver refers to a (“relatively small”) zero-based index value viauttieindex_t type (i.e., zero
corresponds to the first element). Tidi_index_t type is guaranteed to be able to hold values from
0 to 255, inclusive; only values in this range shall be used.

typedef <INTEGRAL> ud i_index_t; f* zero-based index type */

When index values are used to refer to environment objects, as in the sub-sections below, the values are
global to an entire driver and all of its instances, even if a driver consists of multiple modules.
udi_index_t variables are transferable between regions.

9.5.2.1 Control Block Index

A udi_index_t variable may be used to holccantrol block indexA control block index is used to

identify a control block group registered viaidi_cb_init_t structure (seedi_cb_init_t on page

10-11) so it can be subsequently used to allocate control blocks or select scratch sizes and other control
block properties.

9-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Abstract Types

Zero is reserved for future use as a special control block index value. It is illegal to use the value zero
anywhere a control block index is expected.

9.5.2.2 Metalanguage Index

A udi_index_t variable may be used to holdretalanguage indeXA metalanguage index is used to
identify one of possibly several metalanguages used by a driver. Metalanguages are associated with
metalanguage indexes value via “meta” declarations in the driver’'s Static Driver Properties (see Chapter
30). A metalanguage index of zero indicates the Management Metalanguage. Metalanguage index values
are used with the tracing and logging services to associate certain types of events with specific
metalanguages.

9.5.2.3 Ops Index

A udi_index_t variable may be used to hold aps indexAn ops index is used to identify a channel
operations vector registered viadi_ops_init_t function (seaudi_ops_init_t on page 10-9) so it
can be subsequently used to anchor channels or set default channel types.

Zero is reserved as a special ops index value that indicates that no ops are specified. This is used to
spawn unanchored channels (se& channel_spawn on page 16-4), or to terminate a list of
structures containing ops index values.

9.5.2.4 Region Index

A udi_index t variable may be used to holdegion index A region index is used to identify a
driver-defined region type, so that region attributes can be associated with regions created by or on
behalf of a driver instance. Region index zero always refers to the primary region of a driver instance.
Secondary regions must use non-zero values for region index.

UDI Core Specification - Version 1.01 - 2/2/01 9-7
Section 3: Core Services

Opaque Types Fundamental Types

9.6 Opaque Types

UDI definesopaque typesor objects whose contents are implementation-specific but whose semantics
are strictly specified. Opaque objects are not directly visible to drivers, but are instead managed entirely
by the environment. Drivers may only use opaque values by passing them from one environment
interface to another.

Opaque types must not have arithmetic or logical operations applied to them and they must not be
dereferenced. The only type of operation which may be applied to an opaque type is assignment (which
includes argument passing and function return values). It is not even legal to directly compare two
opaque values for equality.

There are two sub-categories of opaque types: handles and self-contained opaque types.

Note —To facilitate binary portability across the same instruction set architecture, UDI environment
implementations are likely to use an ABI-specified size for each opaque type, even though that
may be larger than needed by some environments. (This refers to the size of the opaque type
itself, not the sizes of any objects that might be referenced by opaque handles.)

9.6.1 Opaque Handles

Since opaque objects cannot be accessed directly, most are referenced indiregthquia handles
Opaque handles have “reference” semantics like C language pointers, but the actual type used to
implement handles is implementation-specific. Only the environment knows how to directly interpret an
opaque handle or the object to which it refers.

If a handle is assigned to two different variables and the object is modified (via an environment routine)
using one variable, the other variable still refers to the same, modified object. The objects themselves are
owned and managed by the environment.

Each handle type has a corresponding “null” value, for which a unique UDI_NULL_XXX mnemonic
constant is defined. This null value is different from any values for handles that reference actual objects,
and is reserved for special circumstances when it is necessary to indicate “no object.” Drivers must not
compare handle values for equality, but the UDI_HANDLE_IS_NULL macro can be used to determine
if a handle variable currently holds a null value. (Pointers, on the other hand, may be compared against
NULL directly.)

A handle whose contents have been zeroed is considered equivalent to the corresponding
UDI_NULL_XXX null handle value. The zeroing may be a result of the initial allocation of the handle
variable (as initial region data, or by usindi_mem_alloc without the UDI_MEM_NOZERO flag),

or may be done explicitly by the driver, usindi_memset .

Service calls that free opaque objects through their handles act as no-ops when passed null handles.
Where not otherwise mentioned, null handles are treated as any other illegal value: they must not be
passed to any UDI service call nor should they ever be expected to be returned by UDI services.

1. In most cases, testing for equality should not be needed; drivers store opaque values in their own structures and pasg tmenent
routines later. In cases where an equality check is useful, an environment routine is provided.

9-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Opaque Types

Some opaque handle types #&ansferable others are not. An object of a transferable opaque handle
type may be passed from one region to another via a channel operation. Non-transferable opaque objects
are local to the region in which they were allocated and may not be passed between regions.

Many UDI objects are manipulated via handles.

UDI Core Specification - Version 1.01 - 2/2/01 9-9
Section 3: Core Services

udi_channel t Fundamental Types

NAME

SYNOPSIS

DESCRIPTION

WARNINGS

REFERENCES

udi_channel _t UDI inter-module communications
handle

#include <udi.h>
typedef <HANDLE> udi_channel_t ;

/* NULL channel handle constant */
#define UDI_NULL_CHANNEL <NU LL_HANDL
E>

UDI Drivers communicate with other drivers and with certain environment
modules (e.g. the Management Agent) via bi-directional communication
channels established during configuration. Channels are point-to-point and
have two ends. The object which keeps track of a particular end of a
communication channel between two modules is called the channel object,
which is referred to by a channel handle.

Channel handles are transferable between regions if and only if they refer to
loose ends(See “Channels” on page 4-2.)

Drivers must not compare handle values for equality, but the
UDI_HANDLE_IS NULL macro can be used to determine if a handle
variable currently holds a null value.

udi_channel_event_ind , udi_channel_anchor
udi_channel_close, UDI_HANDLE_ IS NULL

’

9-10

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types udi_buf path t

NAME
SYNOPSIS

DESCRIPTION

WARNINGS

REFERENCES

udi_buf_path_t Buffer path routing handle
#include <udi.h>
typedef <HANDLE> udi_buf path_t ;

/* NULL buffer path handle constant */
#define UDI_NULL_BUF_PATH <NU LL_HANDL
E>

When a driver allocates a UDI buffer, it associates it wibhféer path Buffer

paths indicate intended destinations for data buffers, typically associated with
the allocating driver’s parent. Drivers refer to buffer paths via opagtfer

path handles

Path handles are explicitly allocated (wdi_buf_path_alloc), or

provided to a driver instance vialDl_CHANNEL_BOUNBhannel event
indication; the driver indicates how many path handles are needed on a per-
parent basis and the environment provides that number of handles each time a
parent is bound to the driver.

Buffer path handles are not transferable between regions.

Drivers must not compare handle values for equality, but the
UDI_HANDLE_IS NULL macro can be used to determine if a handle variable
currently holds a null value.

UDI_HANDLE_IS_NULL, udi_channel_event_ind,
udi_buf_copy, udi_buf_write

UDI Core Specification - Version 1.01 - 2/2/01 9-11
Section 3: Core Services

udi_origin _t

Fundamental Types

NAME
SYNOPSIS

DESCRIPTION

WARNINGS

REFERENCES

udi_origin_t Request origination handle
#include <udi.h>
typedef <HANDLE> udi_origin_t ;

/* NULL origin handle constant */
#define UDI_NULL_ORIGIN <NU LL_HANDL
E>

Environments may use thagigin handleto maintain information about the
origination of a user request. Each driver is responsible for copying the origin
handle from received control blocks into any control blocks generated on
behalf of that received control block. This origin handle may be used by the
environment to maintain tracking, quota, or other information for the original
request from its point of origin. The origin handle is an opaque handle.

The driver may set theDI_NULL_ORIGIN value for a control block’s origin
field instead of copying an origin handle from another control block, but the
driver cannot not create or allocate origin handles itself.

Origin handles are transferable between regions.

Drivers must not compare handle values for equality, but the
UDI_HANDLE_IS NULL macro can be used to determine if a handle variable
currently holds a null value.

UDI_HANDLE_IS_NULL, udi_cb_t

9-12

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Self-Contained Opaque Types

9.6.2 Self-Contained Opaque Types

A self-contained opaque typmlds data that can be interpreted only by the environment. Unlike opaque
handles, these types have “value” semantics rather than “reference” semantics. That is, assignment
makes a copy of the entire object. If a self-contained opaque value is assigned to two different variables
and one is modified (via an environment routine), the other will retain the original value.

This means that allocation calls are not needed for self-contained opaque types; drivers simply declare
variables of this type and assign values to them.

Self-contained opaque types are not transferable between regions.

9.6.2.1 Timestamp Type

The timestamp type refers to a point in time, relative to an arbitrary starting point, in implementation-
specific units. The timestamp type has the following type definition:

typedef <OPAQUE> udi_timestamp_t;

As with abstract types, the size of thei_timestamp_t type is expected to vary according to the
needs of different environments.

Detailed usage of this type is described ungsr time_current on page 14-8.

9.7 Semi-Opaque Types

UDI definessemi-opaque type®r objects that have driver-visible fields, but also have implementation-
specific contents that are not visible to drivers. The driver-visible part of a semi-opaque object is defined
as a C structure; drivers refer to the object using a pointer to this structure.

Semi-opaque objects must only be allocated by the environment, since the driver doesn’t know how big
the whole object is. This is typically done by calling an environment-provided service call such as
udi_cb_alloc to allocate the object.

9.7.1 Control Blocks

UDI defines acontrol blocktype to provide context for asynchronous service calls and channel
operations. UDI control blocks are semi-opaque objects and are transferable between regions.

See Chapter 11Control Block Managementfor more details on control blocks.

9.7.1.1 Buffers

UDI defines abuffertype, which contains a variable-length collection of application or protocol data.

UDI buffer data consists of a byte string that is logically contiguous, but which may be both physically
and virtually segmented. In many cases, the actual storage will be of one or more structure types in the
embedding system. UDI hides these machine- and OS-dependencies within the buffer object.

UDI buffers are semi-opaque objects and are transferable between regions.

See Chapter 13Buffer Management”for more details on UDI buffers.

UDI Core Specification - Version 1.01 - 2/2/01 9-13
Section 3: Core Services

Structures Requiring a Fixed Binary Representation

9.8 Structures Requiring a Fixed Binary Representation

While drivers must specify the structure layout of certain driver-defined structures which are passed
between regions (as indicated in the previous subsection), drivers need not concern themselves with the
actual binary layout of such structures, or in general with the binary layout of UDI-defined structures or
other software-defined structures. Howevatdware-defined structureslefined by the device, bus, or
hardware protocol, generally require a fixed binary representation. UDI drivers, which are portable
across a range of platforms and operating environments, must carefully follow certain rules to create
these structures in a manner that will guarantee correct layout in all environments. Such structures are
required to be laid out in the appropriate endianness, with fixed alignment of multi-byte fields handled

in a platform-independent manner, and that each byte in the structure be accounted for.

Any C structure definitions used to represent hardware structures must be constructed at least according
to the following rules:

1. Must use only UDI specific-length types on naturally aligned boundaries (offsets) within
the structure. Bit-fields in the C language are not portable and must not be used (see the
warning below).

2. Every byte in the structure must be accounted for.

These rules must be restricted somewhat for protocol-defined structures, as defined in the section on
“Endianness Management” on page 22-2. Refer to that section for additional details on the construction
of hardware-defined structures.

Warning — Bit-fields in the C language are not portable and must never be used in the
definition of hardware-defined structures or in interfaces between independent software
components. This is because C is ambiguous about the ordering of bits in a bit-field,
allowing compiler implementations to order the bits differently even within a given
endianness. Therefore, bit-fields cannot be relied upon to reliably specify a placement of
bits in a portable manner.

9-14 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Common Derived Types

9.9 Common Derived Types

The types listed in this section are not, strictly speaking, fundamental types; they are derived from other
UDI-defined types and are not in any way implementation-dependent. However, they are common to
many areas of the UDI specification and so are described here.

9.9.1 UDI Status

Purpose:

To provide a uniform means of reporting status or error conditions within the I/O system. When an error
has occurred, provide a means of tracing dependent errors to root causes.

UDI Core Specification - Version 1.01 - 2/2/01 9-15
Section 3: Core Services

udi_status t

Fundamental Types

NAME
SYNOPSIS

DESCRIPTION

udi_status_t UDI status code

#include <udi.h>

typedef udi_ubit32_t udi_status_t ;

/* Mask Values and Flags for udi_status_t */
#define UDI_STATUS_CODE_MASK
#define UDI_STAT_META_SPECIFIC 0x0 0008000
#define UDI_SPECIFIC_STATUS_MASK 0x0 O0007FFF
#define UDI_CORRELATE_OFFSET 16

#define UDI_CORRELATE_MASK OxF FFFO0000

0x0 OOOFFFF

/* Common Status Values */

#define UDI_OK 0
#define UDI_STAT_NOT_SUPPORTED 1
#define UDI_STAT_NOT_UNDERSTOOD 2
#define UDI_STAT_INVALID_STATE 3
#define UDI_STAT_MISTAKEN_IDENTITY 4
#define UDI_STAT_ABORTED 5
#define UDI_STAT_TIMEOUT 6
#define UDI_STAT_BUSY 7
#define UDI_STAT_RESOURCE_UNAVAIL 8
#define UDI_STAT_HW_PROBLEM 9
#define UDI_STAT_NOT_RESPONDING 10
#define UDI_STAT_DATA_UNDERRUN 11
#define UDI_STAT_DATA_OVERRUN 12
#define UDI_STAT_DATA ERROR 13
#define UDI_STAT_PARENT_DRV_ERROR 14
#define UDI_STAT_CANNOT_BIND 15
#define UDI_STAT_CANNOT_BIND_EXCL 16
#define UDI_STAT_TOO_MANY_PARENTS 17
#define UDI_STAT_BAD_PARENT_TYPE 18
#define UDI_STAT_TERMINATED 19
#define UDI_STAT_ATTR_MISMATCH 20

UDI status values are 32-bit integers that are logically subdivided into a 16-bit
status coddield, and a 16-bitorrelation field. Modules within the UDI
environment must report status using this format. (“Modules” in the context of
this section refers to drivers and environment services.) A module reports
successful completion by setting the status valugDo OK

To separate and distinguish between common status codes and metalanguage-
specific status codes tlstatus codgin the low-order 16-bits, is further sub-
divided into a 1-bit “metalanguage-specific status flag” (0 = common status, 1

= metalanguage-specific status)—designated by

UDI_STAT_META_SPECIFIC, and a 15-bit “specific status

code"—designated byDI_SPECIFIC_STATUS_MASK

9-16

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types udi_status t

However, drivers do not generally need to be aware of this additional
subdivision because the status code values are defined to include the flag bit,
and drivers can just assign the UDI-defined status identifier into the
udi_status_t (taking into account the correlation field, as described
below). Metalanguage designers must make sure that
UDI_STAT_META_SPECIFIC s or'ed into each of their metalanguage-
specific status mnemonic constants.

When an error must be signalled, the reporting module selects an appropriate
status codevalue (either one of the common ones shown below, or a call-
specific or metalanguage-specific code appropriate to the context in which the
error is encountered) and assigns it intada status_t parameter. This
status value shall contain zero in the correlation field in order to indicate that
this is a new error, rather than a derivative error. Otiestatus_t value

is used in a call tadi_log_write (see page 17-7), which will record all

the data pertinent to the error in a logging file and assign a correlation value to
the error. This correlation value will be placed in the 16 most-significant bits
of theudi_status t on return. This combined value will be passed by the
driver to other entities that are affected by the error. When this error in turn
results in a derivative error worth logging (e.qg., lost link connection results in
a file access error) the next reporting module will replace the 16 least-
significant bits of theudi_status_t with a new appropriate value but will
maintain thecorrelation field contents. When called with a derivative status,
udi_log_write will record that same correlation value, together with all
the data pertinent to the new error. In this way, the individual entries in the log
file can be threaded together by the correlation value to trace back to the
original error for the root cause.

To check for a specific status code value, the driver writer can mask off the
correlation field and compare the remaining value:

if ((status & UDI_STATUS_CODE_MASK) == UDI_STAT_XXX)
handle_error();

UDI Core Specification - Version 1.01 - 2/2/01 9-17
Section 3: Core Services

udi_status t Fundamental Types

9.9.1.1 Common Status Codes

The UDI environment defines several status codes for use in reporting various common problems and
conditions within UDI drivers and metalanguages. It is important to note that any driver internal errors
will have indeterminate results but very likely will result in the driver instance being killed without ever
being re-entered, therefore there are no corresponding error codes defined for related conditions (e.g.
invalid argument errors). For related information see Section 4.10 on page 4-6.

UDI status error codes are defined with mnemonic constants as shown in the following table.

Table 9-2 Common UDI Status Codes

Status Code Value Meaning Description

UDI_OK 0 Success The request completed properly
without any exceptional conditions.

UDI_STAT_NOT_SUPPORTED 1 Not supported This operation is not supported by this

UDI environment implementation or
the combination of parameters
specified for this operation cannot be
supported by this environment or

hardware.
UDI_STAT_NOT_UNDERSTOOD 2 Request not The parameters specified for this
understood operation exceed valid ranges, or the

combination of parameters does not
make sense for this operation. Used
only for channel operations; if out-of-
range values are used with service
calls, the driver instance may be
terminated with extreme prejudice.

UDI_STAT_INVALID_STATE 3 Invalid state The request is understood and
implemented, but is not valid in the
current state. This is typically used for
channel operations; UDI service
operations are typically not stateful.

UDI_STAT_MISTAKEN_IDENTITY 4 Mistaken identity The request is understood and
implemented, but is inappropriate for
the device or other object to which it
refers. This is typically used when a
parameter selects a physical resource
that is not present for a particular

device.

UDI_STAT_ABORTED 5 Operation aborted The operation was successfully aborted
as a result of adi_cancel or
udi_channel_op_abort service

call or a metalanguage-specific
cancellation request.

UDI_STAT_TIMEOUT 6 Operation The operation had an associated
exceeded specified timeout value which was exceeded
time period causing this operation to be aborted.

9-18 UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

Fundamental Types

udi_status _t

Table 9-2 Common UDI Status Codes

Status Code

Value

Meaning

Description

UDI_STAT_BUSY

UDI_STAT_RESOURCE_UNAVAIL

UDI_STAT_HW_PROBLEM

UDI_STAT_NOT_RESPONDING

UDI_STAT_DATA_UNDERRUN

UDI_STAT_DATA_OVERRUN

UDI_STAT_DATA_ERROR

UDI_STAT_PARENT_DRV_ERROR

UDI_STAT_CANNOT_BIND

UDI_STAT_CANNOT_BIND_EXCL

UDI_STAT_TOO_MANY_PARENTS

7

10

11

12

13

14

15

16

17

Resource busy

No resources
available

Hardware problem

Device not
responding

Data underrun

Data overrun

Data error

Parent driver error

Cannot bind to
parent

Cannot bind
exclusively to
parent

Too many parents
for this driver

The device or associated resource is
currently busy and cannot handle this
request at this time (or queue this
request for later handling).

There are insufficient resources to
satisfy this request. There is no
guarantee or expectation that sufficient
resources will become available in the
future.

A problem has been detected with the
associated hardware that prevents this
request from being executed
successfully and is not covered by a
more specific error indication.

The device is not present or not
responding.

A data transfer from a device
transferred less data than expected.

A data transfer from a device attempted
to transfer more data than expected.

Data corruption was detected during a
transfer, typically by a parity or
checksum check.

A parent (or ancestor) of the driver
reporting this condition has
encountered an error that has prevented
the request from being successfully
executed. There will typically be a
correlated error log issued by the
parent driver.

The driver tried to bind to its parent,
but was rejected by the parent driver.
Also used by the parent to indicate
such rejection to its child.

A request to bind exclusively to a
driver cannot be satisfied because
another child instance is already bound.

The request to bind to a parent cannot
be supported because this driver
instance is already bound to the
maximum number of parents that it can
support.

UDI Core Specification - Version 1.01 - 2/2/01

9-19

Section 3: Core Services

udi_status _t

Fundamental Types

Table 9-2 Common UDI Status Codes

Status Code Value

Meaning

Description

UDI_STAT_BAD_PARENT_TYPE 18

UDI_STAT_TERMINATED 19

UDI_STAT_ATTR_MISMATCH 20

Cannot bind to this
type of parent
device

Region was
abruptly terminated

Driver/device
cannot comply
with custom
attribute setting.

The request to bind to a parent cannot
be satisfied because the parent
metalanguage or device properties (as
determined by the parent-specified
enumeration attributes) for the binding
is not a type supported by this driver
instance in its current state.

The request failed because the target
region was abruptly terminated. Drivers
must not generate this status code
directly. It is used when the
environment generates responses on
behalf of a terminated driver instance.

When a driver receives an operation
with this status code, it must ignore all
other metalanguage-specific control
block fields and parameters except
buffer pointers.

The driver has been given a custom
attribute value that it cannot set on its
device. This status can be used during
either a parent or child binding.

The status codes here may be supplemented by various Physical I/O status codes or metalanguage-

specific status codes as defined in the corresponding UDI specification books.

9-20 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Data Layout Specifier

9.9.2 Data Layout Specifier

Purpose:

The data layout specifier type is used to describe the layout of control blocks and other driver data
structures that may be transferred between regions by using channel operations. Data layout specifiers
are primarily used by metalanguage libraries to describe the layout of all fixed structures passed via
channel operations. Drivers may in some cases need to declare layout specifiers themselves, to use with
udi_cb_init_t orudi_cb_alloc_dynamic ; this allows a driver to register the layout of inline
memory structures that aren'’t strictly typed by the metalanguage.

UDI Core Specification - Version 1.01 - 2/2/01 9-21
Section 3: Core Services

udi_layout t Fundamental Types

NAME udi_layout_t Data layout specifier
SYNOPSIS | #include <udi.h>

typedef const udi_ubit8 t udi_layout_t ;

/* Specific-Length Layout Type Codes */

#define UDI_DL_UBIT8_T 1
#define UDI_DL_SBIT8_T 2
#define UDI_DL_UBIT16_T 3
#define UDI_DL_SBIT16_T 4
#define UDI_DL_UBIT32_T 5
#define UDI_DL_SBIT32_T 6
#define UDI_DL_BOOLEAN_T 7
#define UDI_DL_STATUS_T 8
/* Abstract Element Layout Type Codes */

#define UDI_DL_INDEX_T 20
/* Opaque Handle Element Layout Type Codes */
#define UDI_DL_CHANNEL_T 30
#define UDI_DL_ORIGIN_T 32
/* Indirect Element Layout Type Codes */

#define UDI_DL_BUF 40
#define UDI_DL_CB 41
#define UDI_DL_INLINE_UNTYPED 42
#define UDI_DL_INLINE_DRIVER_TYPED 43
#define UDI_DL_MOVABLE_UNTYPED 44
/* Nested Element Layout Type Codes */

#define UDI_DL_INLINE_TYPED 50
#define UDI_DL_MOVABLE_TYPED 51
#define UDI_DL_ARRAY 52
#define UDI_DL_END 0

DESCRIPTION A data layout specifier consists of an array of one or mdrelayout_t

layout elements. Each element contains a type code indicating one of the UDI
data types that can be passed into a channel operation, either as a field in the
control block or as an additional parameter. Each successive element of the
array represents successive offsets within the described structure, with
padding automatically inserted for alignment purposes as if the specified data
types had appeared in asBuct declaration.

Since channel operations are based on strongly typed function calls, the
environment usually has sufficient information to handle data transformations
such as endian conversions when channel operations cross between domains
of differing data formats. However, there are some cases where one or more
parameters to a channel operation call are not strongly typed, but are simply
void * pointers to chunks of memory. Such pointers must point either to

9-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types udi_layout t

movable memory (allocated mdi_mem_alloc with the
UDI_MEM_MOVABL#Hag set) or to inline memory permanently associated
with a control block when it was allocated.

If such untyped memory is also unstructured—that is, it is to be treated as an
array of bytes—then no data transformations need be performed. If the
memory is structured, however, drivers must inform the environment of that
structure, since it cannot be determined a priori from the channel operation
definition. In that case, the driver supplies a data layout specifier as a
parameter to the “cb_init” function with which the operation is associated.

Layout element type values fadi_layout_t are defined with mnemonic
constants as shown in the following table:

Table 9-3 Specific-Length Element Type Codes

Element Type Code Value Corresponding Data Type
UDI_DL_UBIT8_T 1 udi_ubit8_t
UDI_DL_SBIT8_ T 2 udi_shit8_t
UDI_DL_UBIT16 T 3 udi_ubitl6_t
UDI_DL_SBIT16_ T 4 udi_sbitl6_t
UDI_DL_UBIT32_T 5 udi_ubit32_t
UDI_DL_SBIT32_T 6 udi_shit32_t
UDI_DL_BOOLEAN_T 7 udi_boolean_t
UDI_DL_STATUS T 8 udi_status_t

Table 9-4 Abstract Element Type Codes

Element Type Code Value Corresponding Data Type

UDI_DL_INDEX_T 20 udi_index_t

Table 9-5 Opaque Handle Element Type Codes

Element Type Code Value Corresponding Data Type

UDI_DL_CHANNEL_T 30 udi_channel_t (must be a loose end
or UDI_NULL_CHANNE)L

UDI_DL ORIGIN_T 32 udi_origin_t (may be

UDI_NULL_ORIGIN)

UDI Core Specification - Version 1.01 - 2/2/01 9-23
Section 3: Core Services

udi_layout t Fundamental Types

Table 9-6 Indirect Element Type Codes

Element Type Code Value Corresponding Data Type

UDI_DL_BUF 40 udi_buf t* (may beNULL). The
next three layout elements (3 unsigned
bytes) provide detailed information on
the use of this buffer type, as described
below.

UDI_DL_CB 41 This element is a pointer to a
metalanguage-specific control block of
the same type as the control block in
which this element is embedded. This is
used for control block chaining. (May be
NULL)

UDI_DL_INLINE_UNTYPED 42 void * (untyped array of inline
memory bytes; may bRULL)

UDI_DL_INLINE_DRIVER_TYPED 43 void* (structure determined by driver;
corresponding “cb_init" call supplies
layout; may beNULL)

UDI_DL_MOVABLE_UNTYPED 44 void * (untyped array of movable
memory bytes; may bRULL)

Table 9-7 Nested Element Type Codes

Element Type Code Value Description

UDI_DL_INLINE_TYPED 50 Pointer to inline memory whose structure
is determined by the metalanguage
definition. Subsequent layout elements
describe structure. (May B¢ULL)

UDI_DL_MOVABLE_TYPED 51 Pointer to movable memory whose
structure is determined by the
metalanguage definition. Subsequent
layout elements describe structure. (May
be NULL)

UDI_DL_ARRAY 52 Begins an embedded fixed-length array.
The next layout element (one unsigned
byte) is interpreted as the number of
array elements, and must not be zero.
Subsequent layout elements describe the
structure of one array element.

UDI_DL_END 0 End of current nested element. Pop up
one level. If used at top level, terminates
layout array.

For all nested element types, the layout elements following the nested type, up
until the matchindJDI_DL_END, describe the structure of that element. For
driver-type inline structures, indicated by

UDI_DL_INLINE_DRIVER_TYPED, the driver-provided layout array is
logically inserted as a nested element.

9-24 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types udi_layout t

Since nested objects might be variable length arrays of structures, the layout
elements for a nested object may need to be repeated to cover the whole
nested object, as if the nested layout were describing the structure of one
element of such an array. Partial repeats are not allowed; the object must be
covered by zero or more complete repeats of the nested layout.

Theudi_layout_t array must end with &DI_DL_END element; the first
UDI_DL_ENDnNot used to match a nested element type is interpreted as the
end of the array.

Note —The varioudNLINE element types andDI_DL_CB must not be used
as part of the layout description for inline memory contents, since
nested inline structures are not supported. They are only legal for
control block visible layouts. At most one UDI_DL_CB element may
be used within a single layout array.

The UDI_DL_BUF type is used for a pointer touai_buf t buffer. It is
followed by three unsigned bytes providing further details. These are used to
describe related control block fields that affect the way the buffer and its data
are handled during domain crossings and during abrupt driver termination
(“region Kkill"). The meaning of each of these bytes is listed below.

byte 0 designates the control block field, if any, that holds a flag or type
code that can be used to distinguish between buffers flowing in
the “forward” direction (i.e. carrying significant data—typically
a “write” request or a “read” acknowledgement) and those
flowing in the “reverse” direction (i.e. carrying data that does not
need to be preserved—typically a “read” request or a “write”
acknowledgement). This field is referred to as pheserve flag
for purposes of this layout element specifier. The value in byte 0
is used as a zero-based index into the layout specifier for the
control block to which thi&JDI_DL_BUF applies; this selects
the layout element that corresponds to the preserve flag.

byte 1 supplies anask valueao apply to the low order byte of the
preserve flag value.

byte 2 supplies anatch valugo compare with the masked preserve flag
value. If they compare equal, the environment must preserve any
previously preserved data content and tags in the buffer, up to the
buffer's currentbuf _size , when the data is transferred via
channel operation to the new region. If the masked preserve flag
does not equal the match value, then all of the buffer's contents
in the new region are unspecified, and buffer tags are removed,
but thebuf size value is unchanged.

UDI Core Specification - Version 1.01 - 2/2/01 9-25
Section 3: Core Services

udi_layout t Fundamental Types

If the above criteria indicate that buffer data is to be preserved, then
environments that might use “region kill” must track this buffer and return it
to the sending region (by failing the request with a status of
UDI_STAT_TERMINATED if the receiving region is abruptly terminated
while still holding this buffer.

9-26 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types Implementation-Dependent

9.10 Implementation-Dependent Macros

UDI defines a number of implementation-dependent macros. That is, macros whose parameters and
semantics are defined generically, but whose implementation is environment-specfic (often associated
with a particular ABI). This section lists implementation-dependent macros related to fundamental

types.

UDI Core Specification - Version 1.01 - 2/2/01 9-27
Section 3: Core Services

UDI_ HANDLE IS NULL Fundamental Types

NAME UDI_HANDLE IS NULL Determine whether a handle value is
null

SYNOPSIS | #include <udi.h>
#define UDI_HANDLE_IS _NULL(handle , handle type)

ARGUMENTS handle is the handle value to check.
handle type is the type specification for that handle.

DESCRIPTION This macro is used to check if an opaque handle value is null (i.e. all zeroes).
This is the only way in which a handle value can be compared against any
other value.

RETURN VALUES This macro returns adi_boolean_t value that iSTRUEIf the handle value
is a null handle value.

9-28 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Fundamental Types UDI_HANDLE ID

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES

EXAMPLES

REFERENCES

UDI_HANDLE_ID Get identification value for specified
handle

#include <udi.h>

#define UDI_HANDLE_ID(handle , handle type)

handle is the handle for which an ID value is to be obtained.
handle type is the type specification for that handle.

For tracing, logging, and debugging purposes it is often useful to be able to
identify and differentiate between handles that are passed to the driver.
Handles themselves are opaque structures that the driver has no information
about. To obtain an ID value that can be used in tracing, logging, or
debugging output, thedDI_HANDLE_ID macro should be used.

The ID value will be unique with respect to all other handle IDs for the same
handle _type in the same region. Subsequent uses of UDI_HANDLE_ID
for the same handle value will produce the same ID value.

This macro is useful in conjunction witkdi_snprintf

This macro returns gvoid *) value that can be formatted using &g
format code foudi_snprintf calls.

udi_snprintf("Got channel handle %p\n",
UDI_HANDLE_ID(chan, udi_channel_t));

udi_snprintf, udi_trace_write, udi_log_write

UDI Core Specification - Version 1.01 - 2/2/01 9-29
Section 3: Core Services

UDI VA ARG

Fundamental Types

NAME
SYNOPSIS

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

UDI_VA_ARG

#include <udi.h>

UDI_VA_ARG(pvar, type, va_code)

UDI_VA_UBITS_T
UDI_VA_SBIT8_T
UDI_VA UBIT16_T
UDI_VA SBIT16_T
UDI_VA UBIT32_T
UDI_VA SBIT32_T
UDI_VA_BOOLEAN_T
UDI_VA_INDEX_T
UDI_VA SIZE_T
UDI_VA_STATUS_ T
UDI_VA_CHANNEL_T
UDI_VA ORIGIN_T
UDI_VA_POINTER

Varargs macro for UDI data types

ARGUMENTS pvar
type

va_code

DESCRIPTION

This macro acts as a wrapper around the 1S@ Grg()
to be used portably with UDI data types. The supported data types and their
correspondingza_code values are listed in the following table:

is a pointer into the argument list, as for ISQ& arg()
is one of the UDI data types from the table below.

is a code corresponding to a UDI data type or class of UDI data
types, from the table below. This must be from the row of the
table that includes the typgpe .

macro, allowing it

Table 9-8 UDI_VA_ARG Data Type Codes

UDI Data Type

va_code Value

udi_ubit8 t
udi_shit8_t
udi_ubit16_t
udi_shit16_t
udi_ubit32_t
udi_shit32_t
udi_boolean_t
udi_index_t
udi_size_t

udi_status_t

UDI_VA UBIT8_T
UDI_VA_SBIT8_T
UDI_VA_UBIT16_T
UDI_VA_SBIT16_T
UDI_VA UBIT32_T
UDI_VA SBIT32 T
UDI_VA_BOOLEAN_T
UDI_VA_INDEX_T
UDI_VA _SIZE_ T
UDI_VA_STATUS_T

9-30

UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

Fundamental Types UDI_VA ARG

Table 9-8 UDI_VA_ARG Data Type Codes

UDI Data Type va_code Value
udi_channel_t UDI_VA_CHANNEL_T
udi_origin_t UDI_VA ORIGIN_T
any pointer type UDI_VA POINTER

UDI Core Specification - Version 1.01 - 2/2/01 9-31
Section 3: Core Services

UDI_VA ARG Fundamental Types

9-32 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

projecy

“\UDI*

Initialization 10

10.1 Overview

There are two general phases to the initialization process for a UDI device driver: per driver
initialization, and per instance (device) initialization.

10.1.1 Per-Driver Initialization

Per-driver initialization starts once the driver has been loaded and/or linked into the system, is handled
entirely by the environment, and completes before any driver code is called. The driver communicates its
per-driver or per-module initialization requirements to the environment by declaring a global symbol
namedudi_init_info in each separately loadable module of the driver. udiginit_info

structure specifies all of the parameters required to create the primary region and any secondary regions
used by this driver, all channel operations vectors for each metalanguage used by the driver module, and
parameters for metalanguage-specific control block groups as well as generic control blocks.

10.1.2 Per-Instance Initialization

Per-instance initialization for the driver starts when the driver receivagdthesage_ind operation

on its management channel. Following this general resource level and tracing indication, the driver
instance will receive adi_channel_event_ind operations of typ&JDI_CHANNEL_BOUNI®r

each statically-allocated secondary region and for binding to its parent. The driver will usually respond
to this with a metalanguage-specific bind operation to its parent driver and the parent will respond by
propagating its constraints to the child (see Chapter@@nstraintsManagemeri) and then

acknowleding the bind operation. Per-instance initialization is required to be complete when the new
driver instance callsdi_channel_event_complete with the original control block(s).

See Chapter 24Management Metalanguagefor more details on the management operations
mentioned above.

10.1.3 Per-Region Initialization

Each driver instance is composed of one or more regions. Each region is automatically created with an
initial region data area which begins withudi_init_context_t structure. This structure helps
bootstrap the region to the point were it can allocate its own data structures.

UDI Core Specification - Version 1.01 - 2/2/01 10-1
Section 3: Core Services

Per-Driver Initialization Structure Initialization

10.2 Per-Driver Initialization Structure

Every UDI driver module must contain a global variable naondidinit_info , of type

udi_init_t . This structure contains information describing the module’s entry points, control block
usage, and other information necessary to initialize the driver. The environment processes the
information contained in this structure before executing any driver code.

This section contains descriptions of the various components ofdthmit_info structure.

10-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_init_info

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

udi_init_info Module initialization structure
#include <udi.h>

typedef const struct {
udi_primary_init_t * primary_init_info ;
udi_secondary_init_t * secondary _init_list ;
udi_ops_init_t * ops_init_list ;
udi_cb_init_t * cb_init_list ;
udi_gcb_init_t * gchb_init_list ;
udi_cb_select t * cb_select list ;

} udi_init_t ;

udi_init_t udi_init_info ;

primary_init_info is a pointer to a structure containing information
about the driver's primary region, used in the driver’s primary
module. For secondary modules, this must be set to NULL.

secondary_init_list is a pointer to a list of structures containing
information about each type of secondary region implemented in
this module, if any. The list is terminated with an entry
containing a zeroegion_idx . A NULL pointer is treated the
same as an empty list.

ops_init_list is a pointer to a list of structures containing information
about channel operations usage for each ops vector implemented
in this module. The list is terminated with an entry containing a
zeroops_idx . ops_init_list must contain at least one
entry, and must include at least one entry for each metalanguage
used in this module.

cb_init_list is a pointer to a list of structures containing information
about each control block type used by this module. The list is
terminated with an entry containing a zeto idx . A NULL
pointer is treated the same as an empty list.

gchb_init_list is a pointer to a list of structures containing information
about generic control block usage in this module, if any. The list
is terminated with an entry containing a zetn idx . A NULL
pointer is treated the same as an empty list.

cb_select list is a pointer to a list of structures containing information
about special overrides for scratch requirements when using
specific control blocks with specific ops vectors. The list is
terminated with an entry containing a zetw idx . A NULL
pointer is treated the same as an empty list.

Theudi_init_info structure contains pointers to constant information the
environment needs to initialize a driver. Each driver module must include a
constant initialized structure of typeli_init_t namedudi_init_info

UDI Core Specification - Version 1.01 - 2/2/01 10-3
Section 3: Core Services

udi_init_info Initialization

Exactly one module in a multi-module driver must be the primary module,
identified in the driver’s Static Driver Properties as the module with a “region”
declaration for region index zero, which is the primary region. The primary
module of any driver must have a non-NUptimary _init_info . If the
primary module also manages some secondary regions, the module must also
include a non-emptgecondary_init_list

Seeudi_cb_init_t for details on howchb_select list is used.

REFERENCES | udi_primary_init_t, udi_secondary_init_t,
udi_ops_init_t, udi_cb_init_t, udi_gcb_init_t,
udi_cb_select t

10-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_primary _init t

NAME

SYNOPSIS

MEMBERS

udi_primary_init_t Primary region initialization
structure

#include <udi.h>

typedef const struct {
udimgmt ops_t *mgmt _ops;
const udi_ubit8 t * mgmt_op_flags ;
udi_size t mgmt_scratch_requirement ;
udi_ubit8 t enumeration_attr_list_length ;
udi_size t rdata_size
udi_size t child_data_size ;
udi_ubit8 t per_parent_paths ;
} udi_primary_init_t ;

/* Maximum Legal Scratch Requirement */
#define UDI_MAX_SCRATCH 4000

/* Operation Flags */
#define UDI_OP_LONG_EXEC (1U <<0)

mgmt_ops is a pointer to an ops vector of driver entry points for the
required Management Metalanguage channel operation routines.
See Chapter 24Management Metalanguagefor details on
Management Metalanguage and its channel operations.

mgmt_op flags is a pointer to an array of flag values with a one-for-one

correspondence between entries in tigmt_op_flags

array

and entries in thengmt_ops array. This array may be used to

indicate characteristics of the implementation of the
corresponding operation to the environment:

UDI_OP_LONG_EXEC - indicates to the environment that the
corresponding operation will execute for an extended period
of time (relative to normal operations within this driver).
This is a hint to the environment and allows the environment
to make implementation specific decisions when scheduling

the driver to perform this operation.

mgmt_scratch_requirement specifies in bytes the driver’s requirements
for scratch area size in Management Metalanguage control
blocks received over its management channel. The scratch size
specified here must be the maximum of the driver’s scratch size
needs across the various control blocks in the Management
Metalanguage. This value must not exced&l_MAX_SCRATCH

(4000 bytes).

enumeration_attr_list_length is the number of elements of the
udi_instance_attr _list t array that the driver requires
for attr_list in udi_enumerate _cb_t control blocks

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

10-5

udi_primary _init_t Initialization

DESCRIPTION

REFERENCES

duringudi_enumerate_req . This may be zero if the driver
usesudi_enumerate_no_children for its
udi_enumerate_req entry point routine.

rdata_size is the size, in bytes, of the region data area to be allocated for
the primary region of each driver instancgata size must
be at leassizeof(udi_init_context_t) and must not
exceedUDI_MIN_ALLOC_LIMIT (seeudi_limits t on page
10-18).

child_data_size is the size, in bytes, of child data to be allocated for
each call taudi_enumerate_req . child_data_size
must not exceedDI_MIN_ALLOC_LIMIT .

per_parent_paths specifies the number of path handles that the
environment should supply for each parent that is bound to this
driver instance. The path handles are supplied to the driver in the
udi_channel_event cb t control block for each
UDI_CHANNEL_BOUNBvent.

Theudi_primary_init_t structure contains information the environment
needs to subsequently create a new primary region and associated
management channel when each driver instance for this driver is instantiated.
This structure is part afdi_init_info

The primary region’segion data areds a memory area that idata_size

bytes in size. It containsadi_init_context_t structure at the front of

this data area. When the region is created the bytes following the init context
structure will be initialized to zero. The driver must never free this memory; it
will be freed automatically when the region is destroyed.

When the Management Agent in the environment creates a driver instance, it
will automatically create a primary region according to the parameters
provided in theudi_primary_init_t structure. A management channel

will also be created and anchored to this region. The channel context for this
channel will be set to point to the region’s region data area.

The primary region’s end of the management channel will be anchored using
mgmt_ops as the ops vector andgmt_scratch_requirement as the
scratch size requirement for all Management Metalanguage control blocks.

Drivers may also request the creation of secondary regions within a driver
instance, by usingdi_secondary_init_t

udi_init_info, udi_mgmt_ops_t, udi_init_context_t,
udi_secondary _init_t, udi_instance_attr_list _t,
udi_enumerate_cb_t, udi_enumerate_req, udi_limits_t

10-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_secondary _init t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

udi_secondary_init_t Secondary region initialization
structure

#include <udi.h>

typedef const struct {
udi_index_t region idx ;
udi_size t rdata_size
} udi_secondary_init_t ;

region_idx is a non-zero driver-dependent index value that indirectly
identifies a late-bound set of platform-dependent properties
(address and capability domains, memory residence, priority,
etc.) that will be attached to new secondary regions of this type,
or zero to terminate theecondary _init_list list to which
this structure belongs (se€i_init_info). If region_idx
is zero, all other members of this structure are ignored. These
properties are derived from the driver’s region attributes (see
Section 30.6.8, “Region Declaration,” on page 30-18). Drivers
typically define mnemonic constants associated with each region
index that name the type of region being created (e.g.,
MY_INT_REGION MY_INBOUND_REGION

rdata_size is the size, in bytes, of the region data area to be allocated for
secondary regions created with the given region index.
rdata_size must be at least
sizeof(udi_init_context_t) and must not exceed
UDI_MIN_ALLOC_LIMIT (seeudi_limits_t on page 10-18).

The udi_secondary_init_t structure contains information the
environment needs to subsequently create a new secondary region and
associated internal bind channel when each driver instance for this driver is
instantiated or when new parents or children are bound to that instance. This
structure is part ofidi_init_info

If non-zero, theregion_idx value must match a region index in a “region”
declaration in the driver’s static driver properties that is associated with this
module and must be unique with respect to all other

udi_secondary_init_t structures for the same driver (even for separate
modules in a multi-module driver). Each module& _init_info must
include a set ofidi_secondary_init_t structures exactly matching the
set of secondary region types serviced by that module.

The secondary regiontgegion data aredas a memory area that is

rdata_size bytes in size. It containswai_init_context t structure

at the front of this data area. When the region is created the bytes following
the init context structure will be initialized to zero. The driver must never free
this memory; it will be freed automatically when the region is destroyed.

The environment will automatically create secondary regions as needed,
according to the parameters provided in ddée secondary_init_t
structure and associated static driver properties (see Chapt&taii;

UDI Core Specification - Version 1.01 - 2/2/01 10-7
Section 3: Core Services

udi_secondary _init t Initialization

Driver Properties”). If the corresponding “region” declaration has its

binding attribute set t@lynamic , secondary regions of this type will be
created as needed, dynamically, after the driver instance has been created,
when a parent or child instance of the appropriate type is bound to this driver
instance. Otherwise, exactly one secondary region of this type will be created
as part of the initial driver instantiation.

In either case, a channel will also be created and anchored between the
primary region and this secondary region as the secondary regitarisal

bind channel The channel context for the primary end of this channel will be
set to point to the primary region’s region data area. The channel context for
the secondary end of this channel will be set to point to the secondary region’s
region data area.

The primary region’s end of the channel will be anchored using the ops vector
selected byprimary_ops_idx> in the “internal_bind_ops” declaration

that has the same region index value. The secondary region’s end of the
channel will be anchored using the ops vector selected by
<secondary_ops_idx> from the same “internal_bind_ops” declaration.
Seeudi_ops_init_t for details on howops idx values are used.

When the new region has been fully initialized, the environment delivers a
udi_channel_event_ind with aUDI_CHANNEL_ BOUNBvent code to

one end of the new internal bind channel. Depending upon the metalanguage
definition for the metalanguage indicated by the abawe idx values, one

end or the other will be considered thédiator and the other end will be the
responder It is theinitiator end that receives tHeDI_ CHANNEL_BOUND

event. This allows thanitiator to receive the channel handle for its end of this
channel (from theehannel member of the control block structure).

As a recommended and expected (but not required) convention in the driver-
internal metalanguage definition, thetiator should send some form of
initialization operation (bind operation) to thesponderover the internal bind
channel. This allows thespondeito determine the channel handle for its end

of the channel, and can also be used to pass parameters that will help set up
the region, choose structure sizes, initialize fields, etc., so that it can become
ready to be “open for business”.

REFERENCES | udi_init_info, udi_init_context t, udi_ops_init_t,
udi_primary_init_t, udi_channel_event_ind, udi_cb t,
udi_limits_t

10-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization udi_ops_init t
NAME udi_ops_init_t Ops vector initialization structure
SYNOPSIS | #include <udi.h>
typedef void udi_op_t (void);
typedef udi_op_t * const udi_ops_vector_t ;
typedef const struct {
udi_index_t ops_idx ;
udi_index_t meta_idx ;
udi_index_t meta_ops_num ;
udi_size t chan_context_size ;
udi_ops_vector_t * ops_vector ;
const udi_ubit8 t * op_flags ;
} udi_ops_init_t ;
MEMBERS ops_idx is a non-zero channel ops index number, assigned by the driver to

uniquely identify this set of entry-point related properties for use
in other initialization structures and service calls, or zero to
terminate theops_init_list list to which this structure
belongs (seadi_init_info). If ops_idx is zero, all other
members of this structure are ignored.

meta_idx is a non-zero metalanguage index number, assigned by the driver
to uniquely identify a set of metalanguage related properties for a
particular metalanguage.

meta_ops_num is a metalanguage-specific number, defined in the
corresponding metalanguage specification, that uniquely
identifies a type of ops vector with respect to other ops vector
types in the same metalanguage.

chan_context _size is the size, in bytes, of a context area that will be
automatically allocated, if non-zero, whenever s _idx is
used to bind a child or parent instance to a driver instance or to
bind a secondary region to the primary region for this driver. If
non-zero, the value must be at least
sizeof(udi_child_chan_context _t) for child bind
channels osizeof(udi_chan_context_t) for other bind
channels and must not exced®l_MIN_ALLOC_LIMIT (see
udi_limits_t on page 10-18).

ops_vector is a pointer to the metalanguage-specific
<<meta>>_<<role>> _ops_t channel ops vector structure
containing pointers to the various entry point routines for this
type of channel. The structure pointed todps vector must
be a constant initialized variable. The address of this structure
must be cast t@udi_ops_vector_t *) in order to be used
as an initializer forops_vector

UDI Core Specification - Version 1.01 - 2/2/01 10-9
Section 3: Core Services

udi_ops_init t Initialization

op_flags is a pointer to an array of flag values with a one-for-one
correspondence between entries in tipe flags array and
entries in theops _vector array. This member is used in the
same way as theigmt_op_flags member of the
udi_primary_init_t structure.

DESCRIPTION The udi_ops_init_t structure contains information the environment
needs to subsequently create channel endpoints for a particular type of ops
vector and control block usage. This structure is paudofinit_info

If non-zero, theops_idx value must be unique with respect to all other
udi_ops_init_t structures for the same driver (even for separate modules
in a multi-module driver). Each modulasli_init_info for a particular
metalanguage must include a seudf_ops_init_t structures exactly
matching the set of ops vectors used in that module.

If non-zero, themeta idx value must match meta_idx value from a
“meta” declaration in the driver’s static driver properties and must be unique
with respect to all othemeta idx values for the same driver.

The meta_ops_num values in metalanguage definitions are typically named
<<meta>>_<<role>> _OPS_NUMNd each correspond to an ops vector
type, typically named<meta>> <<role>> _ops_t . Theops vector
member must point to a constant initialized structure of this ops vector type.

Whenchan_context_size is non-zero and thisps_idx is used for a
child, parent, or internal binding (as indicated by a matching
“child_bind_ops”, “parent_bind_ops”, or “internal_bind_ops” declaration in
the driver’s static driver properties), a new context structure of this size is
automatically allocated. For the parent’'s end of a parent-child bind channel,
the new context structure will begin with a

udi_child_chan_context_t ; for all other channels it will begin with a
udi_chan_context_t . The requestedhan_context_size must be at
least as large as the size of the appropriate header structure. Any remaining
bytes will be initialized to zero.

chan_context_size is ignored for driver-spawned channels.

REFERENCES | udi_init_info, udi_limits_t, udi_chan_context t,
udi_child_chan_context_t

10-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization udi_cb_init t
NAME udi_cb_init_t Control block initialization structure
SYNOPSIS | #include <udi.h>
typedef const struct {
udi_index_t cb_idx ;
udi_index_t meta_idx ;
udi_index_t meta_cb_num ;
udi_size t scratch_requirement ;
udi_size t inline_size ;
udi_layout_t * inline_layout ;
} udi_cb_init_t ;
/* Maximum Legal Scratch Requirement */
#define UDI_MAX_SCRATCH 4000
MEMBERS cb_idx is a non-zero control block index number, assigned by the driver
to uniquely identify this set of control block related properties
for use in other initialization structures and service calls, or zero
to terminate thecb_init_list list to which this structure
belongs (seadi_init_info). If cb_idx is zero, all other
members of this structure are ignored.
meta_idx is a non-zero metalanguage index number, assigned by the driver
to uniquely identify a set of metalanguage related properties for a
particular metalanguage.
meta_cb_num is a metalanguage-specific number, defined in the
corresponding metalanguage specification, that uniquely
identifies a control block group with respect to other control
block groups in the same metalanguage.
scratch_requirement specifies in bytes the driver's requirements for
scratch area size in control blocks allocated with d¢hisidx or
received via a channel operation of the appropriate type. The
scratch size specified here must be the maximum of the driver’s
scratch size needs across the various control blocks in the control
block group indicated byneta cb_num . This value must not
exceedUDI_MAX_SCRATCH4000 bytes).
inline_size is the size, in bytes, of a piece of inline memory to allocate
and associate with the control block. This value must not exceed
UDI_MIN_ALLOC_LIMIT (seeudi_limits_t on page 10-18)
inline_layout is a pointer to a data layout specifier that describes the
structure of the inline memory, if necessary.
DESCRIPTION Theudi_cb_init_t structure contains information the environment needs

to subsequently create and manage control blocks of a particular type. This
structure is part ofidi_init_info

UDI Core Specification - Version 1.01 - 2/2/01 10-11
Section 3: Core Services

udi_cb _init t Initialization

If non-zero, thecb_idx value must be unique with respect to all other

udi_cb_init_t andudi_gcb_init_t structures for the same driver
(even for separate modules in a multi-module driver). Each module’s
udi_init_info metalanguage must include a setdf _cb_init_t

structures exactly matching the set of control block groups used in that
module. Even if the correspondimg _idx is never directly referenced in the
module, audi_cb_init_t must be included for anyeta_cb_num that
might be received with a channel operation.

If non-zero, themeta idx value must match meta_idx value from a
“meta” declaration in the driver’s static driver properties and must be unique
with respect to all othemeta idx values for the same driver.

The meta_cb_num values in metalanguage definitions are typically named
<<meta>>_<<cbgroup>> _CB_NUMand each correspond to a control
block group which consists of one or more control block types, typically
named<<meta>> <<cbtype>> cb t .

When control blocks are first allocated, their scratch size is determined by the
scratch_requirement value for the specifiedb_idx . When a control
block is passed across a channel (using a channel operation), its scratch area
may need to grow to meet the requirements of the target region. The
environment determines the required minimum size by examining the
cb_select list for theudi_ops_init_t corresponding to the

receiving channel endpoint. If an entry is found that matches the control block
group for the control block that is being passed, then the
scratch_requirement value for thatcb_idx will be used; otherwise,

the maximum of allscratch_requirement values for all

udi_cb_init_t structures with the appropriateeta _cb_num will be

used.

Inline memory pieces, if any, are allocated when a control block is first
allocated, and are not resized or reshaped for the life of the control block,
regardless of theb_idx values with which the control block becomes
associated when it is passed across channels. This memory is automatically
transferred to the target region with the control block.

The inline_size member is used if the control block group includes a
control block type that has any inline pointers (i.e. one whose layout specifier
includesUDI_DL_INLINE_UNTYPED, UDI_DL_INLINE_TYPED, or
UDI_DL_INLINE_DRIVER_TYPED) and the driver allocates a control block

using thiscb_idx ; otherwiseinline_size must be zero. The
corresponding inline pointer in each allocated control block will be set to
point to memory of the appropriate size, or NULLlrfine_size is zero.

Drivers must not modify inline pointers.

The inline_layout member is used if the structure of the inline memory
is driver-dependent (as indicated byBl_DL_INLINE_DRIVER_TYPED in

the control block layout specifier) amdline_size is not zero, otherwise,
inline_layout must be NULL.

10-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization udi_cb_init t
If inline_size is zero and the layout specifier contains a corresponding
UDI_DL_INLINE_DRIVER_TYPED layout element, theb_idx may be
used withudi_cb_alloc_dynamic instead ofudi_cb_alloc , to
provide the inline size and layout dynamically.
REFERENCES | udi_init_info, udi_meta_init_t, udi_ops_init_t,

udi_gcb_init_t, udi_layout_t, udi_mei_op_template _t,
udi_limits_t, udi_cb_alloc, udi_cb_alloc_dynamic

UDI Core Specification - Version 1.01 - 2/2/01 10-13
Section 3: Core Services

udi_cb _select t Initialization

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_cb_select_t Control block selections for
incoming channel ops

#include <udi.h>

typedef const struct {
udi_index_t ops_idx ;
udi_index_t cb_idx ;
} udi_cb_select t ;

cb_idx is a control block index number that must matatbaidx value
in audi_cb_init_t associated with thedi_meta_init_t
from which this structure is referenced, or must be zero to
terminate acb_select list list to which this structure
belongs (seadi_init_info).

Theudi_cb_select t structure contains information the environment
needs to subsequently manage scratch requirements of control blocks that are
passed across channels. This structure is partliofnit_info

udi_cb_select_t entries can be used to override the default algorithm for
determining scratch requirements for control blocks that are received via
channel operations when there are multijpdé cb_init_t structures for

the sameneta _cb_num andmeta_idx . By default, the scratch

requirement is computed as the maximum from all matching

udi_cb_init_t structures. However, if adi_cb_select_t entry is
present for the appropriatps _idx that has &b _idx matching one of the
candidateudi_cb_init_t structures, then the scratch requirement from
that structure is used instead.

udi_cb_select_t entries are optional and will not be needed by most
drivers.

In all cases, control block allocation (witldi_cb_alloc) uses the specific
properties associated with a control block index parameter, and is unaffected
by udi_cb_select_t entries.

udi_init_info, udi_cb_init_t, udi_ops_init_t,
udi_cb_alloc

10-14

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_gcb _init t

NAME

SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_gcb_init_t Generic control block initialization
properties

#include <udi.h>

typedef const struct {

udi_index_t cb_idx ;

udi_size t scratch_requirement ;
} udi_gcb_init_t ;

/* Maximum Legal Scratch Requirement */
#define UDI_MAX_SCRATCH 4000

cb_idx is a non-zero control block index number, assigned by the driver
to uniquely identify this set of control block related properties
for use in other initialization structures and service calls, or zero
to terminate theych_init_list list to which this structure
belongs (seadi_init_info). If cb_idx is zero, all other
members of this structure are ignored.

scratch_requirement specifies in bytes the driver's requirements for
scratch area size in generic control blocks allocated with this
cb_idx . This value must not exce&tDl MAX_SCRATCH
(4000 bytes).

Control blocks that are to be used only for asynchronous environment service
calls, such asidi_mem_alloc , and not for any channel operations, may be
allocated using a control block index that is initialized with a

udi_gcb_init_t . This structure is part afdi_init_info

Such control blocks have no metalanguage-specific visible part and are
directly referenced by thedi cb t generic control block pointer. As a
result, these control blocks must not be used (or defined for use) in channel
operations.

If non-zero, thecb_idx value must be unique with respect to all other
udi_cb_init_t andudi_gcb _init_t structures for the same driver
(even for separate modules in a multi-module driver).

udi_init_info, udi_cb_init_t, udi_cb_t, udi_cb_alloc

UDI Core Specification - Version 1.01 - 2/2/01 10-15
Section 3: Core Services

Initial Region Data Structures Initialization

10.3 Initial Region Data Structures

The initial region data structure provided to the driver include a system limits structure

(udi_limits_t) along with space for the driver’s private per-region data. This structure is allocated
by the UDI environment according to théata size = member of the appropriate

udi_primary_init_t or udi_secondary_init_t in udi_init_info

A pointer to the initial region data structuned{_init_context_t) is made available to the driver
as the channel context for the region’s initial channel, which the driver can access via
cb->gcb.context of any control block it receives over this channel. The channel handle is available

via cb->gch.channel

10-16 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_init_context t

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_init_context t Initial context for new regions
#include <udi.h>

typedef struct {
udi_index_t region_idx
udi_limits_t limits

} udi_init_context_t ;

region_idx is aregion index value that indicates the type of this region. For
a driver’s primary region, it will be zero. For secondary regions,
it will be the value from theidi_secondary_init_t that
was used to create this region.

limits is a structure that describes system resource limits. See
udi_limits_t on page 10-18.

The udi_init_context_t structure is stored at the front of the region

data area of each newly created region, providing initial data that a driver will

need to begin executing in the region. A pointer to this structure (and therefore
the region data area as a whole) is made available to the driver as the initial

channel context for its first channel.

For primary regions, the first channel will be the management channel for the
driver instance (see Chapter ZManagement Metalanguag@’ For

secondary regions, the first channel will be the initial channel between this
secondary region and the primary region, using either the Generic 1/0
Metalanguage (see Chapter 25) or a custom metalanguage.

udi_init_info, udi_limits_t

UDI Core Specification - Version 1.01 - 2/2/01 10-17
Section 3: Core Services

udi_limits_t Initialization
NAME udi_limits_t Platform-specific allocation and
access limits
SYNOPSIS | #include <udi.h>
typedef struct {
udi_size t max_legal _alloc ;
udi_size t max_safe alloc
udi_size t max_trace _log formatted len ;
udi_size t max_instance_attr_len ;
udi_ubit32_t min_curtime_res
udi_ubit32_t min_timer_res
} udi_limits_t ;
/* architectural minimums */
#define UDI_MIN_ALLOC_LIMIT 4000
#define UDI_MIN_TRACE_LOG_LIMIT 200
#define UDI_MIN_INSTANCE_ATTR_LIMIT 64
MEMBERS max_legal alloc is the maximum legal memory allocation size for this
system. Any larger size passedui_mem_alloc will
produce indeterminate results, which could include termination
of the driver or region, or even a complete system abort.
max_safe_alloc is the maximum memory allocation size that must be
passed tadi_mem_alloc without being prepared to cancel an
unsuccessful allocation (see definition of “safe limits” below).
max_trace_log formatted len is the maximum legal size of the
formatted result of a call todi_trace_write or
udi_log_write
max_instance_attr_len is the maximum legal size of an instance
attribute value.
min_curtime_res is the minimum time difference, in nanoseconds,
between successive unique values returned by
udi_time_current
min_timer_res is the minimum resolution, in nanoseconds, of timers
registered withudi_timer_start_repeating or
udi_timer_start . Seeudi_timer_start on page 14-4 for
details on hownin_timer_res affects timer operation.
DESCRIPTION udi_limits_t reflects implementation-dependent system limits, such as

memory allocation and timer resolution limits, for a particular region. These
limits may vary from region to region, but will remain constant for the life of
a region.

Theudi_limits_t structure is passed to a driver instance via the
udi_init_context_t in its initial region data.

10-18

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization

udi_limits _t

REFERENCES

Since UDI can be implemented on a wide variety of systems from small
embedded systems to large server systems, the memory available for drivers
can vary widelyudi_limits_t allows drivers to adjust their allocation
algorithms to best fit their environment.

There are two types of allocation limitggal limits andsafelimits. Legal
limits represent the absolute upper bound on a single allocation. Drivers must
not make requests that would exceed the legal limits.

Safe limits represent the maximum amount that a driver may safely request
without arranging to deal with unsuccessful allocations. For any size greater
than the safe limit (but not exceeding the legal limit), drivers must cancel the
request (usingidi_cancel) after a reasonable amount of time has expired.
To do this, the driver may set a timer usumj_timer_start or
udi_timer_start_repeating . Drivers are expected to be coded as if
allocations below the safe limit will always eventually succeed.

The max_legal alloc andmax_safe_alloc limits affect the size of
virtually-contiguous driver memory allocations vidi_mem_alloc . These
allocation limits are guaranteed to be greater than or equal to
UDI_MIN_ALLOC_LIMIT in all UDI environments. This means drivers don’t
need to check these limits for requests that don't exceed
UDI_MIN_ALLOC_LIMIT bytes. C language structures that need to be
dynamically allocated should be limited tdil_ MIN_ALLOC_LIMIT bytes

in size, so they can be allocated directly with a sinogiemem_alloc call.

The max_trace log formatted len limit specifies the maximum size,
in bytes, of strings resulting from formatting messages passed to
udi_trace_write or udi_log_write . This limit is guaranteed to be
greater than or equal tdDI_MIN_TRACE_LOG_LIMIT in all UDI
environments.

The max_instance_attr_len parameter specifies the maximum size, in
bytes, of a device instance attribute value (see Chaptémstance Attribute
Management) that can be handled by the environment. This limit is
guaranteed to be greater than or equal to
UDI_MIN_INSTANCE_ATTR_LIMIT in all UDI environments.

The min_curtime_res andmin_timer_res parameters specify the
corresponding resolution of the system chronological timer and system
timeout timer, respectively (see Chapter ‘Tdme Management). Current
time values will change no faster than the amount of time specified by
min_curtime_res , and timers will not be scheduled with any better
resolution or granularity than thmin_timer_res specification.

udi_mem_alloc, udi_cancel, udi_timer_start,
udi_timer_start_repeating, udi_init_context_t,
udi_instance_attr_set, udi_trace_write, udi_log_write

UDI Core Specification - Version 1.01 - 2/2/01 10-19
Section 3: Core Services

udi_chan_context t Initialization

NAME
SYNOPSIS

MEMBERS
DESCRIPTION

REFERENCES

udi_chan_context_t Initial context for bind channels
#include <udi.h>

typedef struct {
void * rdata ;
} udi_chan_context_t ;

rdata is a pointer to the driver instance’s initial region data.

Theudi_chan_context t structure is stored at the front of the channel
context structure pre-allocated for new bind channels whose
chan_context_size is non-zero (seadi_ops_init_t on page 10-9),
except for child-bind channels, which uséi_child_chan_context_t

A pointer to this structure is made available to the driver as the initial channel
context for the corresponding bind channel. Drivers may subsequently change
the channel context, but must not free this structure; the environment will free
it when the channel is unbound.

udi_init_info, udi_child_chan_context _t,
udi_init_context_t, udi_ops_init_t

10-20

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Initialization udi_child _chan context t
NAME udi_child_chan_context_t Initial channel context for child-bind
channels
SYNOPSIS | #include <udi.h>
typedef struct {
void * rdata ;
udi_ubit32_t child_ID ;
} udi_child_chan_context_t ;
MEMBERS rdata is a pointer to the driver instance’s initial region data.
child_ID s the child ID value initially supplied by this driver in the
udi_enumerate_ack operation which enumerated this child.
This value allows the parent to uniquely determine which child
this new bind channel is connected to.

DESCRIPTION Theudi_child_chan_context_t structure is stored at the front of the

channel context structure pre-allocated for new bind channels whose
chan_context_size is non-zero (seadi_ops_init_t on page 10-9).
A pointer to this structure is made available to the driver as the initial channel
context for the corresponding bind channel. Drivers may subsequently change
the channel context, but must not free this structure; the environment will free
it when the channel is unbound.

REFERENCES | udi_init_info, udi_chan_context_t,

udi_init_context_t, udi_ops_init_t, udi_enumerate_ack

UDI Core Specification - Version 1.01 - 2/2/01 10-21
Section 3: Core Services

udi_child_chan_context_t Initialization

10-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

r
"L (]

By U D [.'1IU

Control Block Management 11

11.1 Overview

The UDI service calls available to the driver can be divided into two classes:
1) service calls not requiring external resources
2) service calls that (may) require external resources

Service calls of the first type resemble conventional system service calls, however service calls of the
second type may require the environment to obtain resources to complete the service request. When
resources must be obtained, the service call cannot complete immediately with the requested resources
because they may not be presently available; a callback is used instead to handle completion for these
types of requests so that the driver may be re-entered once the resources are available.

Service calls of the first type are referred tosgschronous service callsvhereas those of the second
type are referred to asynchronous service callSee also the discussion of “Asynchronous Service
Calls” on page 7-4 and the “Function Call Classifications” on page 4-4.

The UDI control blockprovides the context for the second type of service call. The control block can be
used to marshall and unmarshall the parameters for a request and to allow the environment to queue the
request internally and maintain context-oriented status. While the driver owns the control block it can be
used for similar queuing and status/context purposes within the driver.

Metalanguage-specific channel operations (see Chaptém2®duction to UDI Metalanguages) also
use UDI control blocks for similar purposes.

The generic control block is a representation of the basic elements common to all UDI control blocks.
Most UDI service calls requiring a control block will accepty control block but are defined in terms

of the generic control block; convenience macros are also provided to obtain a generic control block
reference for any specific control block and vice versa.

UDI Core Specification - Version 1.01 - 2/2/01 11-1
Section 3: Core Services

Control Block Service Calls and MacroSontrol Block

11.2 Control Block Service Calls and Macros

The service calls and macros used to manipulate control blocks are described in the paragraphs that
follow.

11-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt

udi_cb t

NAME udi_cb t Generic, least-common-denominator
control block
SYNOPSIS | #include <udi.h>
typedef struct {
udi_channel_t channel ;
void * context ;
void * scratch ;
void * initiator_context ;
udi_origin_t origin
} udicbt ;
MEMBERS channel is a handle to the channel currently associated with this control

context

scratch

initiator_context

origin

block. When used in a channel operation, the main control
block’s channel member is used as the target channel, and
must not—at that time—be&DI_NULL_CHANNELFor
environment implementation reasow®annel must never be
explicitly set by the driver t&JDI_NULL_CHANNEL

is a pointer to state information within the driver region. On
entry to a channel operation, the environment setgext to
the channel’s current context. Drivers may change it if needed.

Seeudi_channel_set_context for details on how channel

context is determined.

is a pointer to the control block’s scratch area. Drivers must not
change this pointer, but may change any of the bytes in the space
pointed to byscratch , up to the required scratch size specified
by the appropriatedi_cb_init_t in the driver’s

udi_init_info

is a context pointer that the initiator of a request or
indication operation can use to associate per-request context with
this control block. If and when the control block is returned to
the initiator via an acknowledgement, nak, or response operation,
the initiator can use this context pointer to access any additional
state it needs to complete the operation.

Any driver receiving a request or indication operation must use
the same control block in its (acknowledgement, nak, or
response) reply, and must not modify the

initiator_context value. In fact, the value of
initiator_context is unspecified except when the control
block is owned by the initiating region, so must not be compared,
dereferenced, or otherwise used from any other region.

is a handle to the origination information for the current request.
This is set in the original control block by the environment; each
module must copy this field from input control blocks to any
other control blocks used to complete work requested by the

UDI Core Specification - Version 1.01 - 2/2/01

11-3
Section 3: Core Services

udi_cb t

Control Block Mgmt

DESCRIPTION

REFERENCES

input control block. Any control block used in an asynchronous
service call or channel operation that is not associated with an
incoming request control block must set origin to the
UDI_NULL_ORIGIN value.

Theudi_cb t structure is used for generically handling control blocks and
accessing their common members. All metalanguage-specific control blocks
have audi_cb t structure as their first structure member.

Theudi_cb t structure is a semi-opaque type, and must only be allocated
by environment service calls. Control blocks are transferable between regions,
when used as the main control block for a channel operation, or chained from
that control block as part of a linked list of identically-typed control blocks.

When a new control block is allocated, d@sntext andorigin members
are initialized to thecontext value from the original control block, its
channel member is initialized according to tlefault_channel
argument block passed tmli_cb_alloc , and itsinitiator_context

value is unspecified.

The driver that currently owns the control block may changectanel
andcontext members at any time while the control block is not in use with

an environment service call. If the control block is not already part of an in-
progress request/response sequence (that is, not transferred to this region from
another region as part of a request or indication operation), the controlling
driver may also change theitiator_context value.

All members ofudi_cb_t and other visible fields in a metalanguage-

specific control block, as well as the scratch area contents, are preserved
across asynchronous service calls, but not across channel operations. The only
member ofudi_cb_t that is preserved across a channel operation is
initiator_context , and that only when the control block is returned to

the initiating region.

When a control block or a chain of control blocks is passed to another region
via a channel operation, ttehannel andcontext members of each

control block are automatically set to the channel handle for the target
region’s end of the channel and the channel context for that endpoint,
respectively, before the target region’s entry point is invoked.

udi_init_info, udi_cb_init_t, udi_cb_alloc

11-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt udi_cb_alloc

NAME udi_cb_alloc Allocate a new control block
SYNOPSIS | #include <udi.h>

void udi_cb_alloc (
udi_cb_alloc_call_t * callback
udi_cb t* gcb,
udi_index_t cb_idx
udi_channel_t default_channel);

typedef void udi_cb_alloc_call_t (
udi_cb_t *gcb,
udi_cb t *new _cb);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

cb_idx is a control block index that indicates required properties of the
control block, such as metalanguage type and scratch size.

default_channel is a channel handle that, if set to a value other than
UDI_NULL_CHANNELIis used as the initial value for the new
control block’s channel member. If set to
UDI_NULL_CHANNELthe environment is free to initialize the
channel member with some other value, so the driver must not
depend on it containingDl_NULL_CHANNEL

new_cb is a pointer to the newly allocated control block.

DESCRIPTION udi_cb_alloc allocates a new control block for use by the driver. The new
control block can be used to allocate other resources using any UDI service
request or to invoke channel operations appropriate to the specified control

block type.

While such allocations are usually performed using a specific control block
already associated with a channel operation, the new control block returned by
udi_cb_alloc provides a way to continue or complete the channel
operation without waiting for a service call to complete. This is particularly
useful when initiating delayed callbacks wiili_timer_start or
udi_timer_start_repeating

When a new control block is allocated, dtsntext member is initialized to
the context value fromgcb, its origin member is initialized to the
origin value fromgchb, its channel member is initialized according to the
default_channel argument block passed tali_cb_alloc , and its
initiator_context value is unspecified.

The scratch pointer of the new control block is initialized to point to the
associated scratch area and the pointer must not be modified by the driver. If
the driver's scratch requirement is zero, the value of the scratch pointer is
unspecified and it must not be dereferenced.

UDI Core Specification - Version 1.01 - 2/2/01 11-5
Section 3: Core Services

udi_cb_alloc Control Block Mgmt

The initial values in the new control block’s scratch space are unspecified,;
they are not guaranteed to be zero. Similarly, for metalanguage-specific
control blocks that have additional visible structure members, the initial value
of these structure members are also unspecified.

WARNINGS The control block obtained with this call must not be used with metalanguage-
related channel operations other than those appropriate for the control block
type associated withb_idx . If the control block index was associated with
audi_gcb_init_t in udi_init_info , rather than a metalanguage-
specificudi_cb_init_t , then the new control block must not be used with
any channel operations.

The driver must not explicitly set the channel member of the returned control
block toUDI_NULL_CHANNElat any time and must not expect
UDI_HANDLE_IS NULL to return TRUE for the channel member of a

control block even ifdefault_channel wasUDI_NULL_CHANNEL

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

REFERENCES | udi_cb_t, udi_cb free, udi_timer_start,
udi_timer_start_repeating, udi_init_info,
udi_cb_init_t

11-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt udi_cb_alloc_dynamic

NAME udi_cb_alloc_dynamic Allocate a control block with
variable inline layout
SYNOPSIS | #include <udi.h>
void udi_cb_alloc_dynamic (
udi_cb_alloc_call_t * callback
udi_ cb t* gcb,
udi_index_t cb_idx
udi_channel_t default_channel ,
udi_size t inline_size ,
udi_layout_t * inline_layout);
typedef void udi_cb_alloc_call_t (
udi_cb_t *gcb,
udi_cb_t *new _cb);
ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”
cb_idx are the same arguments as useddncb_alloc
default_channel
new _cb
inline_size is the size of the previously unspecified inline structure for
this cb_idx.
inline_layout is the layout of the previously unspecified inline structure
for this cb_idx. Must bé&lULL if the control block layout does
not includeUDI_DL_INLINE_DRIVER_TYPED.

DESCRIPTION udi_cb_alloc_dynamic behaves likaudi_cb_alloc , except that it
allows the driver to specify the size and layout of an inline structure for the
control block that was left unspecified in the drivardi_cb_init_t
structure with the giverb _idx .

The inline_size andinline_layout members of the corresponding
udi_cb_init_t structure (see page 10-11) must have been set to zero and
NULL, respectively, and the control block layout must include exactly one
UDI_DL_INLINE_UNTYPED, UDI_DL_INLINE_TYPED, or
UDI_DL_INLINE_DRIVER_TYPED layout element.
It is recommended thatdi_cb_alloc be used instead of
udi_cb_alloc_dynamic if possible, as it's likely to be faster, but if the
layout is not known staticallydi_cb_alloc_dynamic must be used.
WARNINGS Use of theinline_layout parameter must conform to the rules described
in Section 5.2.1.1, “Using Memory Pointers with Asynchronous Service
Calls”.

REFERENCES | udi_cb_t, udi_cb_alloc, udi_layout_t, udi_init_info,

udi_cb_init_t
UDI Core Specification - Version 1.01 - 2/2/01 11-7

Section 3: Core Services

udi_cb_alloc batch Control Block Mgmt

NAME udi_cb_alloc_batch Allocate a batch of control blocks
with buffers

SYNOPSIS | #include <udi.h>

void udi_cb_alloc_batch (
udi_cb_alloc_batch_call t * callback
udi_cb_ t* gcb,
udi_index_t cb_idx
udi_index_t count ,
udi_boolean_t with_buf
udi_size t buf size
udi_buf_path_t path_handle);

typedef void udi_cb_alloc_batch_call t (
udi_cb t* gcb,
udi_cb t* first new _cb);

ARGUMENTS callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section ofCalling Sequence and Naming
Convention’

cb_idx is a control block index that indicates required properties of the
control block, such as metalanguage type and scratch size. All of
the control blocks allocated will be of the same type as indicated
by thiscb_idx .

count is the number of control blocks of this type to allocate in the
batch operation.

with_buf is true if buffers should be allocated along with the control
blocks. If true, a buffer of sizbuf_size will be allocated for
eachudi_buf t pointer UDI_DL_BUF layout entry) that
exists in each allocated control block. If false, no buffers will be
allocated and the values of the corresponding control block
buffer pointers are undefined.

buf _size is the size of the buffers to be allocatedavith_buf is true.
This argument is ignored ifiith_buf s false.

path_handle is the handle identifying the intended use and dispatching of
the allocated buffers. Path handle usage is determined by the
driver, but by associating the use of a spegfath_handle
with buffers allocated for a specific purpose, the driver allows the
environment to predict and optimize the allocated buffer
requirements. This field is ignorediifith_buf s false.

first_ new_cb is a pointer to the first allocated control block in the list of
returned control blocks. Bount is zero,first new_cb will
be NULL.

11-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt udi_cb_alloc_batch

DESCRIPTION This service combines the useudfi_cb_alloc with UDI_BUF_ALLOCto
allocate batches of one or more control blocks with optional associated
buffers.

Consultudi_cb_alloc for more specifics on how the individual control
blocks will be allocated and initialized.

ConsultUDI_BUF_ALLOCandudi_buf_write for more specifics on how
the individual buffers will be allocated and initialized.

The control blocks are returned to the caller by passing them as a chain or list.
If the control block type allows control block chaining (i.e. the control block
contains a pointer to another control block of the same type) then the chain
field within the control blocks are used to link the returned control blocks:
each control block’s chain field will point to the next control block in the
chain. If the control block type does not support chaining, then the

initiator_context field of the returned control blocks is used to link
the control blocks; theallback function should unlink the control blocks
and reset thenitiator_context as appropriate. The link pointer in the

last control block shall be set to NULL.
WARNINGS See the warnings fardi_cb_alloc

Batch allocated control blocks must be unlinked before use unless actually
used as a chain. Passing a control block to a channel operation or system
service call relenquishes ownership of that control block and any chained

control blocks. If the list is maintained via tirgtiator _context , the
driver is assured that thsitiator _context will be returned
unchanged, but is not guaranteed thatitttéator context will not be

changed (or deallocated) while the driver does not own the control block.

REFERENCES | udi_cb t ,udi_cb _alloc ,udi_buf t ,UDI_BUF _ALLOC
udi_buf_write

UDI Core Specification - Version 1.01 - 2/2/01 11-9
Section 3: Core Services

udi_cb_free

Control Block Mgmt

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNING

REFERENCES

udi_cb_free Deallocates a previously obtained
control block

#include <udi.h>

void udi_cb_free (udicb t* c¢b)

cb is a pointer to the control block to be deallocated. If NULL, this
function is a no-op.

udi_cb_free releases the specified control block, including any
metalanguage-specific parts, along with any associated resources back to the
environment.cb must be NULL or must have been previously obtained by a
call toudi_cb_alloc , or passed to the driver via a channel operation.

Note thatudi_cb_free may be used to free any type of control block.

The control block must not currently have any service call or callback
pending. Any pending requests must first be cancelled wdihcancel

Management metalanguage control blocks and channel event control blocks
must not be passed tali_cb_free

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

udi_cb_alloc, udi_cancel, udi_channel_event cb t

11-10

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt UDI GCB

NAME UDI_GCB Convert any control block to generic
udi_cb_t
SYNOPSIS | #include <udi.h>
#define UDI_GCH mch) (&(mcb)->gcb)
ARGUMENTS mcb is a pointer to the control block reference to be converted.
DESCRIPTION This macro is used to convert any UDI control block pointer into its generic
control block representatiomdi_cb _t *) suitable for use with a UDI
service request. The original control block is not copied or re-allocated.
This macro is provided for convenience only. Its use is highly recommended
but not required.
REFERENCES | udi_cb_t
UDI Core Specification - Version 1.01 - 2/2/01 11-11

Section 3: Core Services

UDI_MCB Control Block Mgmt

NAME UDI_MCB Convert a generic control block to a
specific one

SYNOPSIS | #include <udi.h>
#define UDI_MCRHR gcb, cb_type) ((cb_type *)(gch))

ARGUMENTS gcb is a pointer to the control block reference to be converted.
cb_type is the type name for the desired specific control block type.

DESCRIPTION This macro is used to convert a generic control block pointer to a
metalanguage-specific control block type. The original control block is not
copied or re-allocated. The control block itself must already be of the type
appropriate tach_type .

This macro is provided for convenience only. Its use is highly recommended
but not required.

WARNINGS The control block referenced lgeb must have been previously obtained by a
call toudi_cb_alloc with achb _idx appropriate tach_type .

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

REFERENCES | udi_cb_t

11-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Control Block Mgmt udi_cancel

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

udi_cancel Cancel a pending asynchronous
service call

#include <udi.h>

void udi_cancel (
udi_cancel_call t * callback
udi_cb t* gcb);

typedef void udi_cancel_call_t (
udi_cb t* gcb);

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions’

Any service request with a pending callback can be canceled by this call,
except timer requests (which must be canceled udihtimer_cancel).
The control block must be the same one specified when the service was
requested, and must be active (i.e. the callback has not yet been called,
regardless of whether or not allocations have actually completed).

udi_cancel must not be used with control blocks that have been passed to
channel operations, but some channel operations can be aborted by using
udi_channel_op_abort

When a service request is cancelled, any whole or partially-allocated
resources or data structures that would have been returned with that callback
upon normal completion will be discarded (i.e. there will be no resource
leaks). Further, any resources or data structures that would have been
consumed by the original request (e.g. movable structs and objects referenced
by transferable handles) will be consumed (and discarded), since there is no
way to pass the object back to the original caller. Another way to look at this
is thatudi_cancel does not provide an undo operation, but rather an abort
operation; any objects (such as a data buffeuéirbuf write) being

modified or created by the original request are destroyed by the abort.

Once the request has been cancelled, and any partial allocations released, the
specifiedcallback routine will be called instead of the original callback
routine from the outstanding request. Ownership of the control block is
transferred back to the requestor with this callback, and the control block is
available for reuse.

udi_cancel must be called from the region that owned the control block at
the time of the original request. It cannot be used to cancel a pending request
in another region.

A driver must keep track of its in-progress requests to avoid canceling a
different request than intended. See the example below for details. A good
rule of thumb is thatidi_cancel must not be used to cancel a request
without first checking to see if the corresponding callback has been called.

UDI Core Specification - Version 1.01 - 2/2/01 11-13
Section 3: Core Services

udi_cancel Control Block Mgmt

If a driver issues adi_cancel for a control block that is not active the
driver is in error. See the “Driver Faults/Recovery” sectiofifofecution
Model” for an explanation of how the environment may react to this driver
error.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

Since ownership of control blocks are transferred away from the driver upon
issuing a channel operation, any attempt toudiecancel to cancel a
channel operation will be considered an error and will be handled as an
environment-detected error in accordance with the “Driver Faults/Recovery”
section of‘Execution Model".

EXAMPLES The first example shows homot to useudi_cancel . Theudi_cancel

call inddd_stepl will not necessarily cancel theli_ mem_alloc call

that immediately precedes it. In fact, it could even cancel the subsequent
udi_cb_alloc request inddd_step2 , or even some further subsequent
allocation in the callback sequence. This example is somewhat contrived in
that there would typically be some reason the driver is canceling the request;
it wouldn’t simply do an allocation followed immediately by a cancel, but it
illustrates the issues.

void

ddd_stepl(ddd_context_t *context)

{
udi_mem_alloc(ddd_step2, UDI_GCB(cbl), size, 0);
udi_cancel(ddd_stepla, UDI_GCB(cbh1l));

}

void

ddd_stepla(
udi_cb_t *gcb)

{
/* Something has been canceled,
but it's unclear what */
}
void
ddd_step2(
udi_cb_t *gcb,
void *new_mem)
{
udi_cb_alloc(ddd_step3, UDI_GCB(cbl), idx, chan);
}
void
ddd_step3(
udi_cb_t *gcb,
11-14 UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

Control Block Mgmt udi_cancel

udi_cb_t *new_cb)

{
}

To fix this problem, the driver must first check to see if the corresponding
allocation callback has been received before callidig cancel . Adding

such a check to the above code produces the following, which will cancel the
immediately precedingdi_mem_alloc call if and only if the allocation
doesn’t complete immediately (i.e. isn't complete upon return). (Note that
some environments may be designed to never do the callback immediately
before returning. So this would not in general be a useful thing to do in the
driver, but it does illustrate the issues.)

void
ddd_step1(
ddd_context_t *context)

{

context->mem_alloc_done = FALSE;

udi_mem_alloc(ddd_step2, UDI_GCB(cbl), size, 0);

if (Icontext->mem_alloc_done)
udi_cancel(ddd_stepla, UDI_GCB(cb1l));

}

void

ddd_stepla(
udi_cb_t *gcb)

{
/* udi_mem_alloc in stepl has been cancelled. */
}
void
ddd_step2(
udi_cb_t *gcb,
void *new_mem)
{
ddd_context_t *context = gcb->context;
context->mem_alloc_done = TRUE;
udi_cb_alloc(ddd_step3, UDI_GCB(cbl), idx, chan);
}
void
ddd_step3(
udi_cb_t *gcb,
udi_cb_t *new_cb)
{
}

UDI Core Specification - Version 1.01 - 2/2/01 11-15
Section 3: Core Services

udi_cancel Control Block Mgmt

Note that the region serialization rules prevent reentrancy in the region code
and therefore prevent the race conditions related to accesses and modifications
of themem_alloc_done variable that would normally need to be

considered.

11-16 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

|

“\UDI*

Memory Management 12

12.1 Overview

The UDI memory management services allow drivers to allocate and free blocks of region-local,
virtually-contiguous memory. There are two types of virtually-contiguous memory allocation provided

in UDI: (1) allocation of memory which is transferable, or movable, between regions (provides for
memory which can either directly or indirectly be passed as an argument to a channel operation), and (2)
allocation of memory which is not transferable between regions (may only be used within the context of
the caller’s region). In both cases the environment returns a region-local pointer to the allocated memory.
In the transferable case it is up to the environment implementation of the channel operations to translate
the region-local pointer being transferred to a region-local pointer in the target region. Non-transferable
memory should be used wherever possible, as allocation of transferable memory may be more expensive
in some environments.

Note —For memory copy, compare, and initialization utility functions, see ChapteGgthg/Memory
Utility Functions”.

When using memory allocation services, care must be taken to avoid excessive use of memory
resources. Memory is a finite system resource. It is the device driver’'s responsibility to allocate, track
and release memory back to the environment in a responsible manner.

The driver must also be careful to keep its memory demands in tune with the capabilities of the
platform. Since UDI can be implemented on a wide variety of systems from small embedded systems to
large server systems, the memory available for drivers can vary widely. When a driver region is created,
it is provided with a set of platform-specific allocation limits (sl _limits_t on page 10-18) to

which it must conform. The resource managements operations in the Management Metalanguage
provide additional resource utilization guidelines to the driver (see Section 24.4.2, “Resource
Management,” on page 24-6).

Warning — Memory allocated byidi_mem_alloc is intended for access by driver
software and must not be used for Direct Memory Access from devices. DMA-
addressable memory allocation is described in the DMA chapter &fDh@hysical I/0
Specification for those environments that support DMA and other physical 1/O.

UDI Core Specification - Version 1.01 - 2/2/01 12-1
Section 3: Core Services

Memory Management Service Calls Memory Mgmt

12.2 Memory Management Service Calls

The memory management service calls, which consistliofnem_alloc andudi_mem_free, are
described in the paragraphs that follow.

12-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Memory Mgmt udi_mem_alloc

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

udi_mem_alloc Allocate memory for a virtually-
contiguous object

#include <udi.h>

void udi_mem_alloc (

udi_mem_alloc_call_t * callback
udi_cb_t* gcb,
udi_size t size

udi_ubits t flags);

typedef void udi_mem_alloc_call_t (
udi_cb t* gcb,
void * new_mem);

/* Values for flags */
#define UDI_MEM_NOZERO (1U <<0)
#define UDI_MEM_MOVABLE (1U <<1)

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions’

size is the number of bytes of space requested.usiedimits t on
page 10-18 for limits on allocation sizes.

flags is a bitmask of optional flags, which may include zero or more of
the following:

UDI_MEM_NOZERO — Don’t zero memory contents.
UDI_MEM_MOVABLE — Allocate movable memory.

new_mem is a pointer to the new memory object. The driver is expected to
cast this to the appropriate type of struct, array, etsizd is
zero,new_memwill be NULL.

udi_mem_alloc allocates memory for a new virtually-contiguous object
capable of storing at leasfze bytes. The newly allocated memory will be
zeroed unless UDI_MEM_NOZERO is set, in which case the initial values are
undefined.

The newly allocated memory will be aligned on the most restrictive alignment
of the platform’s natural alignments flang and pointer data types, allowing
the allocated memory to be directly accessed as C structures.

If the UDI_MEM_MOVABLE flag is set, the memory will be allocated as
movablememory. This means that it can be passed outside of the region from
which it was allocated. Only movable memory may be pointed to by control
block fields or channel operation parameters. UDI_MEM_MOVABLE should
be used only if needed, as movable memory may be a more limited resource.

The memory allocated by this routine has no particular physical or I/O bus-
related properties. It is intended only for access by driver software.

UDI Core Specification - Version 1.01 - 2/2/01 12-3
Section 3: Core Services

udi_mem_alloc Memory Mgmt

REFERENCES

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

The usage of memory allocated by this routine must follow the rules described
in the “Memory Objects” section oData Modd".

udi_mem_free, udi_cancel, udi_limits_t

12-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Memory Mgmt udi_mem_free

NAME
SYNOPSIS

ARGUMENTS
DESCRIPTION

REFERENCES

udi_mem_free Free a memory object
#include <udi.h>

void udi_mem_free (
void *target mem),

target_mem is a pointer to the memory object being deallocated.

udi_mem_free frees all resources associated with the specified memory
object. The driver must not dereference theget_ mem pointer once this
function is called.

If target mem is equal to NULL, explicitly or implicitly (zeroed by initial
value or by usingidi_memset), this function acts as a no-op. Otherwise,
target_mem must have been allocated bgli_mem_alloc or passed to
the driver as a movable memory block via a channel operation.

Note —Theudi_init_context_t structure, the rest of the initial region
data area, and any channel context structures pre-allocated by the
environment, must not be freed by the driver and are not transferrable
between regions.

udi_mem_alloc

UDI Core Specification - Version 1.01 - 2/2/01 12-5
Section 3: Core Services

udi_mem free Memory Mgmt

12-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

r
(]

“\UDI*

Buffer Management 13

13.1 Overview

The service calls in this chapter are used to manage the data buffers that are used to carry “application
or “wire” data within the UDI environment. Any form of data transfer either to or from the device or
between UDI modules will use a UDI buffer construct to reference that data.

In order to facilitate various device and DMA requirements and to avoid copying data, UDI buffers
implement a layer of abstraction between the driver and the actual data. A device driver does not
typically need to access data with the exception of various headers or tags, so the lack of direct access
to the data is typically not even noticed in the UDI driver.

Using this abstraction, drivers are presented with a “logical” view of the data as a single contiguous
block of data accessible via UDI buffer read/write operations. The implementation of the UDI buffer is
determined by the UDI environment implementation and a single UDI environment may have several
different buffer implementations supporting the UDI driver-to-buffer interface. This facility allows buffer
data to be distributed into multiple virtual and physical segments as needed and desired to achieve the
aforementioned goals of copy avoidance and natural DMA presentation.

Another valuable effect of representing buffers logically rather than using direct virtual access is that
data may be added to or removed from any part of the buffer without requiring extra copy or buffer
chaining operations. New sections of data may be chained into the existing buffer “behind the scenes” by
the environment without disturbing the present buffer contents. Likewise the environment can adjust the
buffer's representation to ignore deleted portions of data without requiring the actual data to be
rewritten. The extent to which these practices are performed is determined entirely by the UDI
environment implementation; the driver is not concerned with these minutiae.

No endianness conversion is performed on the data in UDI buffers when they are transferred between
regions. UDI buffer data is managed by the environment as an untyped string of bytes.

UDI Core Specification - Version 1.01 - 2/2/01 13-1
Section 3: Core Services

Buffer Type Buffer Mgmt

13.2 Buffer Type

UDI buffers are represented by the following semi-opaque type.

13-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_buf t

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

udi_buf t Logical buffer type
#include <udi.h>

typedef struct {
udi_size t buf size
} udi_buf t ;

buf _size is the current size of the buffer data, in bytes. The environment
will adjust this as necessary as a result of service calls that
change the buffer's content. The driver may also change the
value, to indicate a desired size change, which will affect
subsequent service calls.

Theudi_buf t structure is used to reference a collection of data that is
passing through a driver, typically between an application and a device or
communications medium.

Theudi_buf t structure is a semi-opaque type, and must only be allocated
by environment service calls. UDI buffers are transferable between regions.

If a buffer is used with a service call that retrieves the contents of some or all
of the buffer data (such agli_buf read orudi_buf copy) and the

buf _size value is larger than the extent of data explicitly written into the
buffer, the values retrieved for the un-written range are unspecified.

If data is written into the buffer (such as witdi_buf write or

udi_buf copy), and the starting offset at which the data is written is
greater than the extent of data previously explicitly written into the buffer, an
values subsequently retrieved for the un-written range are unspecified.

Any service call that potentially modifies a buffer’s contents returns a new
buffer pointer in the corresponding callback. While this pointer may in many
cases be equal to the original buffer pointer, the environment may in fact have
reallocated the buffer, so drivers must always replace all subsequent use of the
original buffer pointer with the new pointer. This is also true of buffers passed
to channel operations.

UDI Core Specification - Version 1.01 - 2/2/01 13-3
Section 3: Core Services

Transfer Constraints Buffer Mgmt

13.3 Transfer Constraints

UDI buffer allocation and usage is subject to various constraints specifications. This section describes
those constraints that relate to data transfer operations. The UDI Physical /0O Specification specifies
additional constraints related to DMA operations.

13-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_xfer _constraints _t

NAME
SYNOPSIS

MEMBERS

udi_xfer_constraints_t Transfer constraints structure
#include <udi.h>

typedef struct {
udi_ubit32_t udi_xfer_max ;
udi_ubit32_t udi_xfer_typical ;
udi_ubit32_t udi_xfer_granularity ;

udi_boolean_t udi_xfer_one_piece ;
udi_boolean_t udi_xfer_exact _size ;
udi_boolean_t udi_xfer_no_reorder ;

} udi_xfer_constraints_t ;

udi_xfer_max is the maximum # of bytes for an 1/O transfer that can be
supported by the device and/or driver. Zero indicates that there is
no restriction on transfer size.

udi_xfer_typical is the typical # of bytes for an I/O transfer to this
device. This value may be used by the environment to optimize
pre-allocation decisions. Zero indicates that the device has no
typical pattern. Only drivers that do have a typical pattern should
set this attribute. This constraint is typically used to assist the
environment in implementing pre-allocation strategies.

udi_xfer_granularity is the transfer granularity. The total transfer size
must be a multiple of this number of bytes. For random access
devices, it is also required that the starting device offset for a
transfer must be a multiple of the transfer granularity. A value of
one effectively means no restriction. Transfer size is a function of
metalanguage-specific operations, and may or may not be related
to the size of buffers used to pass the data.

udi_xfer_one_piece is a flag indicating (iTRUB that the transfer must
be handled as a single request; it cannot be broken up. This is
typically used for drivers that use the transfer size as an implicit
attribute; for example, a tape driver might use the transfer size to
control the size of the block written to a tape. Also acts as if
UDI_XFER_EXACT_SIZEwereTRUE

udi_xfer_exact_size is a flag indicating (iTRUB that transfer requests
that don’t conform to transfer granularity constraints must be
failed instead of being passed to the driver. Even if this flag is
not set, the request that is passed to the driver will still meet the
transfer granularity constraints, but it may have been modified
from the original request in order to do so (using a blocking/de-
blocking algorithm).

udi_xfer_no_reorder is a flag indicating (iTRUB that transfer requests
must be passed to the driver in FIFO order. Any fine-grained
breakup into smaller requests must also preserve ascending
device offset order and must not insert new requests into the
stream.

UDI Core Specification - Version 1.01 - 2/2/01 13-5
Section 3: Core Services

udi_xfer _constraints _t Buffer Mgmt

DESCRIPTION

Theudi_xfer_constraints_t structure is used to describe the various
transfer constraints for a specific operation. These transfer constraints may be
passed to a child via a metalanguage-specific bind acknowledgement channel
operation to communicate the transfer requirements to the child driver; a
metalanguage may alternatively explicitly specify an applicable subset of
these constraints in a manner unique to that metalanguage.

The transfer constraints information may be used by a driver to determine how
to divide requests into appropriate individual control blocks and buffers for
handling by the parent driver.

13-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt Buffer Management Macros

13.4 Buffer Management Macros

The macros specified in this section are standard buffer management macros provided for convenience in
using the buffer management service calls. These macros are built on top of the buffer management

service calls in Section 13.5 on page 13-12.

UDI Core Specification - Version 1.01 - 2/2/01 13-7
Section 3: Core Services

UDI_BUF _ALLOC

Buffer Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_BUF_ALLOC Allocate and initialize a new buffer

#include <udi.h>

#define \
UDI_BUF_ALLOQ \
callback , gcb, init data , size , path handle)\

udi_buf_write(callback, gcb, init_data, \
size, NULL, 0O, \
0, path_handle)

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

init_data is a pointer to the initial data to use to fill the buffer. If set to
NULL, the initial data values are unspecified.
size is the initial size of the buffer data, in bytes.

path_handle is the handle identifying the intended use and dispatching of
this buffer. Path handle usage is determined by the driver, but by
associating the use of a specific path_handle with buffers
allocated for a specific purpose, the driver allows the
environment to predict and optimize the allocated buffer
requirements.

UDI_BUF_ALLOCallocates a new logical buffer with a valid data length of
size . The initial data will be copied fronnit_data if non-NULL. If
init_data is NULL, the buffer will still havesize bytes of valid data, but
the initial value of these bytes is unspecified.

The macroUDI_BUF_ALLOCmust be called as if it had the following
functional interface, as can be derived from the above macro definition and
the definition ofudi_buf_write

void UDI_BUF_ALLOC(
udi_buf write_call_t
udi_cb_t* gcb,
void * init data ,
udi_size t size ,
udi_buf_path_t path_handle);

*callback ,

typedef void udi_buf write_call_t (
udi_cb_t *gcb,
udi_buf t * new_buf);

udi_buf_write

13-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

UDI BUF INSERT

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_BUF_INSERT Insert bytes into a logical buffer

#include <udi.h>

#define \
UDI_BUF_INSERT(\
callback , gcb, new data, size ,\
dst_buf , dst off)\
udi_buf write(callback, gcb, new_data, \
size, dst_buf, dst_off, \
0, UDI_NULL_BUF_PATH)
callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”
new_data is a pointer to the new data bytes to insert into the buffer data. If
set to NULL, thesize bytes inserted intalst_buf at
dst_off shall have unspecified values.
size is the number of bytes to insert indist_buf .
dst_buf is a handle to the logical buffer into which to insert bytes.
dst_off is the logical offset from the first valid data byte in the buffer to

the start of the insertion, in bytes.

UDI_BUF_INSERT insertssize bytes intodst buf at offsetdst off
logically moving any data currently ast_ off “down” by size bytes.

The macroUDI_BUF_INSERT must be called as if it had the following
functional interface, as can be derived from the above macro definition and
the definition ofudi_buf write

void UDI_BUF_INSERT (

udi_buf write_call_t *callback
udi_cb t* gcb,
void * new data |,
udi_size t size ,
udi_buf t * dst buf ,
udi_size t dst off);
typedef void udi_buf write_call t (
udi_cb_t *gcb,
udi_buf t * new_dst buf);

udi_buf_write

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

13-9

UDI BUF DELETE Buffer Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_BUF_DELETE Delete bytes from a logical buffer
#include <udi.h>

#define \
UDI_BUF_DELETE \
callback , gcb, size , dst buf , dst off)\
udi_buf write(callback, gcb, NULL, \
0, dst_buf, dst_off, \
size, UDI_NULL_BUF_PATH)

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

size is the number of bytes to delete fraaat_buf .
dst_buf is a handle to the logical buffer from which to delete bytes.

dst_off is the logical offset from the first valid data byte in the buffer to
the start of the deletion, in bytes.

UDI_BUF_DELETEdeletessize bytes fromdst_buf starting at offset
dst_off , logically moving any additional data “up” to fill the gap.

The macroUDI_BUF_DELETEmust be called as if it had the following
functional interface, as can be derived from the above macro definition and
the definition ofudi_buf write

void UDI_BUF_DELETE(

udi_buf write_call_t * callback
udi_cb t* gcb,
udi_size t size

udi_buf t * dst _buf ,
udi_size_t dst off),

typedef void udi_buf write_call_t (
udi_cb t *gcb,
udi_buf t * new_dst buf);

udi_buf_write

13-10

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

UDI_BUF _DUP

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_BUF_DUP Copy a logical buffer in its entirety
#include <udi.h>

#define \
UDI_BUF_DUR \
callback , gcb, src buf , path_handle)\
udi_buf_copy(callback, gcb, src_buf, \
0, (src_buf)->buf_size, \
NULL, 0, 0, path_handle)

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

src_buf is a handle to the logical buffer to copy.

path_handle is the handle identifying the intended use and dispatching of
this buffer. Path handle usage is determined by the driver, but by
associating the use of a specific path_handle with buffers
allocated for a specific purpose, the driver allows the
environment to predict and optimize the allocated buffer
requirements.

UDI_BUF_DUPmakes a logical copy afrc_buf and passes the new buffer
to the driver with a callback.

The macrdJDI_BUF_DUPmust be called as if it had the following functional
interface, as can be derived from the above macro definition and the definition
of udi_buf_copy

void UDI_BUF_DUP(
udi_buf _copy call_t * callback
udi_cb_t* gcb,
udi_buf t * src_buf
udi_buf path_t path_handle);

typedef void udi_buf _copy call_t (
udi_cb t *gcb,
udi_buf t * new_dst buf);

udi_buf_copy

UDI Core Specification - Version 1.01 - 2/2/01 13-11
Section 3: Core Services

Buffer Management Service Calls Buffer Mgmt

13.5 Buffer Management Service Calls

The functions in this section provide basic UDI buffer management services. These services include the
ability to copy one UDI buffer to another, to transfer (read and write) data bytes between driver memory
and a UDI buffer, and to free a UDI buffer. A UDI buffer may be allocated by copying or writing

without an initial buffer (e.g., see ttdDI_BUF_ALLOCmacro).

13.5.1 Buffer Usage Models

The UDI buffer is used to pass user data from one UDI region to another, typically for the purpose of
performing I/O with that buffer. This I/O path may involve several layers of either native OS or UDI
modules and some of those modules may wish to implement “retransmit” functionality based on various
conditions such as timeouts or failed acknowledgements. Buffer management therefore needs to be
implemented in a highly efficient manner. Native OS buffer handling has been optimized over time to
avoid copying or relocating data during the high-performance paths in the driver. UDI allows the same
types of optimization to be performed as part of the environment implementation although the
specification of how the metalanguage manages these buffers is a critical part of this model.

Most I/O designs can be roughly grouped into one of two buffer models:
1) Thecommand/responsmodel where there is no asynchronous or unsolicited data
from the device, and
2) Thepushmodel where data is pushed from either end but there’s no direct
“acknowledgement” or “completion” of that data transfer.

The most typical example of the command/response model is the SCSI storage protocol. In this protocol,
the application supplies the data buffer that either contains data to be written to the device or specifies a
buffer region into which data is to be read from the device. The buffer is associated with a command
which instructs the adapter and remote device to perform the data transfer, and a response which
indicates the success or failure of that transfer. Any retransmissions are usually as a result of a failure
indication for the transfer.

The common example of a push model is a network protocol. For most (LAN-based) network protocols,
the application supplies a buffer which is manipulated by various protocol entities and then transmitted
on a best-case basis. Various amounts of lossage are expected and protocols or applications are typically
constructed to expect this lossage and initiate retransmissions if the data is not acknowledged within a
specific period of time. Likewise, incoming data may arrive asynchronously and unsolicited from any
network partner and may need to be delivered to any one or more applications after appropriate protocol
processing.

As a general rule, UDI metalanguages will manage the usage of UDI buffers based one of the above
buffer models:

® For a command/response model, the buffer will be passed down to the UDI driver along with
the initial command and the (possibly modified) buffer will be passed back with the
response. On write failures, metalanguages generally require the driver to pass the buffer
back with its contents unmodified; this allows the requester to retransmit the buffer if it so
desires.

® For the push module, the buffer is passed down with the request and always deallocated by
the UDI driver after being transmitted, regardless of the success or failure of the
transmission. If an upper level module wishes to implement a retransmit algorithm based on
timers or remote acknowledgements, it must create a copy of the buffer before passing it to

13-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt Buffer Management Service Calls

the lower level driver.

It is important at this point to note that the “copy” of the buffer is not necessarily a full copy
of the data portion. The UDI environment may simply create another buffer handle that
refers to the same data for the copy; this is implementation dependent and is acceptible as
long as the environment insures that any buffer modifications through one handle are not
visible through another handle (usually by performing a “late-copy” at the time the
modification occurs).

Each UDI metalanguage is free to manage buffers in a manner appropriate to that metalanguage (and
may even manage different buffers in a different manner for different metalanguage operations) but must
specify the methodology to be used in the metalanguage specification and as part of the metalanguage
library interface.

13.5.2 Buffer Recovery Mechanism

For most situations in the UDI environment, ownership of a resource such as a buffer is passed to the
target region whenever the corresponding handle is passed to that target as part of a metalanguage
operation. Any module wishing to preserve the data will typically create a copy of the buffer as
described above.

However, in the command/response buffer usage model, the buffer is not copied by the child UDI
module before being passed to the parent for processing. Instead, the child module expects the parent to
return the buffer when an error occurs. Under normal operating conditions the parent can satisfy this
expectation but in the event of an abrupt removal of the parent device (e.g. a hot swap condition) the
parent will be unable to return the buffer to the child.

In this situation the child still needs the buffer returned to it in order to perform retransmissions or
perhaps perform a failover operations. This is supported in UDI through the operation recovery
mechanism described in Section 4.10, “Driver Faults/Recovery”. In this situation, the UDI environment
will return any buffers held by the parent region to the child as part of the recovery process. Each
metalanguage specification shall indicate which operations and their associated buffers are handled in
this manner.

UDI Core Specification - Version 1.01 - 2/2/01 13-13
Section 3: Core Services

udi_buf _copy

Buffer Mgmt

NAME udi_buf_copy Copy data from one logical buffer to

another

SYNOPSIS | #include <udi.h>

ARGUMENTS callback,

src_buf

src_off

src_len

dst_buf

dst_off

dst _len

void udi_buf copy (
udi_buf copy call_t * callback
udi_cb_ t* gcb,
udi_buf t * src_buf
udi_size t src_off ,
udi_size t src_len
udi_buf t * dst_buf
udi_size t dst off
udi_size t dst len
udi_buf_path_t path_handle);

typedef void udi_buf_copy_call_t (
udi_cb t* gcb,
udi_buf t * new_dst buf);

gcb are the standard arguments describettién’Asynchronous
Service Calls” section of “Calling Sequence and Naming
Conventions”

is a pointer to the buffer containing data to be copied. This must
not be set to NULL.

is the offset, in bytes, from the first logical data byte to the start
of the copy area in the source buffer. This must not exceed the
current size of the buffer:

0 < src_off< src_buf->buf_size
is the number of bytes to be copied from the source buffer.

src_len must be at least 1, amdc_off + src_len must
not extend beyond the current buffer size:

0 < src_len< (src_buf->buf_size - src_off)
For src_len of zero, usaidi_buf write instead.

is a pointer to the buffer that is the target of the data copy. If set
to NULL, a new, empty buffer will be allocated before copying
the source data.

is the offset, in bytes, from the first logical data byte to the start
of the copy area in the destination buffer. The buffer will be
extended if necessary to accommodate the data.

0 < dst_off< dst_buf->buf_size
is the number of bytes idst_buf to be replaced with data
copied from the source buffer.

0 < dst_len< (dst_buf->buf_size - dst_off)

13-14 UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

Buffer Mgmt

udi_buf copy

DESCRIPTION

If dst buf is NULL bothdst off anddst len must be
zero.

path_handle is the handle identifying the intended use and dispatching if a
new buffer must be allocated for this request. Path handle usage
is determined by the driver, but by associating the use of a
specificpath_handle with buffers allocated for a specific
purpose, the driver allows the environment to predict and
optimize the allocated buffer requirementsd$it_buf is not
NULL on entry, its existing path will continue to be used and this
parameter must be setttbl NULL BUF_PATH otherwise it
must be non-null.

new_dst_buf is a pointer to the new, modified destination buffer.

udi_buf copy logically replacesist len bytes of data starting at offset
dst_offset in dst_buf with a copy ofsrc_len bytes of data starting at
src_offset in src_buf . When the data has been copied, ¢a#iback
routine is called.

Table 13-1 Common actions fadi_buf_copy /udi_buf_write arguments

Action src_buf/src_mem src_len dst_buf dst_len
Allocate/initialize | non-null N NULL 0
Overwrite non-null N non-null N
Delete NULL/NULL 0 non-null N
Insert non-null N non-null 0
Ensure space NULL/NULL N NULL 0

If dst len s zero, thesrc_len bytes of source data will be inserted in the
destination buffer atlst off . If dst _len is positive, thedst _len bytes
will be replaced bysrc_len bytes from the source buffer. Tec len
parameter must be 0 bytes. (For &rc_len of zero,udi_buf write

must be used.)

This routine is very similar tadi_buf_write , except that the data source
is another buffer, rather than a virtually-contiguous data structure.

If dst buf is NULL, a new buffer will be allocated to hold the data.

The destination buffer will be extended or reallocated as necessary to hold any
new data being added to the buffer. This extension or reallocation is
performed by the environment as part of tlie_buf_copy operation and

all data in the destination buffer not described bydbe off and

dst_len region will be preserved. This reallocation may result in a new
buffer being returned in the callback, therefore dls¢ buf should no

longer be used after passing itui_buf copy and the driver must use the
new_dst_buf value following the callback.

UDI Core Specification - Version 1.01 - 2/2/01 13-15
Section 3: Core Services

udi_buf _copy Buffer Mgmt

It is expected that this routine will efficiently duplicate buffers (e.g., when
multiple higher levels above a multiplex point must receive the same inbound
buffer). Because UDI implementations may avoid copying data whenever
possible, the actual allocation of space for the copied data may be delayed
until the shared data is written via either buffer.

WARNINGS Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

src_buf anddst _buf must not reference the same buffer.

On successful completiomst_buf will no longer be valid and
new_dst_buf is substituted, even dlst buf was not specified adULL
new_dst_buf may be set to the same handle value as the input value of
dst_buf , but the driver must not depend on this.

If this operation is cancelled witlidi_cancel , any pre-existinglst_buf
buffer will be discarded (se&di_cancel for an explanation of why this is
S0).

REFERENCES | udi_buf write, udi_cancel

13-16 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_buf_write

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

udi_buf_write Write data bytes into a logical buffer

#include <udi.h>

void udi_buf write (
udi_buf write_call t * callback
udi_ cb t* gcb,
const void * src_mem,
udi_size t src_len
udi_buf t * dst_buf
udi_size t dst off ,
udi_size t dst len

udi_buf path_t path_handle);

typedef void udi_buf_write_call_t (
udi_cb_t *gcb,
udi_buf t * new_dst_buf);
callback, gcb are standard arguments described in the “Asynchronous

Service Calls” section dfCalling Sequence and Naming
Conventions’

src_mem is a pointer to caller memory where the first byte of data is to be
copied from. If NULL, the resulting data values are unspecified.

src_len Number of bytes to be copied frosnc_mem, replacing the
specifieddst len bytes indst_buf . If src_mem is NULL
thedst len bytes indst_buf are replaced bgrc len
bytes of unspecified data valuesstt _len is zero,src_mem
is ignored.

dst_buf are the same arguments as useddn buf_copy

dst_off

dst_len

path_handle
new_dst_buf

udi_buf_write copies data bytes from virtually contiguous driver memory
area to a logical buffer. This function works likdi_buf copy except that
the data source is a virtually-contiguous memory area, rather than another
buffer. No endianness conversion will be performedilly buf write

If src_mem is NULL, data in the resulting range of the destination buffer
will have unspecified values. This is useful for ensuring that a buffer is
instantiated to a certain size, without taking the expense of copying data into
the buffer. This mechanism should only be used when the instantiated data
mustexist.

A NULL src_mem with nonzerosrc _len anddst len can produce
unspecified data values in the middle of valid datg,(src_mem=NULL,
src_len =6, anddst len =4 produces at least two bytes of unspecified data
within the valid data area afst_buf). While this is a legal operation, the
results may be unexpected.

UDI Core Specification - Version 1.01 - 2/2/01 13-17

Section 3: Core Services

udi_buf _write Buffer Mgmt

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

Use of thesrc_mem parameter must conform to the rules described in
Section 5.2.1.1, “Using Memory Pointers with Asynchronous Service Calls”.

If this operation is cancelled witldi_cancel , any pre-existinglst_buf
buffer will be discarded (seedi_cancel for an explanation of why this is
S0).

REFERENCES | udi_buf _copy, udi_cancel

13-18 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt udi_buf _read

NAME udi_buf _read Read data bytes from a logical buffer
SYNOPSIS | #include <udi.h>

void udi_buf read (
udi_buf t * src_buf
udi_size t src_off ,
udi_size t src_len
void *dst_mem),

ARGUMENTS src_buf is a pointer to a buffer containing data to be read.

src_off is the offset, in bytes, into the logical datasof buf at which
to start reading data.

src_off must be< src_buf->buf_size

src_len The number of bytes to be read fram_buf .

src_off +src_len must not exceedrc_buf->buf size
dst mem pointer to caller's memory where data is to be copied.

DESCRIPTION udi_buf read non-destructively reads data bytes from a logical buffer to a
virtually contiguous driver memory area pointed todsg_buf . No
endianness conversion will be performedudy buf read

If src_buf->buf size was previously extended to include bytes not
explicitly written, the resulting values iist_ mem for these bytes are
unspecified.

UDI Core Specification - Version 1.01 - 2/2/01 13-19
Section 3: Core Services

udi_buf free

Buffer Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_buf free Free a logical buffer

#include <udi.h>

void udi_buf free (udi_buf _t * buf);

buf is a pointer to the buffer to be deallocatedbdf is NULL on
entry, this routine is a no-op.

udi_buf free is called to indicate that a UDI buffer is no longer needed.
The buffer and all associated resources will be released and the caller must no
longer use the buffer handlbyf .

If buf is equal to NULL, explicitly or implicitly (zeroed by initial value or by
usingudi_memset), this function acts as a no-op. Otherwibef must

have been allocated mdi_buf copy orudi_buf write , Or passed to
the driver via a channel operation.

udi_buf_copy, udi_buf_write

13-20

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt Buffer Paths

13.6 Buffer Paths

UDI buffers are used to transport data between various UDI modules for processing by those modules.
Ultimately, if this data is destined for a physical device, the buffer will be passed to a physical 1/0O driver
so the data can be presented to or retrieved from the associated hardware device, often via a DMA
mechanism. (For more information on physical 1/O drivers and DMA, see the UDI Physical 1/0
Specification.)

The various physical I/0 devices and I/O buses in the system may have various DMA constraints and
capabilities. To avoid additional processing overhead, it is desireable to ensure that the buffers presented
for DMA processing are already conformant to the constraints and capabilities of the associated DMA
engine. Within UDI, this is implemented by the environment by association with a buffer path handle.

Each time a buffer is allocated by a UDI module, a buffer path is specified for that allocation request
(even if the module itself is not involved in the DMA operation). The path handle that is used for the
allocation request should be associated with the expected path through the UDI modules that the buffer
is likely to take: ideally, buffers presented to different DMA engines will have been allocated with
different path handles.

When a buffer is mapped for DMA, the environment may, if it so chooses, update the associated buffer
path object (remembered in the buffer handle from the original allocation) with the constraint and
capability information of the DMA engine. By accumulating the most-restrictive combination of
capabilities in the path object, the environment can optimize future allocations made with the
corresponding path handle to ensure that newly-allocated buffers already conform to the accumulated
DMA constraints and capabilities, avoiding subsequent reallocations and copies.

The buffer path mechanism is an optimization provided by UDI for performance improvements in DMA
and buffer management. The module allocating a buffer is not required to use different path handles and
likewise the UDI environment is not required to update the constraints associated with those path
handles; the UDI specification requires the UDI environment to perform the needed buffer adjustments
at the time that the buffer is mapped if it does not already conform to the DMA constraints, so any
buffer may be passed along any “path” at the cost of the loss of these optimizations.

The UDI module allocating a buffer should choose a path handle based on the information available to
it. It is valid to pass buffers allocated with different handles to the same parent (and ultimately the same
DMA engine), and it is also valid to pass a buffers allocated with a single path handle to different DMA
engines; however, the more closely the module can associate a path handle with a destination DMA
engine the better the optimization opportunities for the UDI environment. Examples of buffer path
selection heuristics include: the parent channel to which a multiplexing module passes the buffer, the
destination IP address for an IP or TCP module allocating a network packet buffer, or the controller
number for a SCSI command buffer.

13.6.1 Buffer Path Multiplexing

For a UDI multiplexer module with multiple parents, an additional facility is provided to assist in
selecting the parent to which a buffer is passed. If the multiplexer has evaluated the various parents to
which a particular buffer could be passed according to the implementation of that multiplexer and has
arrived at a list of more than one possible parent, it may be advantageous for the multiplexer to pass the
buffer to the parent whose DMA engine (or whose penultimate parent’s DMA engine) is most capable of
handling that buffer.

UDI Core Specification - Version 1.01 - 2/2/01 13-21
Section 3: Core Services

Buffer Paths Buffer Mgmt

In this situation, the path handle is used in a slightly different manner than for buffer allocation. The
multiplexer will typically maintain a path handle for each parent channel, internally maintaining a one-
to-one association between a specific path handle and the corresponding parent channel. When the list of
possible parents has been determined by the multiplexer by internal meard, th# best path

service may be called with the buffer and the list of path handles corresponding to the list of possible
parent channels. The UDI environment will then select one or more of the paths to which the buffer
should be passed, presumably based on the constraints associated with the specified paths.

Theudi_buf_best path service will return an array of indices into the path handle array, where the
returned indices represent the best path or paths to which the buffer may be passed. The environment
must return at least one path, but may determine that multiple paths are equivalent (or roughly
equivalent) and therefore return an array of more than one indices. The UDI driver must also pass in the
index of the most-recently used path; the UDI environment will begin selecting paths at the array
position following the previously-matched index (wrapping as necessary) and terminating the search
when it has reached the previously-matched index (which may also be included in the returned array of
valid indices). If the environment continually finds multiple matches for buffers, the use of the previous
index value will cause the first return match to indicate a round-robin algorithm for equitable load
balancing scenarios.

As with the path handles used for buffer allocation, the UDI environment may choose how much
information to maintain and update for the path handles usedudiitbuf best path , and may, at
one extreme, treat all paths as equally good, regardless of actual costs.

13-22 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_buf best path

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_buf_best_path Select best path(s) for a data buffer
#include <udi.h>

void udi_buf best path (
udi_buf t * buf ,
udi_buf path_t * path_handles
udi_ubit8 t npaths ,
udi_ubit8 t last _fit ,
udi_ubit8 t * best fit_array);

/* Terminator for best_fit_array */
#define UDI_BUF_PATH_END 255

buf is a pointer to a UDI data buffer.

path_handles is an array of candidate buffer path handles which
correspond to parent instances to which the buffer might be sent..

npaths is the number of entries to use from feth _handles array.
npaths must be greater than zero and less than 256.

last_fit is an index into th@ath_handles array (starting from zero)
indicating the least preferred choice (typically, the one that was
selected last time)ast fit must be less thanpaths .

best fit_array is an array of index values, which is filled in with the
indices of one or morpath_handles entries that best fit the
data buffer. The list is terminated with an entry containing
UDI_BUF_PATH_ENDbest fit_array must point to
enough space fdrnpaths +1) entries.

udi_buf_best_path is used to choose between multiple alternative path
handles, each associated with a particular data path over which a request
might be sent, and find those that can be expected to result in the best
performance, all other aspects of the data path being equal. The environment
may consider multiple choices to be equally suitable, and thus the result is
returned as a list, ibest fit_array

Some drivers may wish to factor in other criteria to further narrow down the
choice; such drivers would scan the entire returned list. Others may simply
take the first entry irbest fit_array , unconditionally. In the latter case,
these drivers may want to load-balance among the otherwise-equal
alternatives; this is achieved by settitagt_fit to the index that was
chosen in the previous call tali_buf best best path

The index values returned trest fit_array are provided in ascending
order starting from the first one that is strictly greater tka fit
modulonpaths , and wrapping around onemaths is reached.

UDI_BUF_ALLOC, udi_channel_event cb t

UDI Core Specification - Version 1.01 - 2/2/01 13-23
Section 3: Core Services

udi_buf _path_alloc Buffer Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_buf_path_alloc Buffer path handle allocation
#include <udi.h>

void udi_buf path_alloc (
udi_buf_path_alloc_call_t * callback
udi cb t* gcb);

typedef udi_buf path_alloc_call t (
udi_cb_ t* gcb,
udi_buf_path_t new_buf path);

callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section ofCalling Sequence and Naming
Convention’

new_buf path is a newly allocated buffer path handle.

Theudi_buf path_alloc service is used to allocate a new buffer path
handle to be used for describing a new buffer path. Buffer path usage is
defined by the driver performing the allocation operation.

udi_buf_copy, udi_buf_path_t

13-24

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt udi_buf path _free
NAME udi_buf_path_free Buffer path handle deallocation
SYNOPSIS | #include <udi.h>

void udi_buf path_free (udi_buf_path_t buf path),

ARGUMENTS path is a buffer path handle to be deallocated.

DESCRIPTION Theudi_buf_path_free call is used to deallocate a buffer path handle
when it will no longer be used by the driver.

REFERENCES | udi_buf path_alloc , udi_buf_copy, udi_buf_path_t

UDI Core Specification - Version 1.01 - 2/2/01 13-25

Section 3: Core Services

Buffer Tags Buffer Mgmt

13.7 Buffer Tags

Along with the actual buffer data content, there may be additional information related to a buffer that
needs to be maintained along with that buffer and available to any UDI driver that is currently operating
on the buffer. This is done by attaching one or nimrier tagsto a UDI buffer. These buffer tags are

used to provide additional descriptions of the data contained in the buffer without placing those
descriptions in the data of the buffer itself.

Each buffer tag specifies the tag type, the portion of the buffer to which the tag applies, and the value (if
any) associated with that tag. A buffer may have zero or more tags attached to that buffer and the tags
may overlap, even for tags of the same type (although two tags that specify the exact same type and
identify the same portion of the buffer will be reduced to a single tag whose value is that of the latter tag
assignment). The tag will remain associated with the buffer until the buffer is deleted or until the tag is
invalidated.

Buffer tags are related to specific data within the buffer and are used to describe that data. Because of
this relationship, a tag will always indicate the same section of data in a buffer regardless of insertions
or deletions before or after that section of the buffer. If the section of the buffer described by the tag is
directly modified, the tag (along with all other tags associated with that buffer section) is invalidated and

will be removed. Because of this behavior, tags should not be used to communicate critical information

unless the UDI modules can provide assurances that the buffer will not be modified.

There is no limit to the number of tags that may be assigned to a buffer.

When a buffer is copied to another buffer or to a newly created buffer, any tags contained entirely within
the copied section are duplicated in the destination buffer automatically.

13.7.1 Buffer Tag Categories

Buffer tags are divided into a number of categories which are used to assist in examining and processing
the tags. The specific meaning and appropriate handling of a tag is defined individually for each tag;
however, tags can be grouped into categories where the tags in each category perform related
functionality. The following tag categories are defined:

® \alue TagsThese tags are used to store a numeric value associated with the portion of the
buffer that the tag applies to. A common example of this is a checksum value.

® Update TagsThese tags are used to request an update of the buffer based on a computation
or scan of the associated portion of the buffer. The tag value for these tags usually represents
a location in the buffer where the result of the computation or scan is to be written. A
common example of this category of tag is for calculating a buffer data checksum and
writing the result into a buffer header.

® Status TagsThese tags are used to indicate the status of the associated portion of the buffer.
These tags are useful when the hardware is able to supply additional status information
about buffer data that may need to be communicated to other modules. Status tags should not
be used to store critical status due to the transitory nature of tags.

® Driver-internal Tags These tags are defined and processed by UDI drivers and are ignored
by the UDI environment. This category of tags may be used by the driver to store temporary
information or inter-region information. This category of tags is driver-specific and driver-
internal tags set by one driver will not be visible to any other driver that the buffer is passed
to.

13-26 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_tagtype t

NAME
SYNOPSIS

DESCRIPTION

udi_tagtype_t Buffer tag type

#include <udi.h>

typedef udi_ubit32_t udi_tagtype t ;

/* Tag Category Masks */

#define UDI_BUFTAG_ALL Oxf fffffff
#define UDI_BUFTAG_VALUES 0x0 00000ff
#define UDI_BUFTAG_UPDATES 0x0 000ff00
#define UDI_BUFTAG_STATUS 0x0 0ffo000
#define UDI_BUFTAG_DRIVERS Oxf f000000
/* Value Category Tag Types */

#define UDI_BUFTAG_BE16_CHECKSUM (1U <<0)

/* Update Category Tag Types */

#define UDI_BUFTAG_SET_iBE16_CHECKSUM (1U <<8)
#define UDI_BUFTAG_SET_TCP_CHECKSUM (1U<<9)
#define UDI_BUFTAG_SET_UDP_CHECKSUM (1Uk<10)
/* Status Category Tag Types */

#define UDI_BUFTAG_TCP_CKSUM_GOOD (1k<17)
#define UDI_BUFTAG_UDP_CKSUM_GOOD (1x<18)
#define UDI_BUFTAG_IP_CKSUM_GOOD (1U <<19)
#define UDI_BUFTAG_TCP_CKSUM_BAD (1U<<21)
#define UDI_BUFTAG_UDP_CKSUM_BAD (1U<<22)
#define UDI_BUFTAG_IP_CKSUM_BAD (AU <<23)
/* Drivers Category Tag Types */

#define UDI_BUFTAG_DRIVERL1 (AU <<24)
#define UDI_BUFTAG_DRIVER2 (1U <<25)
#define UDI_BUFTAG_DRIVERS3 (1U <<26)
#define UDI_BUFTAG_DRIVER4 (AU <<27)
#define UDI_BUFTAG_DRIVERS (AU <<28)
#define UDI_BUFTAG_DRIVER6 (AU <<29)
#define UDI_BUFTAG_DRIVER7 (1U <<30)
#define UDI_BUFTAG_DRIVERS (1U <<31)

Theudi_tagtype_t type definition specifies the tag type used to specify a
bitmask of one or more tags. These tags are subdivided into categories
according to the general meaning of the tag. Each category can be easily
identified or selected by using the appropriate category mask defined above.

The value tags defined in the Values category are typically used to store a
numeric value associated with the portion of the buffer that the tag applies to.
Since buffer data is stored in raw form any value tag must indicate the
endianness interpretation of the buffer data as part of the tag type where
appropriate. The value associated with the tag itself is passed to/from
environment service calls in the driver's endianness regardless of the
endianness of the buffer data.

UDI Core Specification - Version 1.01 - 2/2/01 13-27
Section 3: Core Services

udi_tagtype t Buffer Mgmt

UDI_BUFTAG_BE16_CHECKSUM his tag’s value is a 16-bit checksum that
has been computed for the tagged range of the buffer. The tag
value is in the driver's endianness but the checksum is computed
as if the buffer contents are in big-endian 16-bit format.

The checksum is calculated by treating the specified portion of
the buffer as an array ofdi_ubit16 t elements and
computing the sum of all elements modulé. & the length of

the buffer portion is odd the “missing” low order byte of the last
array element is treated as zero.

The update tags defined in the Updates category are used to request an update
of the buffer based on a computation or scan of the associated portion of the
buffer. The tag value for these tags usually represents a location in the buffer
where the result of the computation or scan is to be written.

UDI_BUFTAG_SET_TCP_CHECKSUNrhis tag is used to indicate that the
associated portion of the buffer is a TCP/IP packet for which the
TCP checksum is to be set before transmission, The associated
buffer section includes the data and both the TCP and IP headers.
The tag’'s value is ignored.

The TCP checksum is computed by taking the unsigned sum of
16-bit elements modulo'® then applying a ones-complement;

the following elements are included in this checksum: the TCP
header and data areas, the IP source and destination addresses,
the IP specified length, and the IP protocol byte (0O extended).
The TCP checksum is written as a 16-bit big-endian value at
bytes 16 and 17 of the TCP header.

More information regarding the TCP checksum algorithm may be
obtained by consulting the following IETF RFCs:RFC 1071
“Computing the Internet checksunRFC 1141“Incremental
updating of the Internet checksupnRFC 1624'Computation of

the Internet Checksum via Incremental Updatefid RFC 1936
“Implementing the Internet Checksum in Hardware”

UDI_BUFTAG_SET_UDP_CHECKSUMhis tag is used to indicate that the
associated portion of the buffer is a UDP/IP packet for which the
UDP checksum is to be set before transmission. The associated
buffer section includes the data and both the UDP and IP
headers. The tag’s value is ignored.

The UDP checksum is the ones-complement of a 16-bit big-
endian checksum of: the UDP header and data areas, the IP
source and destination addresses, an additional copy of the UDP
specified length, and the IP protocol byte (0O extended). The UDP
checksum is written as a 16-bit big-endian value at bytes 6 and 7
of the UDP header.

13-28 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_tagtype t

More information regarding the UDP checksum algorithm may
be obtained by consulting the IETF RFCs described above for the
UDI_BUFTAG_SET_TCP_CHECKSUwffer tag.

UDI_BUFTAG_SET iBE16 CHECKSUMThis tag is used to indicate that a
16-bit big-endian ones-complement checksum is to be generated
for the tagged portion of the buffer and that the result must be
written into the buffer at the offset specified by the tag’s value
field before transmitting the buffer.

This buffer tag is commonly used to request that the IP header
checksum is to be set before transmitting the buffer.

The status tags defined in the Status category are used to indicated the status
of the associated portion of the buffer.

UDI_BUFTAG_TCP_CKSUM_GO®Dhis tag is used to indicate that the
associated portion of the buffer contains a TCP header and data
portion and that the checksum contained in the header has been
validated as correct for that buffer. This tag is typically set by a
Network Adapter whose hardware validates TCP checksums for
received packets. The checksum value itself, if known, may be
specified as theag_value for this tag; the header may no
longer contain the checksum and this value in the packet header
should not be reference.

UDI_BUFTAG_UDP_CKSUM_GO®OTMhis tag is used to indicate that the
associated portion of the buffer contains a UDP header and data
portion and that the checksum contained in the header has been
validated as correct for that buffer. This tag is typically set by a
Network Adapter whose hardware validates UDP checksums for
received packets. The checksum value itself, if known, may be
specified as theéag value for this tag; the header may no
longer contain the checksum and this value in the packet header
should not be reference.

UDI_BUFTAG_IP_CKSUM_GOODrhis tag is used to indicate that the
associated portion of the buffer contains an IP header (including
options) and that the checksum contained in the header has been
validated as correct for that buffer. This tag is typically set by a
Network Adapter whose hardware validates IP checksums for
received packets. The checksum value itself, if known, may be
specified as theag value for this tag; the header may no
longer contain the checksum and this value in the packet header
should not be reference.

UDI_BUFTAG_TCP_CKSUM_BADThis tag is used to indicate that the
associated portion of the buffer contains a TCP header and data
portion and that the checksum contained in the headermies
match the calculated checksum (as typically determined by the
driver or the hardware).

UDI Core Specification - Version 1.01 - 2/2/01 13-29
Section 3: Core Services

udi_tagtype t Buffer Mgmt

REFERENCES

UDI_BUFTAG_UDP_CKSUM_BADhis tag is used to indicate that the
associated portion of the buffer contains a UDP header and data
portion and that the checksum contained in the headerraes
match the calculated checksum (as typically determined by the
driver or the hardware).

UDI_BUFTAG_IP_CKSUM_BAD This tag is used to indicate that the
associated portion of the buffer contains an IP header (including
options) and that the checksum contained in the heademdbes
match the calculated checksum.

The driver tags defined in the Drivers category are available for use by the
driver for temporary or driver-internal use. This is especially useful when
passing buffers in a multi-region driver. These tags are not visible to any other
drivers; this protects against inter-driver confusion or tag assumptions but also
means that these tags are not suitable for passing buffer information to other
drivers in the UDI environment. Driver tags attached to a buffer which is
passed to other drivers and subsequently returned will still have the current
driver’s tags attached and visible unless the associated region of the buffer was
modified before being returned to the current driver; driver-specific tags set by
other drivers will have no effect on the driver-specific tags set by the current
driver.

udi_buf tag t

13-30

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_buf tag t

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

udi_buf tag_t Buffer tag structure
#include <udi.h>

typedef struct {
udi_tagtype_t tag type ;
udi_ubit32_t tag value ;
udi_size t tag off ;
udi_size t tag len ;

} udi_buf tag t ;

tag type is the type of tag represented by this tag structure. Although
udi_tagtype_t is a bitmask type only one tag type may be
specified in theudi_buf tag t structure (i.e. only one bit
may be set).

tag value is the value associated with this tag.
tag off is the starting buffer data offset for which the tag applies.

tag len is the length of data (in bytes) for which the tag applies. The
tag len value must not be zero.

Theudi_buf tag t structure is used to describe a buffer tag. The range of
data to which the tag applies is specified by tdge off andtag len

fields; thetag type specifies which type of tag is being described. The

tag value s the associated value for this tag (if any) as defined by the

tag_type

Table 13-2 Tag structure field usage

tag_type
UDI_BUFTAG_xxx tag_value tag_off tag_len
BE16_CHECKSUM 16-bit start of region | number of bytes to

checksum checksummed| checksum (if odd,
as big-endian | an extra byte value
16-bit values | of 0 is assumed: 16
bit array length =
(tag_len +1)/2)

SET_iBE16_CHECKSUM| buffer offset | start of region | number of bytes to
at which to to generate a | checksum

write the 16- | 16-bit big-
bit big-endian | endian
checksum of | checksum over
the buffer
data

UDI Core Specification - Version 1.01 - 2/2/01 13-31
Section 3: Core Services

udi_buf tag t Buffer Mgmt

Table 13-2 Tag structure field usage

tag_type

UDI_BUFTAG_ xxx tag_value tag_off tag_len

SET_TCP_CHECKSUM unused start of IP total byte length of

header IP header (including

(including options), TCP

options) header, and TCP

followed by data

TCP header

and TCP data
SET_UDP_CHECKSUM unused start of IP total byte length of

header IP header (including

(including options), UDP

options) header, and UDP

followed by data

UDP header

and UDP data

TCP_CKSUM_GOOD checksum start of TCP total byte length of
value (if header TCP header and
known, TCP data
otherwise
zero)

UDP_CKSUM_GOOD checksum start of UDP | total byte length of
value (if header UDP header and
known, UDP data
otherwise
zero)

IP_CKSUM_GOOD checksum start of IP total byte length of
value (if header IP header including
known, options
otherwise
zero)

TCP_CKSUM_BAD unused start of TCP | total byte length of

header TCP header and
TCP data
UDP_CKSUM_BAD unused start of UDP | total byte length of
header UDP header and
UDP data
IP_CKSUM_BAD unused start of IP total byte length of
header IP header including
options

DRIVERL...DRIVERS8 driver- driver-defined | driver-defined

defined
REFERENCES | udi_buf tag set , udi_buf tag_get

13-32 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt udi_buf tag set

NAME udi_buf _tag_set Sets a tag for a portion of buffer
data

SYNOPSIS | #include <udi.h>

void udi_buf tag_set (
udi_buf tag set call t* callback
udi_cb_ t* gcb,
udi_buf t * buf ,
udi_buf tag * tag array
udi_ubit16 _t tag array length);

typedef void udi_buf tag_set call_t (
udi_cb_ t* gcb,
udi_buf t * new_buf);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions’

buf is the buffer for which the new tag is to be set.

tag array is a pointer to an array ofdi_buf tag t structures that are
to be set in the current buffer.

tag array length is the number of entries in theg_array
new_buf is a pointer to the buffer with the new tag value set.

DESCRIPTION The udi_buf_tag_set operation is used to set one or more tags for the
associated buffer. The tags to be set are specified imgherray and each

tag will be set individually. If a tag in the input array is not a driver-specific
tag and matches an existing buffer tag of the same type, offset, and length, the
tag value from the input array replaces the current tag value and the tag is
otherwise unchanged. If no exactly matching type, offset, and length tag
already exists for the buffer, a new tag will be created from the information in
the array element.

The range specified by the tag offset and length must consist entirely of valid
data.

WARNINGS Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

On successful completiobuf will no longer be valid andew_buf must be
used instead.

REFERENCES | udi_buf tag t, udi_buf tag get

UDI Core Specification - Version 1.01 - 2/2/01 13-33
Section 3: Core Services

udi_buf tag get

Buffer Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES

REFERENCES

udi_buf _tag_get Gets one or more tags from a buffer

#include <udi.h>

udi_ubitl6 t
udi_buf t *
udi_tagtype_t
udi_buf tag t *

udi_buf tag_get (
buf ,

tag_type ,
tag_array

udi_ubitl6 t tag array length ,
udi_ubitl6 t tag start idx);
buf is the buffer for which the tag information is to be returned
tag type is a bitmask of tag types; only tags which correspond to bits set
in this bitmask will be returned. For convenience, the tag
category mask values may be used for this argument.
tag array is a pointer to an array ofdi_buf tag t structures that are

to be filled in with the obtained tag information.

tag array length
tag_array

is the number of entries that may be written to

tag start_idx is the number of tags of the specified type to skip before
returning tag information.

Theudi_buf tag_get operation is used to obtain information about tags
which are attached to the buffer. Any available tags matching of of the
requestedag type bit values will be written into théag array (after
skipping the firsttag_start idx tags) until either all tags of the target
types ortag_array length number of tags have been written.

This function returns the actual number of tags of the selected types,
regardless of the inpuag_start_idx . Thetag_start_idx may be
used to iterate through all tagstdg array length is less than the
number of defined tags.

udi_buf tag_t, udi_buf tag_set

13-34

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt Buffer Tag Utilities

13.7.2 Buffer Tag Utilities

This section defines a set of utility routines that may be used to efficiently make use of buffer tags. The
functionality provided by these utility routines could alternatively be implemented by discrete operations
usingudi_buf tag get andudi_buf tag_set and other buffer management service calls. These
utility routines are provided to assist in implementing and supporting the most common set of buffer tag
operations, such as calculating network data checksums.

UDI Core Specification - Version 1.01 - 2/2/01 13-35
Section 3: Core Services

udi_buf tag compute Buffer Mgmt

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUE
REFERENCES

udi_buf_tag_compute Compute values from tagged buffer
data

#include <udi.h>

udi_ubit32_t udi_buf _tag_compute (
udi_buf t * buf |
udi_size t off ,
udi_size t len ,
udi_tagtype_t tag type);

buf is the buffer for which the tag value is to be computed.

off is the offset into the buffer at which the computation is to begin.
The offset specified must point to valid buffer data.

len is the number of bytes in the buffer to be used for the
computation. All bytes in the buffer specified bf§f andlen
must be valid buffer data.

tag type s the tag value to be computed. Only one tag type may be
specified (only one bit may be set for this argument) and it must
be one of the Value category tags (i.e. one of the tag types in the
UDI_BUFTAG_VALUESategory).

The udi_buf _tag_compute utility routine is used to calculate the

specified tag value for a portion of data contained in the buffer; the most
common tag value computed is the 16-bit big-endian checksum value used for
network packets.

The buffer range specified must consist entirely of valid data bytes.

Thetag type argument specifies what type of tag value is to be calculated.
It is assumed (but not required) that this utility will take advantage of existing
tags attached to the buffer to optimize the computation of the tag values.

This utility function does not actually set a tag of the corresponding
tag type on the buffer itself; that activity is left to the caller if needed.

Note —This function could be implemented entirely as a series of calls to
various UDI service calls such adi_buf read and
udi_buf tag get , but is expected in most environments to be
implemented more directly in terms of the underlying implementation-
specific data structures for greater efficiency.

The computed tag value.

udi_buf _tag_apply, udi_buf tag get

13-36

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Buffer Mgmt

udi_buf tag apply

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

udi_buf_tag_apply Apply modifications to tagged buffer
data

#include <udi.h>

void udi_buf tag_apply (
udi_buf tag_apply _call t* callback
udi_cb_ t* gcb,
udi_buf t * buf ,
udi_tagtype_t tag type);

typedef void udi_buf tag_apply call_t (
udi_cb_ t* gcb,
udi_buf t * new_buf);

callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”.

buf is the buffer for which tag values are to be computed and set.

tag type is a bitmask of tag types for which the tag values are to be set.
Only bit values corresponding to thibl BUFTAG_UPDATES
mask may be used; for convenience the mask value itself may be
specified.

new_buf is the buffer returned to the caller after tags have been computed
and have been written into the buffer.

Theudi_buf tag_apply utility routine is used to process any Update
category tags in the buffer. These buffer tags specify various tag values that
are to be generated and inserted into the buffer as part of the handling of that
buffer (e.g. for TCP/IP network checksum generation before transmitting the
buffer).

This utility will process all tags attached to the buffer which correspond to bits
set in the specifiedag _type . For each tag it will compute the tag value for
the indicated section of the buffer (as if by a call to

udi_buf tag compute) and then write the result into the buffer according
to the description of thatig type . The requested update tags will not be
processed in any particular order; if a specific order of computation is desired
multiple calls toudi_buf _tag_apply should be made with the required
sequence of tag types.

This utility function is typically used by Network Interface Card (NIC)

Drivers which do not provide a checksum off-load capability and need to
insert various TCP or other protocol-specific checksums into the packet before
it is transmitted.

UDI Core Specification - Version 1.01 - 2/2/01 13-37
Section 3: Core Services

udi_buf tag _apply Buffer Mgmt

WARNINGS

REFERENCES

Note —This function could be implemented entirely as a series of calls to
various UDI service calls such adi_buf_write and
udi_buf tag get , but is expected in most environments to be
implemented more directly in terms of the underlying implementation-
specific data structures for greater efficiency.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

On successful completiowuf will no longer be valid andiew_buf is
substituted, even buf was not specified adULL; new_buf may return the
same handle value as the input valuéof .

If this operation is cancelled witldi_cancel , any pre-existinguf buffer
will be discarded (seedi_cancel for an explanation of why this is so).

udi_buf tag t, udi_buf tag_get, udi_buf tag compute

13-38

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

“{UpI*~

Time Management 14

UDI supports two types of time-related services: Timer Services, which allow driver callback routines to
be called at specific times; and Timestamp Services, which allow drivers to measure elapsed time. These
are described in more detail in separate sections below.

UDI Core Specification - Version 1.01 - 2/2/01 14-1
Section 3: Core Services

Timer Services Time Mgmt

14.1 Timer Services

14.1.1 Timed Delays

UDI timer services provide a set of operations that can be used to schedule future events for handling.
The UDI timer services are very similar to legacy timer services found in most operating systems and
provide a mechanism to schedule the call of a driver’s timeout routine at some point in the future
(relative to the current time). UDI timers may be of either the one-shot variety or may be invoked as
repeating timers where the timeout routine will be called repeatedly until cancelled.

UDI timer services shall be implemented with the expectation that the normal operation of most timers
is to start the timer to accompany a request and then cancel the timer when the request is successfully
handled by the device. Timer startup and cancellation shall therefore be implemented by the environment
with minimal overhead to allow their use in the datapath in this manner.

14.1.2 Timer Context

The UDI timer services are performed using a control block structure ydigch t) to provide a

context to the timer operations. The control block provides context information about the original
request that can be used in the timeout routine. However, there are cases where the timer is not directly
related to any current request and a specific control block is needed to manage the timeout operation.
One example of this iswatchdog timeroutine where the timeout routine is called periodically to

check the general health of the device independent of any current requests. To handle these general
timeout situations, a control block will be needed. Any available control block may be used so long as it
is not needed for any other purpose; in practice, however, this usually means that a new control block
will have to be allocated withdi_cb_alloc . In this case, a control block index associated with
udi_gcb_init can be used to allocate a generic control block.

Control blocks are a finite system resource. It is a responsibility of a device driver to allocate, track and
return control blocks to the UDI environment in a responsible manner.

14-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Time Mgmt

udi_time t

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_time_t Time value structure
#include <udi.h>

typedef struct {
udi_ubit32_t seconds ;
udi_ubit32_t nanoseconds ;
} udi_time_t ;

seconds is the number of seconds of time.

nanoseconds is the number of additional nanoseconds of time. Thus
nanoseconds ranges from zero to one less than one thousand
million (1079) nanoseconds.

Theudi_time_t structure is used to specify a timeout interval for use with
the UDI Timer Services or an elapsed time interval returned by UDI
Timestamp Services. The fields in this structure allow very precise
specification of time values relative to the current time;utthie limits_t

values should be consulted to determine the actual granularity of the
environment’s timers, as all specifiedi_time_t values will be rounded

up to integral multiples of the minimum system timer resolution.

This structure is not used to represent absolute (“wall-clock”) times. UDI
provides no facility to determine absolute time.

udi_limits_t

UDI Core Specification - Version 1.01 - 2/2/01 14-3
Section 3: Core Services

udi_timer_start Time Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

REFERENCES

udi_timer_start Start a callback timer
#include <udi.h>

void udi_timer_start (
udi_timer_expired_call_t * callback
udi_cb t* gcb,
udi_time_t interval);

typedef void udi_timer_expired_call_t (
udi_cb t* gcb);

callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions’

interval is the desired minimum interval that should elapse between the
time the event is initiated withdi_timer_start and the
time callback is called. The actual interval will depend on
system activity, platform implementation.¢ clock interrupt
interval), timer resolutionrin_timer_res), and the
availability of processor resources. Under normal system activity
the actual interval will be at least as long as the specified interval
and not usually more thanterval plus min_timer_res

udi_timer_start schedules a delayed callback according to the
parameters specified. Tlwallback routine will be called at some time in
the future, as specified bpterval

As with other control block operations, the ownership of the control block
passes from the driver to the environment until such time as the callback is
invoked and the control block is passed back. Re-using the specified control
block for this or any other request before it has been returned to the driver via
thecallback routine is illegal. This may require the driver to obtain another
control block by callingudi_cb_alloc in order to be able to dedicate it to
this purpose.

A udi_timer_start request may be cancelled at any time by calling the
udi_timer_cancel routine with the original control block pointer.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

udi_time_t, udi_limits_t, udi_cb_alloc,
udi_timer_cancel

14-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Time Mgmt

udi_timer_start _repeating

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_timer_start_repeating Start a repeating timer
#include <udi.h>

void udi_timer_start_repeating (
udi_timer_tick call_t * callback
udi_cb t* gcb,
udi_time_t interval);

typedef void udi_timer_tick_call_t (
void * context
udi_ubit32_t nmissed);

callback , gcb are standard arguments describethim “Asynchronous
Service Calls” section of‘Calling Sequence and Naming
Conventions”

interval is the repeating period for this timer (sed#_timer_start).
For udi_timer_start_repeating , interval must be
greater than zero.

context is the context pointer from the original control blogih.
nmissed is the number of timeout callbacks missed.

udi_timer_start_repeating behaves likaudi_timer_start

except that theallback routine is called repeatedly at each successive
occurrence ofnterval . Repeated callbacks are timed relative to the
original starting time, rather than the last callback time.

Each time the specifiemthterval timeout period has elapsed (within system
timer resolution capability) theallback function is called. If the

callback routine is currently scheduled or active or the environment
otherwise is unable to call thmallback on schedule, the environment will
increment an internal counter representing the number of missed timeout calls
for a particular timeout control block. This missed timeout count is passed to
the callback function as thexmissed argument; this indicator allows the
driver to determine if it has missed callbacks and take appropriate action. The
nmissed value will only reflect missed callbacks since the last delivered
callback. After a missed callback, the next callback may be delivered any time
between the scheduled time of the missed callback and the normally
scheduled time for the next callback.

The repeating timer can be stopped by callidg timer_cancel from
either thecallback timeout routine or from other code within the region
that started the timer with the original control block.

Unlike other callback functionsidi_timer_tick call_t does not pass
the control block back to the driver, since it remains busy until the repeating
timer is cancelled witludi_timer_cancel

udi_time_t, udi_limits_t, udi_cb_alloc,
udi_timer_cancel

UDI Core Specification - Version 1.01 - 2/2/01 14-5
Section 3: Core Services

udi_timer_cancel Time Mgmt

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

REFERENCES

udi_timer_cancel Cancel a pending timer
#include <udi.h>

void udi_timer_cancel (
udi_cb t* gcb);

gcb is a pointer to a control block that was passed to a prior
udi_timer_start or udi_timer_start_repeating
service call.

Any timer service request with a pending callback can be canceled by this
call. The control block must be the same one specified when the service was
requested, and must be active (i.e. the callback has not yet been called).

Onceudi_timer_cancel has returned, the originakl/lback routine is
guaranteed not to be called. Ownership of the control block is transferred back
to the requestor, and the control block is available for reuse.

udi_timer_cancel must be called from the region that owned the control
block at the time of the original request. It cannot be used to cancel a pending
request in another region.

A driver must keep track of its in-progress requests to avoid canceling a
different request than intended. A good rule of thumb is that
udi_timer_cancel must not be used to cancel a request without first
checking to see if the corresponding callback has been called.

If a driver issues adi_timer_cancel for a control block that is not active
the driver is in error. See the “Driver Faults/Recovery” sectiofEgécution
Model” for an explanation of how the environment may react to this driver
error.

udi_timer_start, udi_timer_start_repeating,
udi_cancel

14-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Time Mgmt Timestamp Services

14.2 Timestamp Services

Timestamp services allow drivers to measure elapsed time. This is accomplished by taking snapshots, or
timestampsof the current time, usingdi_time_current() and comparing multiple timestamps

with udi_time_between() or udi_time_since() . Timestamps are represented using the self-
contained opaque typadi_timestamp_t , defined in Section 9.6.2.1, “Timestamp Type,” on page

9-13.

UDI Core Specification - Version 1.01 - 2/2/01 14-7
Section 3: Core Services

udi_time_current Time Mgmt

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES
WARNINGS

REFERENCES

udi_time_current Return indication of the current
relative time

#include <udi.h>
udi_timestamp_t udi_time_current (void);

udi_time_current returns the current time (relative to some arbitrary
starting point), in implementation-specific units. The system time resolution
can be determined from thein_curtime_res field in the

udi_limits_t structure.

No UDI services are provided to directly converidi_timestamp_t

value to standard units, such as indi time_t . Instead, timestamp values
can be compared usingli_time_since or udi_time_between
udi_timestamp_t is a self-contained opaque type, and is therefore not
transferable between regions.

In many environments, timestamp values are only useful for accurate
comparisons for a limited amount of time. That is, when compared to another
timestamp value they may appear to be more recent than the actual time at
which they were obtained, since underlying time counters may wrap around.
In all environmentsudi_timestamp_t values are guaranteed to be useful
for at least 24 hours.

The current time stamp is returned to the caller.

There are no guaranteed “invalid” values foli_timestamp_t . In order
to represent an invalid or uninitialized timestamp value, an external flag must
be used.

Drivers must not assume that repeated callgltotime_current without
returning from the driver will ever return different values; environments may
choose to update the underlying time value only between calls into the driver.
Delays must be implemented with timer services not timestamp services.

udi_time_t, udi_limits_t, udi_time_since,
udi_time_between

See also Section 9.6.2.1, “Timestamp Type,” on page 9-13.

14-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Time Mgmt

udi_time_between

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

RETURN VALUES
REFERENCES

udi_time_between Return time interval between two
points

#include <udi.h>

udi_time_t udi_time_between (

udi_timestamp_t Start time
udi_timestamp_t end_time);
start_time is a timestamp value marking the starting point of the interval.

end time is a timestamp value marking the ending point of the interval.

udi_time_between returns the time delta between two previously
recorded times, istart_time andend_time . The previously recorded
times must have been obtained ui@i_time_current

start_time must reflect a time that occurred no later tleama time .

The system time resolution can be determined fronmtine curtime_res
field in theudi_limits_t structure.

The time interval, in seconds and nanoseconds, is returned to the caller.

udi_time_t, udi_limits_t, udi_time_current,
udi_time_since

UDI Core Specification - Version 1.01 - 2/2/01 14-9
Section 3: Core Services

udi_time_since Time Mgmt

NAME udi_time_since Return time interval since a starting
point

SYNOPSIS | #include <udi.h>

udi_time_t udi_time_since (
udi_timestamp_t Start_time);
ARGUMENTS start_time is a timestamp value marking the starting point of the interval.

DESCRIPTION udi_time_since returns the time delta between a previously recorded
time, instart_time , and the current time. The previously recorded time
must have been obtained widi_time_current

The system time resolution can be determined fronmtiwe curtime_res

field in theudi_limits_t structure.
udi_time_since is equivalent to:
udi_time_between(start time , udi_time_current())

RETURN VALUES The time interval, in seconds and nanoseconds, is returned to the caller.

WARNINGS Drivers must not assume that repeated callgdiotime_since without
returning from the driver will ever return different values; environments may
choose to update the underlying time value only between calls into the driver.
Delays must be implemented with timer services not timestamp services.

REFERENCES | udi_time_t, udi_limits_t, udi_time_current

14-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

r
"L (]

By U D [.'1IU

Instance Attribute Management 15

15.1 Overview

UDI provides the capability of associatiattributes(information) with driver instances. These are
calleddriver instance attributesThese attributes may be stored in a system-wide persistent storage
database to allow the driver to maintain configuration and topology information across driver and system
restarts. A driver restart is defined within the context of a particular driver instance, and is the period
between when the driver detaches and then later reattaches to that instance. This may occur when the
host system restarts or may be during a period when the host reclaims the resources of a driver instance
that is not actively being used. A system restart is defined to be the period between when the host
terminates and then later resumes operation. This most commonly is a system reboot, which may include
system power cycling.

This section defines the interfaces used to read and modify the various driver attributes.

15.2 Instance Attribute Names

Instance attribute names may be composed of up to 31 ASCII characters plus a null terminator. Legal
characters for attribute names consist of upper and lower case letters, digits, and the underscore
character (*_"). In addition, the first character may be a percent-sign (‘%’), a dollar-sign (‘$’), a caret
(*N), or an at-sign (‘@’); these prefix characters have special meanings, described below. All other
characters are illegal.

Upper and lower case ASCII letters are treated identically when looking up existing attribute names (i.e.
the matching is case-insensitive). It is environment implementation-specific whether or not alphabetic
case is preserved in attribute names when creating or changing attributes. By convention, specific
attribute names defined in UDI specifications are written in all lower case.

Each distinct name, even if it differs from another attribute name only by a prefix character, identifies a
distinct attribute.

15.3 Persistence of Attributes

Attributes may be specified to be eithparsistentor volatile (non-persistent). Persistent attributes will
be maintained in a persistent storage database and will be available across system restarts, whereas
volatile attributes are only guaranteed to persist for the duration of the corresponding driver instance.

Certain environments will not be able to supply a modifiable persistent storage database (e.g. an
embedded ROM-based environment). For these types of environments, any attempt to modify a
persistent attribute value will result inUDI_STAT_NOT_SUPPORTE®&rror code. The driver may
choose to ignore or otherwise handle this return value as determined by the driver implementation
requirements.

UDI Core Specification - Version 1.01 - 2/2/01 15-1
Section 3: Core Services

Classes of Attributes Instance Attributes

Accesses to the persistent storage database will be implemented in an atomic manner. This means that
any of the attribute management service calls documented in this section may be issued without concern
about collision with other operations, although there is no guarantee as to the sequence of individual
operations relative to operations issued by other driver regions.

15.4 Classes of Attributes

There are four principle classes of driver instance attributes:
Instance-private attributes
Enumeration attributes

Sibling group attributes

A 0w N R

Parent-visible attributes

15.4.1 Instance-Private Attributes

These attributes are persistent or volatile attributes that are read and written via the service operations
defined in this section. They are visible only to the driver instance to which they apply. These attributes
may be used for any driver-related information.

Private persistent attribute names must begin with a percent-sign (‘%’) prefix character. Private volatile
attribute names must begin with a dollar-sign (‘$") prefix character.

15.4.2 Enumeration Attributes

Enumeration attributes are those attributes used in the enumeration operation to uniquely identify a child
instance and its initial parameters. These attributes are typically specified in the Metalanguage
Specification, and are provided by the driver’s parent during enumeration. The enumeration attributes
are set on the child instance before that instance is enabled; the enumeration attributes are set atomically
(i.e. none of the attributes can be read or changed until all of the enumeration attributes for that child
instance have been set).

Enumeration attributes may be read but not modified by the driver instance with which they are
associated.

Enumeration attributes are not visible to the parent once enumerated.

Enumeration attribute names must begin without a special prefix character.

15.4.2.1 Generic Enumeration Attributes

”ou ”

There are four generically-accessible enumeration attributemntifier , “address_locator ,
“physical_locator ", and “physical_label ". These attributes, of type UDI_ATTR_STRING,
are defined so as to allow environments to use these attributes in generic algorithms to identify and
compare information about the devices in the system. This is useful in keeping the UDI environment
isolated from the specifics of metalanguages and bus bindings.

15-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes Classes of Attributes

15.4.2.1.1 identifier attribute

The contents of theidentifier " attribute must be defined in all metalanguages and bus bindings,
and an appropriate value for this attribute must be provided on any child enumeration. This attribute is
defined on a per-metalanguage/bus basis to provide information that can be used to uniquely identify a
device as much as possible for the given 1/O technology. In most cases, this will simply identify a type
of device and multiple devices of the same type will have the same value, but where available, a serial
number could be used to make the string truly unique.

15.4.2.1.2 address_locator attribute

The contents of theaddress_locator " attribute must be defined in all metalanguages and bus
bindings, and an appropriate value for this attribute must be provided on any child enumeration. This
attribute is defined on a per-metalanguage/bus basis to provide information which can be used to address
the device, relative to the enumerating parent.

15.4.2.1.3 physical_locator attribute

The “physical_locator " attribute is an optional attribute which may be non-existent for some
metalanguages or bus bindings. Metalanguages or buses whose children are physical devices should
specify this attribute whenever possible. When defined, this attribute is used to provide information
about the physical location of a device, such as a slot number.

15.4.2.1.4 physical_label attribute

The “physical_label " attribute is an optional attribute which may be non-existent for some
metalanguages or bus bindings. Metalanguages or buses whose children are physical devices should
specify this attribute whenever possible. When defined, this attribute is used to provide information
about the physical location of a device in terms of user-visible labeling, when known by the enumerating
parent.

15.4.2.1.5 Generic Enumeration Attribute Example

As an example of the usage and combination of these attributes, the following environment is
hypothesized:

1. Child enumerated by Bus XYZ:
« identifier="<productid,vendorid>"
e address_locator="<dev_num,func_num>"
 physical_locator="<slot#>"
+ physical_label="<chassis location>"

2. Matches SCSI HBA in slot 3 with a dev_num,func_num of 0x1234,2 and a
productid,vendorid of 0x8178,0x9004, which enumerates:

« identifier="<subset of INQUIRY data>"
e address_locator="<bus><target><lun>"
 physical_locator not used

« physical_label not used

UDI Core Specification - Version 1.01 - 2/2/01 15-3
Section 3: Core Services

Classes of Attributes Instance Attributes

3. Matches External SCSI Disk Storage Unit at bus 1, target 4, luns 0,1
* no enumeration is done at this level

4. Matches External SCSI Tape Device
* no enumeration is done at this level

For an operating system that represents the device node tree to the user via filesystem notation, the
above locators might result in the following identification:

/devices/xyz/scsi3-1234,devbay?2/tgt2-0,disk

/devices/xyz/scsi3-1234,devbay2/tgt2-1,disk

/devices/xyz/scsi3-1234,devbay?2/tgt2-255,ses

/devices/xyz/scsi3-1234,devbay2/tgt6-0,tape

Note —The above example does not reflect actual definitions for enumeration attributes nor actual
devices and presents only one style of combining and representing locator attributes. The UDI
drivers and metalanguages will define the actual device attributes and locator attributes and the
environment is free to use this locator information for any style of representation that it chooses.

15.4.3 Sibling Group Attributes

Sibling group attributes are volatile attributes only; unlike instance-private attributes, they are global to
all sibling instances in sibling group A sibling group is defined as the set of driver instances that share
the same parent instance; i.e. siblings are the set of child instances enumerated by the parent at device
enumeration time. It is important to note that sibling instances do not have to be instances of the same
driver. For example, a PCI network adapter and a PCI SCSI adapter may be siblings if enumerated by
the same PCI parent bus device. It is expected that filter and multiplexer modules will not appear in the
sibling/parent relationship.

<

4 : : : Sibling

\ Child 1 Child 2 Child 3 Group y

~ N o - /Z ______ _
Filter

Parent Driver

The attributes for the sibling group are effectively associated with the parent instance, although they are
not visible to the parent itself. Instead, the sibling group attributes are visible to all members of that
sibling group. Each sibling group member may read and write sibling attributes, although all sibling
attributes are volatile and will not be available across system boots.

Sibling group attribute names must begin with a caret (‘V') prefix character. Since they are global to all

sibling group members, it is recommended that enumeration locator information for the relevant device
be included in the attribute name in order to make the name unique. It is assumed that all siblings that
need to share information using sibling attributes will use the same algorithm for unique differentiation

of their attribute names and will therefore be able to locate these shared attributes.

15-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes Classes of Attributes

15.4.4 Parent-Visible Attributes

Parent-visibleattributes are attributes that are set on a child instance but which may be read (but not
written) only by that instance’s parent (and read and written by the environment). These attributes are
used by the system administrator to specify configuration information about the child that may be
needed by the parent. These types of attributes are defined by the parent driver instance or by the
associated metalanguage.

Parent-visible attribute names must begin with an at-sign (‘@") prefix character and are persistent.

15.4.5 Attribute Classification

The properties of each instance attribute class are summarized in the following table. For each class, the
table specifies the prefix character for the class and whether or not attributes in that class are persistent.
It also specifies which driver instances are allowed to write (set) and read (get) the attributes, relative to
the driver instance with which the attributes are associated (“self”), and whether or not the attributes are
intended to be customized by system administrators or other aspects of the environment. Drivers must
provide reasonable default action in cases where custom attributes are not set. The “custom” declaration
in the driver’s static properties provides a way to guide administrative input of custom attributes.

Table 15-1 Instance Attribute Classification Table

Customized

Writable by | Readable by by
Attribute Class Prefix Persistent? Whom? Whom? Environment?
Private Persistent % v self self v
Private Volatile $ self self
Enumeration parellnt self
Sibling Group A child child
Parent-Visible @ v - parent v

1. Enumeration attributes are writable only at enumeration time (write-once semantics) by the parent via
udi_enumerate_ack , notviaudi_instance_attr_set

UDI Core Specification - Version 1.01 - 2/2/01 15-5
Section 3: Core Services

Instance Attribute Services Instance Attributes

15.5 Instance Attribute Services

This section describes the structural representation of the instance attributes and how they are
manipulated by a UDI driver. The method and location of storing attributes is up to the environment
implementation so long as it supports the requirements defined by this specification.

15-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes udi_instance_attr_type t

NAME
SYNOPSIS

DESCRIPTION

udi_instance_attr_type t Instance attribute data-type type

#include <udi.h>

typedef udi_ubit8_t udi_instance_attr_type_t ;
/* Instance Attribute Types */

#define UDI_ATTR_NONE 0
#define UDI_ATTR_STRING 1
#define UDI_ATTR_ARRAY8 2
#define UDI_ATTR_UBIT32 3
#define UDI_ATTR_BOOLEAN 4
#define UDI_ATTR_FILE 5

This type is used to identify the data type of an instance attribute. Instance
attribute data types determine the storage requirements, encodings, and
semantics of instance attribute values.

A list of supported instance attribute data type codes is given below, along
with a description of each attribute.

UDI_ATTR_NONEnNdicates that an attribute has no current value. This type is
only legal with an attribute length of zero.

UDI_ATTR_STRING identifies a null-terminated character string, consisting
of Unicode characters encoded with the UTF-8 byte-stream
character encoding. This encoding ensures that any byte in the
string that has the 8th bit clear is in fact an ASCII character and
not part of a multi-byte character. The null-terminator byte is
considered part of the attribute value and is required.

UDI_ATTR_ARRAYS8identifies a sequence afli_ubit8_t values.

UDI_ATTR_UBIT32 identifies a singlaidi_ubit32_t value. The attribute
length for attributes of this type must be exactly
sizeof(udi_ubit32_t)

UDI_ATTR_BOOLEANdentifies a singleudi_boolean_t value. The
attribute length for attributes of this type must be exactly
sizeof(udi_boolean_t)

UDI_ATTR_FILE identifies a read-only attribute whose value is contained in
a driver-provided external file. The attribute name must match a
“readable_file " entry in the driver’s persistent
configuration information, optionally suffixed with a colon (*:")
followed by ASCII digits representing a decimal integer up to
224-1. The suffix indicates the beginning file offset to read from;
zero is the default. If this offset suffix is provided, it does not
count as part of the actual attribute name, so does not have to fit
within the 63-character limit.

UDI Core Specification - Version 1.01 - 2/2/01 15-7
Section 3: Core Services

udi_instance_attr_get Instance Attributes

NAME udi_instance_attr_get Read an attribute value for a driver
instance

SYNOPSIS | #include <udi.h>

void udi_instance_attr_get (
udi_instance_attr_get_call_t * callback
udi_cb_ t* gcb,
const char * attr_name
udi_ubit32_t child_ID
void * attr value
udi_size t attr_length);

typedef void udi_instance_attr_get_call_t (
udi_cb_t *gcb,
udi_instance_attr_type t attr_type
udi_size t actual_length);

ARGUMENTS callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

attr_name is a null-terminated string specifying the attribute name. See
Section 15.2, “Instance Attribute Names”, and the
UDI_ATTR_FILE attribute type for rules on attribute names.

child_ID s the child ID associated with the specific child instance for
which this attribute has been set if it is a parent-visible attribute
(prefix character ‘@").

For parent-visible attributes, this argument must match a
child_ID from a previousudi_enumerate_ack that has
not been unenumerated; it is ignored for other types of attributes.

attr_value is a pointer to a memory area to receive the attribute value.
attr_length is the length in bytes of the memory area pointed to by
attr_value

attr_type is the type specifier for the attribute value. See
udi_instance_attr_type t on page 15-7 for details.

actual_length is the actual length of the attribute value, even if it could
not fit in the attr_value memory area.

DESCRIPTION The udi_instance_attr_get function is used to obtain the value of a
driver instance attribute. The returned attribute value will be written to the
memory area specified kttr_value.

If attr_name contains a colon (*’), the rest of the name must be an ASCII-
encoded decimal number aadr_type must be UDI_ATTR_FILE. In this
case, the number indicates the beginning file offset to read from, in bytes,
starting from zero.

15-8 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes udi_instance_attr_get

WARNINGS

REFERENCES

If the requested attribute does not exist, ¢héback routine will be called
with an actual _length of 0 and arattr_type of UDI_ATTR_NONE.

Otherwise,actual _length will be set to the actual length of the attribute
value, regardless @&ttr_length ; in the case of UDI_ATTR_FILE with an
offset specified, this will be the remaining length relative to the specified file.
For attribute types other than UDI_ATTR_FILE a€tual_length
exceedsattr_length , the contents of thattr_value memory area are
unspecified; for UDI_ATTR_FILE, all valid bytes that fit will be filled in.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section ofStandard Calling Sequences

Use of theattr nhame andattr_value parameters must conform to the
rules described in Section 5.2.1.1, “Using Memory Pointers with
Asynchronous Service Calls”.

udi_instance_attr_type_t, udi_instance_attr_set

UDI Core Specification - Version 1.01 - 2/2/01 15-9
Section 3: Core Services

udi_instance_attr_set Instance Attributes

NAME udi_instance_attr_set Set a driver instance attribute value
SYNOPSIS | #include <udi.h>

void udi_instance_attr_set {
udi_instance_attr_set call t * callback
udi_cb t* gcb,
const char * attr_name
udi_ubit32_t child_ID
const void * attr_value
udi_size t attr_length ,
udi_ubit8_t attr_type);

typedef void udi_instance_attr_set call t (
udi_ cb t* gcb,
udi_status t status);

ARGUMENTS callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

attr_name is the name of the attribute whose value is to be set.

child_ID s the child ID associated with the specific child instance for
which this attribute is to be set if it is a parent-visible attribute
(prefix character ‘@").

For parent-visible attributes, this argument must match a
child_ID from a previousudi_enumerate_ack that has
not been unenumerated; it is ignored for other types of attributes.

attr_value is a pointer to the attribute value to s#tr_value must be
NULL if and only if attr_length is 0.

attr_length is the length of the value pointed to bitr value

attr_type is the type specifier for the attribute value. See
udi_instance_attr_type t on page 15-7 for details.
UDI_ATTR_FILE is not allowed with
udi_instance_attr_set . attr_type must be
UDI_ATTR_NONE if and only ifattr_length is zero.

DESCRIPTION Theudi_instance_attr_set function is used to set the value of a
driver-instance attribute. The attribute to set is specifiedtty name and
may be either a persistent or a volatile attribute depending on the attribute
type (as indicated by a prefix character).

The attr_value , attr_length , andattr_type combine to specify

the attribute value. If the attribute does not presently exist, it is created. If the
current attribute type is different thattr _type , the attribute type will be
changed to the newly specified type. If the attribute leagth length is
specified as zero, the attribute may be deleted from the database. In general, a
zero-length attribute is indistinguishable from a non-existent attribute.

15-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes udi_instance_attr_set

WARNINGS

STATUS VALUE

The length of the attribute value specified &tyr_value and
attr_length must not exceed the maximum length specified by the
max_instance_attr_len member of thaudi_limits_t structure.

The status value indicates the success or failure of the attribute
modification operation.

Theudi_instance_attr_set service call must not be used with the
UDI_ATTR_FILE attribute type.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section ofStandard Calling Sequences

Use of theattr name andattr_value parameters must conform to the
rules described in Section 5.2.1.1, “Using Memory Pointers with
Asynchronous Service Calls”.

UDI_OK the attribute value was successfully modified.

UDI_STAT_RESOURCE_UNAVAIthe persistent storage database is full and
this attribute could not be created or set in the database. The
driver is not expected to retry the operation; it should consider
this a permanent failure.

UDI_STAT_NOT_SUPPORTEfhe current environment does not allow
modification of the persistent storage database. This error can
only occur with persistent attributes.

REFERENCES | udi_instance_attr_get, UDI_INSTANCE_ATTR_DELETE,
udi_limits_t
UDI Core Specification - Version 1.01 - 2/2/01 15-11

Section 3: Core Services

UDI_INSTANCE_ATTR_DELETE Instance Attributes

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

UDI_INSTANCE_ATTR_DELETE Driver instance attribute delete
macro

#include <udi.h>

#define \
UDI_INSTANCE_ATTR_DELETE\
callback , gcb , attr_name)\
udi_instance_attr_set(\
callback, gch, attr_name, NULL, \
NULL, 0, UDI_ATTR_NONE);

callback , gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

attr_name is the name of the attribute to delete.

The UDI_INSTANCE_ATTR_DELETEmMacro is a convenience macro which
may be used to remove a driver instance attribute. As defined above, this

macro utilizes thaudi_instance_attr_set service call and sets the
attr_length parameter to zero to effect the deletion of the corresponding
attribute.

The callback function specified for this macro must be of the
udi_instance_attr_set _call_t type.

udi_instance_attr_set

15-12

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Instance Attributes udi_instance_attr_list t

NAME
SYNOPSIS

MEMBERS

DESCRIPTION

REFERENCES

udi_instance_attr_list t Enumeration instance attribute list
#include <udi.h>

typedef struct {
char attr_name [UDI_MAX_ATTR_NAMELEN];
udi_ubit8_t attr_value [UDI_MAX_ATTR_SIZE];
udi_ubit8 t attr_length ;
udi_instance_attr_type_t attr_type ;

} udi_instance_attr_list t ;

/* Instance attribute limits */
#define UDI_MAX_ATTR_NAMELEN 32
#define UDI_MAX_ATTR_SIZE 64

attr_name is the name of the instance attribute.
attr_value is the value of this instance attribute.

attr_length is the valid length (in bytes) of thatr_value and must
not be zero.

attr_type is the attribute type as specified fali_instance_attr_type t
on page 15-7. Must not B¢DI_ ATTR_NONEor
UDI_ATTR_FILE.

Theudi_instance_attr_list t structure is used to hold a value used
to pre-load an enumeration instance attribute. The MA allocates space for a
contiguous array of these structures as a movable memory block in order to
provide information describing a child instance in an enumeration operation
(see “Enumeration Operations” on page 24-13).

If attr_type is UDI_ATTR_UBIT32, the 32-bit value is encoded as a
little-endian value in the first four bytes attr value , and

attr_length must be 4. In this cas&lDI_ATTR32_SET and
UDI_ATTR32_GET must be used to acces#r value , or
UDI_ATTR32_INIT must be used to statically initialize such a value before
copying it into this structure.

udi_mem_alloc, udi_instance_attr_type_t,
UDI_ATTR32_SET, UDI_ATTR32_GET, UDI_ATTR32_INIT

UDI Core Specification - Version 1.01 - 2/2/01 15-13
Section 3: Core Services

UDI _ATTR32 _SET/GET/INIT Instance Attributes

NAME UDI_ATTR32_SET/GET/INIT Instance attribute
encoding/decoding utilities

SYNOPSIS | #include <udi.h>

#define UDI_ATTR32_SET(aval, v) \
{ udi_ubit32_t vtimp = (v); \
(aval)[0] = (vtmp) & Oxff; \
(aval)[1] = ((vtmp) >> 8) & Oxff; \
(aval)[2] = ((vtmp) >> 16) & Oxff; \
(aval)[3] = ((vtmp) >> 24) & Oxff; }

#define UDI_ATTR32_GET(aval) \
((aval[0] + ((aval)[1] << 8) + \
((aval)[2] << 16) + ((aval)[3] << 24))

#define UDI_ATTR32_INIT(v) \
{ (v) & Oxff, ((v) >> 8) & Oxff, \
((v) >> 16) & 0xff, ((v) >> 24) & Oxff }

ARGUMENTS aval is theattr_value array which holds an encoded
UDI_ATTR_UBIT32 instance attribute value.

v is theudi_ubit32_t value for the instance attribute.

DESCRIPTION These utility macros are used to access values iatthevalue member
of audi_instance_attr_list t structure wherattr_type is
UDI_ATTR_UBIT32. In this case, the 32-bit unsigned integer value is
encoded as a little-endian value in the first four byteattsf value

UDI_ATTR32_SET assigns aidi_ubit32_t value to amattr_value
array, using the above encoding.

UDI_ATTR32_GETextracts aidi_ubit32_t value from arattr_value
array, using the above encoding.

UDI_ATTR32_INIT initializes anattr_value from audi_ubit32_t
constant value as a compile-time initializer.

REFERENCES | udi_mem_alloc, udi_instance_attr_list t,
udi_instance_attr_type t

15-14 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

r
"L (]

By U D [.'1IU

Inter-Module Communication 16

16.1 Overview

The Inter-Module Communication (IMC) services allow drivers to createaf@amnels to anchor
channels within aegion, to dynamically set thehannel contextand to close a channel. This chapter
also defines thehannel event indicationperation, which is used to send channel-related events from
the environment to a driver. See Chaptetikecution Model”, for an introduction to regions and
channels.

16.2 Service Calls

This section defines service calls that allow drivers to create and anchor channels, dynamically set a
channel’'s context, close a channel, abort outstanding channel operations, and process channel-related
events.

Note that the primary region and management channel for each driver instance are provided to the driver
automatically by the Management Agent when the driver instance is created based on information
provided by the driver in itadi_init_info variable. If the driver has indicated that it requires static
secondary regions, they will also be created at this time, along with an internal bind channel between the
primary region and each such secondary region. If the driver has requested dynamic secondary regions,
additional secondary regions and corresponding internal bind channels will be created later, when
appropriate child or parent instances are being bound to this driver instance.

Drivers can spawn new channels at any time, but it is the driver’s responsibility to allocate, track and
return these objects back to the environment in a responsible manner. Drivers must not free any channels
not explicitly spawned by the driver, via calls to the services in this chapter.

UDI Core Specification - Version 1.01 - 2/2/01 16-1
Section 3: Core Services

udi_channel _anchor IMC

NAME

SYNOPSIS

ARGUMENTS

WARNINGS

DESCRIPTION

udi_channel_anchor Anchor a channel to the current
region

#include <udi.h>

void udi_channel_anchor (
udi_channel_anchor_call t * callback
udi_cb_ t* gcb,
udi_channel _t channel
udi_index_t ops_idx
void * channel_context);

typedef void udi_channel_anchor_call_t (
udi_cb t *gcb,
udi_channel_t anchored _channel);
callback, gcb are standard arguments described in the “Asynchronous

Service Calls” section dfCalling Sequence and Naming
Conventions”

channel is the channel handle for the loose end to be anchored. Once
udi_channel_anchor is called, the driver may no longer use
this handle.

ops_idx is an ops index for the ops vector that the driver wants to
associate with the specified channel, as indicated by the
appropriateudi_ops_init_t in udi_init_info
ops_idx must be non-zero.

channel _context is a channel context pointer to be associated with the
anchored channel endpoint.

anchored_channel is the new channel handle for the now-anchored
channel endpoint. This handle must subsequently be used to
access the channel, rather than the original handle passed to
udi_channel_anchor

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

udi_channel_anchor is used to anchor a loose channel end to the current
region. Loose ends may be passed to a driver from another region, or as the
result of audi_channel_spawn request. Management channels, external
bind channels between driver instances, and internal bind channels between
primary and secondary regions are always pre-anchored.

Once anchored, the channel endpoint is permanently associated with the
current region, and has an associated ops vector and channel context. Loose
ends may be anchored, but anchored ends may not be made loose.

Loose ends may be passed between regions as parameters to channel
operations. Anchored ends may not.

16-2

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

IMC

udi_channel _anchor

REFERENCES

When the anchoring is complete, the UDI environment will invoke the
callback to notify the requestor of the completion, and return ownership of
the control block §cb) to the driver.

Once both ends of the channel are anchored, the channel may be used for
communication, by invoking channel operations. Drivers must ensure that both
ends are anchored and ready to go before invoking any operations on the
channel. This is typically done via metalanguage-specific handshaking on
another channel.

udi_init_info, udi_cancel, udi_channel_spawn

UDI Core Specification - Version 1.01 - 2/2/01 16-3
Section 3: Core Services

udi_channel _spawn IMC

NAME udi_channel_spawn Spawn a new channel
SYNOPSIS | #include <udi.h>

void udi_channel_spawn (
udi_channel_spawn_call_t * callback
udi_cb t* gcb,
udi_channel_t channel
udi_index_t spawn_idx ,
udi_index_t ops_idx
void * channel_context);

typedef void udi_channel_spawn_call_t (
udi_cb t *gcb,
udi_channel_t new_channel);

ARGUMENTS callback, gcb are standard arguments described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming
Conventions”

channel is the channel handle for an existing anchored channel. The new
channel will be spawned relative to this channel.

spawn_idx is a small integer which allows the environment to match two
spawn requests (one from each end of the channel) together.

ops_idx is an ops index for the ops vector that the driver wants to
associate with the specified channel, as indicated by the
appropriateudi_ops_init_t in udi_init_info , Or zero.

channel_context is a channel context pointer to be associated with the
new anchored channel endpoint.

new_channel is the channel handle for the new channel’s local endpoint,
which will be a loose end. This handle must subsequently be
passed taidi_channel_anchor , either in this region, or after
passing it to another region via a channel operation.

WARNINGS Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

DESCRIPTION udi_channel_spawn is used to create a new channel (initially) between
the same two regions as an existing channel. Both ends must be created
separately by their own calls tali_channel_spawn

If ops_idx is zero, the channel endpoint is created as a loose end, which
must be anchored before it can be used. Loose ends may be passed between
regions, and even between drivers, before being anchored.

The pair of the original channel handle and the spawn index uniquely identify
an in-progress spawn operation. Td¢wlback routine is called once the

local end of the channel has been created and, if specified, anchored. The
other region may or may not yet have completed its end of the spawn.

16-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

IMC udi_channel _spawn

Drivers must ensure that both ends have completed spawning and are
anchored and ready to go before invoking any operations on the channel. This
is typically done via metalanguage-specific handshaking on the original
channel.

REFERENCES | udi_init_info, udi_cancel, udi_channel_anchor

UDI Core Specification - Version 1.01 - 2/2/01 16-5
Section 3: Core Services

udi_channel _set context IMC

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

WARNINGS

udi_channel_set_context Attach a new context to a channel
endpoint

#include <udi.h>

void udi_channel_set _context (
udi_channel_t target_channel |
void *channel_context);

target _channel is a channel handle for the channel endpoint to be
modified.
channel_context is a generic pointer that will be returned as-is by UDI in

any channel operations related to this channel.

udi_channel_set_context attaches a new context pointer to the local
end of a target channel. The new context pointer will be attached to the
referenced channetdrget channel) by the time this call returns. It will
then be passed to the driver with each channel operation in the
gcb.channel _context member of the control block.

udi_channel_set_context must be called from the region containing
the channel endpoint. This endpoint must already be anchored.

16-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

IMC udi_channel _op_abort

NAME udi_channel_op_abort Abort a previously issued channel
operation

SYNOPSIS | #include <udi.h>

void udi_channel_op_abort (
udi_channel_t target_channel |
udi_cb_ t *orig cb);

ARGUMENTS target _channel is a channel handle for the channel to which the
previously issued operation was sent.

orig_cb is a control block pointer for the control block that was sent with
the original operation. Even though the driver no longer owns
that control block, it is allowed to use the otherwise stale pointer
only with this service call.

DESCRIPTION udi_channel_op_abort delivers dJDI_CHANNEL_OP_ABORTEdvent
via udi_channel_event_ind to the other end of the target channel, in
order to request that a previously sent request, uwiiggcb as its control
block, be aborted.

The original operation must be of an operation type defined &bbeableby
the relevant metalanguage definition. Metalanguage libraries indicate that
operations are abortable by using thel MEI_OP_ABORTABLHlag in the
correspondingidi_mei_op_template_t

The original control block, identified bgrig cb , must previously have

been sent on the target channel using an abortable operation, and must not yet
have been returned (via a metalanguage-specific operation) to the initiating
region. The control block is aborted and returned to the current driver via the
normal metalanguage completion operation with a status of
UDI_STAT_ABORTEDo indicate that the operation was aborted; operations
that have already completed will be passed back to the current module in the
normal fashion without the abort status indication.

Even if the control block was originally sent as part of a chain of control
blocks sent with one operation, only the specific control block indicated by
orig_cb is aborted.

Drivers receiving abortable control blocks must not free them but must
(eventually) return them over the same channel on which they were received.

REFERENCES | udi_channel _event cb_t, udi_channel_event_ind,
udi_mei_op_template_t

UDI Core Specification - Version 1.01 - 2/2/01 16-7
Section 3: Core Services

udi_channel close IMC

NAME
SYNOPSIS

ARGUMENTS
DESCRIPTION

WARNINGS

REFERENCES

udi_channel_close Close a channel
#include <udi.h>

void udi_channel_close (udi_channel_t channel);

channel is a channel handle for the channel endpoint being closed.

udi_channel_close deallocates and returns any channel-related resources
to the UDI environment. Normally a driver calls this routine only as a result of
receiving achannel_event_ind operation of type
UDI_CHANNEL_CLOSEDO close its end of the channel.

The result of this routine is immediate: the channel endpoint will be closed
and freed when this call returns. It is the responsibility of the driver to clean
up all channel-related state and resources first, so as to maintain architectural
integrity before destroying a channel. This must include the processing of all
outstanding operations related to the channel. The driver should ensure, via
proper channel operation handling, that all operations directed to this channel
have been completed and that no more will be generated. Any operations
previously sent to this channel but not yet delivered at the time this routine is
called will be treated as having been initiated after the channel was closed.

When one end of a channel is closed, either by the driver explicitly calling
udi_channel_close or by the environment if a driver is killed, the other
end receives adi_channel_event_ind operation of type
UDI_CHANNEL_CLOSEDhis tells the driver at the other end that one of its
neighbors has gone away unexpectedly. (See page 16-13 for the definition of
theudi_channel_event_ind operation).

udi_channel_close may be used on loose ends, as well as anchored
channel endpoints.

If a driver callsudi_channel_close on a channel whosatherend is
loose, theudi_channel_event_ind operation will be delivered if and
when that other end is anchored.

If a driver invokes an operation on a channel whose other end is closed, it will
be ignored and any associated control blocks and data objects will be freed.

Once both ends of a channel are closed, all environment resources associated
with the channel are released. Callingj_channel_close on the single
end of a half-spawned channel has this effect as well.

udi_channel_close acts as a no-op thannel is a null handle, but
must not be called for a channel that has already been closed with a previous
call toudi_channel_close

udi_channel_close must not be used with a channel handle that has been
passed to another regiamdi_channel_close must not be used on
management channels.

udi_channel_event_ind, udi_channel_anchor,
udi_channel_spawn

16-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

IMC Channel Event Indication Operation

16.3 Channel Event Indication Operation

The one channel operation common to all metalanguages (except the Management Metalanguage) is the
udi_channel_event_ind operation. It is always the first operation in any channel ops vector. It is
automatically invoked by the environment whenever one of several channel-related events occurs:

1. A udi_channel_event_ind operation of typdJDI_CHANNEL_CLOSE passed to
the other end of a channel whenever a channel is closed. This can occur as a result of an
explicit udi_channel_close (see page 16-8) or as a result of the region being
prematurely terminated by the environment.

2. A udi_channel_event ind operation of typdJDI_CHANNEL_BOUNI3 passed to
theinitiator end of a newly created bind channel after it has been anchored (by the
environment) on both ends. Tistiator, as opposed teespondeyis the driver (or
environment entity) that generally initiates requests to the responder (see the description of
relationship on page 28-4 for more details on these metalanguage roles). This allows
the initiator to acquire the channel handle for its end of the channel (vihdmzel
member of the control block), so it can send the first request. The responder acquires its
channel handle as a result of this first request.

3. A udi_channel_event ind operation of typdJDI_CHANNEL_OP_ABORTEB
passed to the other end of a channel whenever a driverudalishannel_op_abort
(see page 16-7), in order to abort a previously sent channel operation.

The udi_channel_event_ind operation is used in all metalanguages except the Management
Metalanguage, but is defined only once, here in this chapter in the reference pages that follow.

UDI Core Specification - Version 1.01 - 2/2/01 16-9
Section 3: Core Services

udi_channel _event cb t IMC

NAME
SYNOPSIS

MEMBERS

udi_channel_event _cb t

Channel event control block

#include <udi.h>

typedef struct {

udi_cb_t gcb;
udi_ubit8 t event ;
union {

struct {
udi_ cb t* bind cb ;
} internal_bound
struct {
udi_cb t* bind cb ;
udi_ubit8 t parent ID ;
udi_buf path_t * path_handles
} parent bound ;
udi_ cb t* orig cb ;

} params;

} udi_channel_event_cb t ;

/* Channel event types */

#define UDI_CHANNEL_CLOSED 0

#define UDI_CHANNEL_BOUND 1

#define UDI_CHANNEL_OP_ABORTED 2

gcb is the standard control block section providing scratch space and
context information.

event is the type of event that is being indicated:

UDI_CHANNEL_CLOSEIlnhdicates that the remote end of the
channel has been closed. The driver receiving this event must
clean up any channel-related resources and call
udi_channel_close on its end of the channel after calling
udi_channel_event_complete

UDI_CHANNEL_BOUNIbdicates that another region has been
bound to this region as a result of a “parent_bind_ops” or
“internal_bind_ops” declaration from this driver’s static driver
properties (see Chapter 3Gtatic Driver Properties’), and that
this channel was created as a result of that binding. The driver
receiving this event may now begin using the channel for normal
operations, usually beginning with a metalanguage-specific bind
request. (For internal bindings, only the region usingrthiator

role in the corresponding metalanguage receives the
UDI_CHANNEL_BOUNIDdication.)

For parent bindings, thearent ID field will contain an
environment-assigned parent ID that identifies the particular
parent instance. Thearent ID value will never be zero; zero

is reserved for environment use. Single-parent drivers can ignore
this field.

16-10

UDI Core Specification - Version 1.01 - 2/2/01

Section 3: Core Services

IMC

udi_channel _event cb t

orig_cb

bind_cb

parent_ID

The driver must not calldi_channel_event_complete
for this event until its entire bind sequence has completed.

See Chapter 24Management Metalanguagefor more details
on the bind sequence.

UDI_CHANNEL_OP_ABORTHBdicates that an abort request
has been generated (usindi_channel_op_abort) by the
driver on the other end of the channel, with respect to a previous
metalanguage-specific abortable request @iginal reques.

The driver receiving this event must abort any outstanding
processing for the original request and fail it with a status code
of UDI_STAT_ABORTEDIt may do this before or after calling
udi_channel_event_complete . Theorig cb field will

point to the control block for the original request, which is
guaranteed to be an abortable control block currently owned by
this region (though it may be in use with an environment service
call on behalf of this region). Drivers receiving abortable control
blocks must not free them but must (eventually) return them over
the same channel on which they were received.

is a pointer to the control block for the original request being
aborted by &JDI_CHANNEL_OP_ABORTHEihannel event. For
all other channel events, the valueasfg _cb is unspecified
and must not be used by the driver.

is a pointer to the pre-allocated control block for the
metalanguage-specific bind request that the driver will issue as a
result of theUDI_CHANNEL_BOUNBvent. This control block

type is indicated by thebind_cb_idx> value of the
corresponding “parent_bind_ops” declaration (see Section 30.6.3
on page 30-13) or “internal_bind_ops” declaration (see Section
30.6.4 on page 30-14). For all other channel events or if
<bind_cb_idx> was zero then no control block will be
allocated and the value 6ind _cb is unspecified and must not

be used by the driver.

is a unique non-zero value supplied by the MA during a
UDI_CHANNEL_BOUNBvent on a parent bind channel, to
explicitly identify the parent driver instance being bound. Drivers
that have multiple parents will be assigned a unique
parent_ID value for each parent. Thigarent ID is used
for any operations that need to identify a specific parent to which
those operations are relatezld. the enumeration and device
management operations of the Management Metalanguage). If
the event was not for a parent binding, this member’s value is
unspecified and must be ignored.

The MA may assign parent IDs in any order.

UDI Core Specification - Version 1.01 - 2/2/01 16-11

Section 3: Core Services

udi_channel _event cb t IMC

path_handles is a pointer to an array oidi_buf_path_t handles that
may be used by the driver when allocating buffers on behalf of
the parent being bound. These handles are maintained in an
inline array associated with the channel event control block and
must be copied to instance-internal storage before the control
block is passed tadi_channel_event_complete . If the
event was not for a parent binding, this member’s value is
unspecified and must be ignored.

DESCRIPTION Theudi_channel_event cb_t control block is a semi-opaque object
used between the environment and the driver in channel event indication
operations. When passed to the target driver, this control block provides a
context for the operation and must be returned to the environment by calling
udi_channel_event_complete

Unlike with other control blocks, the value géb.channel for a channel
event control block is unspecified and must not be modified.

Unlike with other control blocks, there is no way to list attributes of a
udi_channel_event cb_t in audi_cb_init_t initialization
structure, so the scratch space sizeuttir channel_event cb_t control
blocks is always zero.

Drivers cannot allocatadi_channel_event cb t control blocks.

REFERENCES | udi_channel_event _complete, udi_channel_close,
udi_channel_op_aborted, udi_constraints_propagate,
udi_layout_t

16-12 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

IMC

udi_channel _event ind

NAME

SYNOPSIS

ARGUMENTS

TARGET CHANNEL
DESCRIPTION

WARNINGS

REFERENCES

udi_channel_event_ind Channel event notification (env-to-
driver)

#include <udi.h>

void udi_channel_event_ind (
udi_channel_event cb t * cb);
typedef void udi_channel_event _ind_op_t (

udi_channel_event_cb_t *cb);

cb is a channel event control block allocated by the environment and
used to hold details of the specific channel event.

The channel over which the event is to be delivered.

This channel operation is used by the environment to signal that a generic
event has occured on the other end of the channel. The type of event that has
occured, and additional parameters for the event, are contained in the
udi_channel_event cb t control block.

If a driver receives an unexpectedddl CHANNEL_ CLOSEBvent indication
on a parent or child channel, it must treat it as an “abrupt unbind”, as
described in Section 24.6, “Device Management Operations,” on page 24-27.

If a driver closes its end of the channel itself (withi_channel_close)
before the other end is closed or befoneda channel_event_ind of
type UDI_CHANNEL_CLOSEI® serviced, it will not receive a
UDI_CHANNEL_CLOSEIlnhdication.

Once aUDI_CHANNEL_CLOSEIlnhdication has been received on a given
channel, no other operations will be received on that channel.

Once the driver has completed processing the channel event, it must return the
control block to the environment usingi_channel_event_complete
Drivers must not directly free channel event control blocks.

Drivers must not invoke this operation.

Drivers handlinguDl_CHANNEL_ OP_ABORTHE&ents should be careful to
abort the referenced control block (or at least mark it as having an abort in
progress) before returning from thdi_channel_event_ind operation,

to avoid race conditions with normal completions.

udi_channel_event_cb_t, udi_channel_event_complete

UDI Core Specification - Version 1.01 - 2/2/01 16-13
Section 3: Core Services

udi_channel _event complete IMC

NAME udi_channel_event_complete Complete a channel event (driver-to-
env)

SYNOPSIS | #include <udi.h>

void udi_channel_event_complete (
udi_channel_event cb t * cb,
udi_status t status);
ARGUMENTS cb is a channel event control block from

udi_channel_event_ind

status is a UDI status code used to indicate the success or failure of
some event types. Unless otherwise specified, drivers must set
status to UDI_OK.

DESCRIPTION udi_channel_event_complete is called by a driver that has previously
received audi_channel_event_ind notification from the environment
after that driver has processed the event. Drivers must not directly free
channel event control blocks.

STATUS VALUES UDI_OK The event was processed successfully.

UDI_STAT_CANNOT_BIND A parent binding triggered by a
UDI_CHANNEL_BOUNBvent failed because the metalanguage
specific bind process was rejected by the parent, or was
otherwise unsuccessful.

UDI_STAT_TOO_MANY_PARENTAS parent binding triggered by a
UDI_CHANNEL_BOUNBvent failed because this driver instance
is already bound to the maximum number of parents that it can
support.

UDI_STAT_BAD_PARENT_TYPR parent binding triggered by a
UDI_CHANNEL_BOUNBvent failed because the parent
metalanguage or device properties (as determined by the parent-
specified enumeration attributes) for the binding cannot be
supported by this driver instance in its current state.

UDI_STAT_ATTR_MISMATCHA parent binding triggered by a
UDI_CHANNEL_BOUNBvent failed because the child could not
comply with one or more of the custom attribute settings already
specified for the newly-created child instance.

WARNINGS The control block must be the same control block as passed to the driver in the
correspondingudi_channel_event_ind operation.

REFERENCES | udi_channel _event cb_t, udi_channel_event ind

16-14 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

proj ecy

“{UDJ

Tracing and Logging 17

o

17.1 Overview

UDI environments are expected to provide facilities for drivers to record information about their
operation. There are two such types of informatiog:data which describes infrequent events read by

a system administrator to determine the state of a running systermraeadiata which is divided into
classes of information used by developers and systems analysts for debugging UDI modules or the UDI
subsystem as a whole. A driver is required to provide log data; providing trace data is optional.

This chapter defines the tracing and logging service calls which are provided for use by the driver to
record both trace data and log data. Additional operations to specify the level of tracing generated are
defined in the Management Metalanguage (see “Tracing Control Operations” on page 24-6).

17.2 Tracing and Logging Service Calls

17.2.1 Tracing Calls

Tracing is initially disabled when a driver instance is initialized. The Management Metalanguage
includes a channel operation to enable or disable tracing of specified types of events in a driver instance
(see Section 24.4.1, “Tracing Control Operations”). Depending on the issue being debugged, the driver
may be asked to trace only rare errors, all internal function calls, or somewhere in between. The actual
set of events traced is up to the discretion of the driver implementation, but must in all cases be a subset
of the currently enabled set of trace event types. Note that the environment may be filtering final trace
output by some other criteria, even though the driver itself filters only by trace event type.

When the driver encounters an event to be traced, it edilsrace_write , passing the trace event
code, a data buffer, and a pointer touid$_init_context_t structure (identifying this driver region
as the source of the data). The contents and format of trace data are driver implementation-dependent.

17.2.2 Logging Calls

Major events, including any situation wheredi_status_t value other than UDI_OK that indicates
an exceptional condition is generated, should be logged by UDI driversudiifigg_write

Logging is always active; it is not controlled by event masks as tracing is (thlidbg_write

may be used to simultaneously log and trace data). As with tracing, however, the environment may
choose to filter final log output on its own.

Although drivers can function without logging any data, making callsdtolog_write when
appropriate should not be considered optional. Such logging is particularly important because
udi_log_write tagsudi_status_t values with a correlation code (see Section 9.9.1, “UDI
Status,” on page 9-15), allowing it to associate related errors as they are passed from driver to driver.

UDI Core Specification - Version 1.01 - 2/2/01 17-1
Section 3: Core Services

Tracing and Logging Service Calls Trace & Log

17.2.3 Trace Event Types

Trace eventspecify the types of trace data which the driver is to report at any given time. Setting the
corresponding bit value in theace_event _mask mask in audi_usage_ind operation (see

Section 24.4.1) enables tracing for all events of a particular type. Some event types are designed to trace
metalanguage-specific information or operations and are thus selectable on a per-metalanguage basis;
these are referred to as metalanguage-selectable trace event types.

The trace events are divided into four different classes as defined in this section:

1) common trace evemibdes, which apply to all drivers and metalanguages.

2) common metalanguage-selectable trace ewedes, whose semantics are defined in
each metalanguage. The general semantics afaimnon metalanguage-selectable
eventsare defined in this chapter; metalanguages can define more specific
semantics as they conform to the general semantics defined here.

3) metalanguage-specific trace evertdes UDI_TREVENT_META_SPECIFIC n),
with semantics defined by each metalanguage, are also metalanguage-selectable.

4) driver-specific trace evertodes (UDI_TREVENT _INTERNAL n), which are
available for tracing events specific to a single driver implementation.

Note that drivers and metalanguages can define the use of the driver or metalanguage-selectable event
codes, respectively, without having to worry about event code usage defined by other drivers or
metalanguages, since each trace call is associated with a particular calling driver and a selected
metalanguage.

Note —Environment implementations may trace other types of events transparently to the driver, such as
incoming and outgoing channel operations and service calls.

17-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Trace & Log udi_trevent t

NAME udi_trevent_t Trace event type definition

SYNOPSIS | #include <udi.h>

typedef udi_ubit32_t udi_trevent t ;

/* Common Trace Events */

#define UDI_TREVENT_LOCAL_PROC_ENTRY (1U<<0)
#define UDI_TREVENT_LOCAL_PROC_EXIT (AU <<1)
#define UDI_TREVENT_EXTERNAL_ERROR (1U<<2)
/* Common Metalanguage-Selectable Trace Events */

#define UDI_TREVENT_IO_SCHEDULED (AU <<6)
#define UDI_TREVENT_IO_COMPLETED (1U <<7)
/* Metalanguage-Specific Trace Events */

#define UDI_TREVENT_META_SPECIFIC_1 (1U <<11)
#define UDI_TREVENT_META_SPECIFIC_2 (1U <<12)
#define UDI_TREVENT_META_SPECIFIC_3 (1U <<13)
#define UDI_TREVENT_META_SPECIFIC_4 (1U <<14)
#define UDI_TREVENT_META_SPECIFIC_5 (1U <<15)
/* Driver-Specific Trace Events */

#define UDI_TREVENT_INTERNAL_1 (1U <<16)
#define UDI_TREVENT_INTERNAL_2 (1U <<17)
#define UDI_TREVENT _INTERNAL_3 (1U <<18)
#define UDI_TREVENT _INTERNAL_4 (1U <<19)
#define UDI_TREVENT _INTERNAL_5 (1U <<20)
#define UDI_TREVENT_INTERNAL_6 (1U <<21)
#define UDI_TREVENT_INTERNAL_7 (1U <<22)
#define UDI_TREVENT_INTERNAL_8 (1U <<23)
#define UDI_TREVENT _INTERNAL_9 (1U <<24)
#define UDI_TREVENT_INTERNAL_10 (1U <<25)
#define UDI_TREVENT_INTERNAL_11 (1U <<26)
#define UDI_TREVENT_INTERNAL_12 (AU <<27)
#define UDI_TREVENT_INTERNAL_13 (1U <<28)
#define UDI_TREVENT_INTERNAL_14 (1U <<29)
#define UDI_TREVENT_INTERNAL_15 (1U <<30)

/* Logging Event */
#define UDI_TREVENT_LOG (1U <<31)

DESCRIPTION Theudi_trevent t type definition is used to specify a bitmask of trace
events. These trace events are used in the tracing and logging service calls to
specify the occurrence of events or to provide masks to filter the set of
interesting trace events.

The following common trace event codes are defined independently of any
metalanguage.

UDI Core Specification - Version 1.01 - 2/2/01 17-3
Section 3: Core Services

udi_trevent t Trace & Log

UDI_TREVENT_LOCAL_PROC_ENTRY Trace entry to all procedures that
are local to the driver. Include argument values in the trace
output.

UDI_TREVENT_LOCAL_PROC_EXIT- Trace exit from all procedures that
are local to the driver. Include return values in the trace output.

UDI_TREVENT_EXTERNAL_ERRGRTrace error conditions that are passed
from this driver to other UDI drivers or modules. This happens
when audi_status_t value other thaDI_OKthat indicates
an exceptional condition is generated. Such events must be
logged usingudi_log_write (which will handle the tracing
of this event as well).

The following trace event types are designed to trace metalanguage-specific
information or operations, and can therefore be selectively enabled and
disabled on a per-metalanguage basis. For these events, tracing is enabled or
disabled only for the metalanguages indicatedrigfa idx of the trace

usage operation (see “Tracing Control Operations” on page 24-6). Each
metalanguage defines its own rules and conventions for the use of these event
types; therefore, the metalanguage specifications should be consulted before
using these events.

UDI_TREVENT_IO_SCHEDULEDB Trace the point at which the driver
starts handling a specific /O request. The use of this trace point
is different for different types of drivers but should indicate the
point at which the driver passes the 1/O request to the hardware.
(Example: submission of a SCSI command to the hardware to be
sent on the SCSI bus.) This trace event applies only to the
responder role of a request/response metalanguage (e.g. GIO
provider).

UDI_TREVENT_IO_COMPLETED Trace the point at which an 1/0O request
has been completed. This is the counterpart to
UDI_TREVENT_IO_SCHEDULERNd in a similar fashion the
use of this trace event is determined by type of UDI driver.
(Example: Interrupt indicating SCSI command complete.) This
trace event applies only to the responder role of a
request/response metalanguage (e.g. GIO provider).

UDI_TREVENT_META_SPECIFICn - Trace metalanguage-specific
events as defined in each metalanguage.

The driver-internal trace eventdpl_TREVENT_INTERNAL n, may be used
to trace any driver-specific events desired. The interpretation of those events is
determined by the driver implementor.

The logging event code is a special trace event code which is used to indicate
that a logging event has occurred rather than one of the customary trace
events. Logging events cannot be filtered.

17-4 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Trace & Log udi_trevent t

UDI_TREVENT_LOG- Event code that is used for logging messages that
are not associated with trace events. This event code must only
be used withudi_log_write and not with
udi_trace_write

UDI Core Specification - Version 1.01 - 2/2/01 17-5
Section 3: Core Services

udi_trace _write Trace & Log

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

REFERENCES

udi_trace_write Record trace data

#include <udi.h>

void udi_trace_ write (
udi_init_context t * init_context ,
udi_trevent t trace_event
udi_index_t meta_idx
udi_ubit32_t msgnum
)i
init_context is a pointer to the front of the driver’'s region data area and

is used to uniquely identify this driver instance.
trace_event s the type of trace event being reported.

meta_idx is a metalanguage index number that identifies the metalanguage
to whichtrace_event s relative, for metalanguage-selectable
trace events. It must match the value<ofeta_idx> in the
corresponding “child_meta”, “parent_meta”, or “internal_meta”
declaration of the driver's Static Driver Properties (see Chapter
30), or 0 for the Management Metalanguage. If the event is not

metalanguage-selectabl@eta idx is ignored.

msgnum is the index value of a message string provided in the driver's
static properties file (see Section 30.4.9, “Message Declaration,”
on page 30-7). This selects the text of the message to be traced.
Any embedded formatting codes in the text of that message will
be used to format the traced message with the remaining
arguments supplied to this call. The formatting is performed as if
the message string and remaining arguments were passed to the
udi_snprintf utility function (seeudi_snprintf on page
20-11).

are the remaining arguments which provide the values used for
the formatting codes contained in the message identified by
msgnum Arguments formatted with %c or %s format codes
must not contain newline\(i ’) or other control characters.

This routine traces data generated by the driver. Time-stamping of trace
entries will be done at the discretion of the environment; the driver is not
expected to supply timestamp information.

To simplify usageudi_trace write does not involve a callback. The
environment will immediately copy theassgnumand remaining arguments

into its own buffers for immediate or delayed processing. This may result in
loss of trace data during unusually heavy usage. The driver writer is
encouraged to keep trace entries short to minimize this possibility.

If the driver wishes to log and trace the same eventudhdog_write
operation should be used instead.

udi_log_write

17-6

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Trace & Log

udi_log write

NAME
SYNOPSIS

ARGUMENTS

udi_log_write Record log data

#include <udi.h>

void udi_log_write (
udi_log_write_call_t * callback
udi_cb t* gcb,
udi_trevent t trace_event
udi_ubit8 t severity
udi_index_t meta_idx ,
udi_status t original_status ,
udi_ubit32_t msgnum

)i

typedef void udi_log_write_call t (
udi_cb_t *gcb,
udi_status _t correlated_status);

/* Values for severity */

#define UDI_LOG_DISASTER 1
#define UDI_LOG_ERROR 2
#define UDI_LOG_WARNING 3
#define UDI_LOG_INFORMATION 4
callback , gcb are standard arguments described in the “Asynchronous

Service Calls” section dfCalling Sequence and Naming
Conventions” Note that no init context pointer is required
(unlike with udi_trace_write), since region identity is
established through thgcb.

trace_event s the type of trace event to be logged. For log data that is not

associated with trace events, wdel TREVENT_LOG

severity specifies the severity level of the log data.

meta_idx is a metalanguage index number that identifies the metalanguage
to whichtrace_event is relative, for metalanguage-selectable
trace events. It must match the value<ofeta _idx> in the
corresponding “child_meta”, “parent_meta”, or “internal_meta”
declaration of the driver’'s Static Driver Properties (see Chapter
30), or 0 for the Management Metalanguage. If the event is not

metalanguage-selectabl@eta idx is ignored.

original_status is the UDI status value, if any, that was either generated
by the driver or received from another driver. The environment
will generate appropriate information in the log file for this
status value; the driver may provided supplemental information
with the msgnumand associated arguments.

msgnum is the index value of a message string provided in the driver's
static properties file (see Section 30.4.9, “Message Declaration,”

on page 30-7). This selects the text of the message to be logged.

UDI Core Specification - Version 1.01 - 2/2/01 17-7

Section 3: Core Services

udi_log write Trace & Log

WARNINGS

DESCRIPTION

Any embedded formatting codes in the text of that message will
be used to format the traced message with the remaining
arguments supplied to this call. The formatting is performed as if
the message string and remaining arguments were passed to the
udi_snprintf utility function (seeudi_snprintf on page

20-11).

are the remaining arguments which provide the values used for
the formatting codes contained in the message identified by
msgnum Arguments formatted with %c or %s format codes
must not contain newline\(i ’) or other control characters.

correlated_status is theoriginal _status value, possibly modified
to include a new correlation value. (See Bumndamental Types
Chapter for more information on the correlation field of the
udi_status t type.) The correlation value allows multiple
log entries related to a single event to be correlated based on the
correlation value assigned; if there is already a correlation value
in the status code theli_log_write call will preserve that
original correlation.

Control block usage must follow the rules described in the “Asynchronous
Service Calls” section dfCalling Sequence and Naming Conventions”

This routine logs events that can affect functionality of the driver, controlled
hardware or other subsystems using the driver. Each of the data records may
be automatically time stamped by the environment; the driver is not expected
to supply timestamp information.

The following severity levels are defined:

UDI_LOG_DISASTER This severity indicates that the driver detected a
severe and unrecoverable error condition that will likely affect
multiple users of a driver and may jeopardize system integrity.
Environments may take actions that result in killing the driver or
the system upon logging this severity.

UDI_LOG_ERROR This severity indicates that the driver encountered an
error condition that might cause some error conditions in its
users, but from which it was able to recover.

UDI_LOG_WARNING This severity indicates minor abnormal conditions,
likely caused by other subsystems.

UDI_LOG_INFORMATION This severity is used for expected events such
as driver start-up or shutdown.

If the trace_event is notUDI_TREVENT_LOGan implicit call to
udi_trace_write will be made if tracing for the corresponding event type
is enabled.

17-8

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Trace & Log udi_log write

udi_log_write allows the environment to associate related events in
different drivers with each other. It can do this by modifying the status codes
it is passed to include a correlation value. This allows errors related to the
same event to be correlated.

REFERENCES | udi_trace write

UDI Core Specification - Version 1.01 - 2/2/01 17-9
Section 3: Core Services

udi_log_write Trace & Log

17-10 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

%' M D p oY

Debugging Services 18

18.1 Overview

This chapter defines several functions that can be used to help debug and verify UDI drivers and perform
internal consistency checking. Contrary to conventions common in many legacy driver models, UDI
does not allow a driver to directly invoke a system abort or reset; the UDI environment has the
capability, if it desires, to detect a malfunctioning driver and kill or cease to use that driver without

affecting the integrity of the rest of the system.

UDI Core Specification - Version 1.01 - 2/2/01 18-1
Section 3: Core Services

Debugging Service Calls Debugging Services

18.2 Debugging Service Calls

In this section, UDI defines one function for debuggindi (debug_break) and one function for

internal consistency checkingdi_assert). These represent the limit of the driver’s ability to

explicitly cause system-level exceptions, and the handling of these exceptions is dependent on the
implementation and current execution mode of the environment under which the driver is running. It is
still possible for the driver to perform architectural code violations (e.g. dereference a null pointer) but
it is legitimate for the environment to intercept these violations and handle them by Kkilling the driver
rather than allowing a system crash as conventionally occurs.

18-2 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Debugging Services udi_assert

NAME

SYNOPSIS

ARGUMENTS
DESCRIPTION

udi_assert Perform driver internal consistency
check

#include <udi.h>

void udi_assert (udi_boolean_t expr);

expr expression to evaluate for truthfulness

Theudi_assert function is used by the driver to perform an internal
consistency check. The supplied expres&gpr is evaluated and if the

result is false, the consistency check is interpreted as having failed. A failed
consistency check indicates an unrecoverable condition within the driver and
the UDI environment should take steps to kill the driver or mark it as not-
executable. A failed assertion is tantamount to a suicide request on the part of
the driver but not for the system as a whole.

The actual handling of an assertion failure is left to the environment
implementation. It may be that a particular environment even has multiple
execution modese(g.freevs. checked) where the failed assertions have
different results depending on the mode.

While it is not actually guaranteed thadi_assert will not return to the
driver if expr is false, it is expected that drivers will be coded as if that were
the case.

As an esoteric note, an environment may choose not to directly handle the
udi_assert call simply by returning to the calling code regardless of the
success or failure of the evaluated expression. Although the results are
indeterminate (and it is likely that the system will subsequently crash as a
result of an ignored assertion) the environment implementation has chosen
this as a valid outcome of a failed assertion. This is a very subtle environment
implementation issue that should not affect driver code; as noted above, driver
writers should write their code under the assumption that a failed

udi_assert call will not return.

UDI Core Specification - Version 1.01 - 2/2/01 18-3
Section 3: Core Services

udi_debug break Debugging Services

NAME

SYNOPSIS

ARGUMENTS

DESCRIPTION

EXAMPLE

udi_debug_break Request a debug breakpoint at the
current location

#include <udi.h>

void udi_debug break (
udi_init_context_t * init_context ,
const char * message);

init_context is the initial context supplied to the driver on the primary
region’s management channel.

message is a string used to indicate the cause of the debug break.

Theudi_debug_break function is used for driver debugging purposes. In a
debug configuration, calling this routine indicates that a system debugger, if
present and available, should be entered at the current time for developer
debugging operations.

The init_context argument is used to identify which driver region is
issuing the breakpoint. This allows environments to selectively set breakpoints
for specific regions as identified by themit context values..

The implementation of this function is environment dependent and the actions
taken may be defined by an operational mode of that UDI environment.

An example implementation of thali_debug _break utility might

distinguish between a debug and a non-debug environment, where the former
is identified for driver development and the latter is typically the production
environment.

In debugging mode, thmessage string would be output to the debug

console and the debugger is entered in the context of the thread that called this
function. The operator can then perform various debugging operations and
then resume normal execution, which will cause this function to return to the
caller for continued execution of UDI driver code.

In a non-debugging mode, the environment may completely ignore this
request and simply return immediately to the UDI driver code.

18-4

UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

Debugging Services udi_debug_printf

NAME
SYNOPSIS

ARGUMENTS

DESCRIPTION

udi_debug_printf Output a debugging message
#include <udi.h>

void udi_debug_printf (
const char * format

);

format is the format string, which controls the formatting of the output
string, as described fardi_snprintf on page 20-11.

are the remaining arguments, which provide the values used for
the formatting codes.

The udi_debug_printf function is intended for use in driver debugging,
as a simplified alternative to the pair wdi_snprintf and

udi_trace_write , In cases where the output is not needed in production
environments. It is expected thadi_debug_printf calls would typically
not appear in a (compiled) production driver.

Where required by this or other UDI specifications to trace or log events,
drivers must usedi_trace write or udi_log_write instead of
udi_debug_printf , sinceudi_debug_printf may be a no-op in some
environments. Use afdi_debug_printf may impair driver or system
performance.

Environments may choose to ignore any or all callsdiodebug_printf

Some environments may have different operational modes (e.g. debug mode
vs. non-debug mode) that traati_debug_printf differently.

Environments intended to facilitate driver debugging should include at least an
option to enable output fromdi_debug_printf calls. All environments

must at least provide thedi_debug_printf function, even if it does

nothing.

Output fromudi_debug_printf , if any, will be sent to an environment
implementation-defined device, file, or application. Newline (\n’) characters
in the format string or any string or character arguments will be translated to
an appropriate end of line character(s); other control characters must not be
used. Output from each call tmli_debug_printf may be truncated to 99
bytes of text. Note that if the output is truncated, any terminating newline
character may have been discarded.

UDI Core Specification - Version 1.01 - 2/2/01 18-5
Section 3: Core Services

udi_debug_printf Debugging Services

18-6 UDI Core Specification - Version 1.01 - 2/2/01
Section 3: Core Services

proj ecy

“UDI
Index

o

A

abortable 16-7

abortable operation A-1
Abstract Types 9-6

abstract types 9-1

anchored channel A-1
asynchronous service call A-1

asynchronous service calls 11-1, 11-4

attributes 15-1

B
bind channel A-1
bind process A-1
binding A-1
Bindings
for Instance Attributes 25-2
for Trace Events 25-4
for Transfer Constraints 25-2
buffer 9-13, A-1
buffer handle A-1
Buffer Recovery 13-13
buffer tag A-1
bus bindings 8-1

C
callback 4-4, A-1
callee side 4-4
caller side 4-4
channel A-2
channel endpoint 4-2
definition 4-2
ops vector 4-2
channel context 16-1, A-2
channel event indication 16-1
channel handle A-2
channel operation A-2

channel operation entry point 4-4
channel operation invocation 4-4
channel operations 4-4, 11-4
channel operations vector A-2
channels 16-1

child driver instance A-2

client A-2

common terms 3-1

common trace event 17-2
communications channel A-2
completion operation A-2

control block 9-13, A-2

control block groups 5-3

control block index 9-6

custom metalanguages 23-1

D

destructive diagnostic request A-3

device instance
definition 4-1
Directed Enumeration 24-15
directive terms 3-1
driver endianness 8-2
driver entry points 4-4
driver execution
per-instance 4-2
driver instance
definition 4-1
per-instance state 4-1
driver instance attributes 15-1
driver modules
definition 4-1
module property 4-1
primary module 4-1
secondary modules 4-1
driver-specific trace event 17-2

UDI Core Specification - Version 1.01 - 2/2/01

X-1

Index

E

enumeration 6-3
enumeration attributes 6-3
Enumeration, Directed 24-15
exception operation A-3
external mapper A-3

F

Filter Attributes 25-3
fundamental data types 33-1
Fundamental Types 9-1

G
generic pointers 9-2

H
handle A-3

I

IMC A-3

implicit synchronization A-3
initiator 16-9, A-3

instance 4-1
instance-independence 4-2
internal bind channel 10-8
internal bind channels 24-3
internal metalanguage A-3
interrupt region 4-3

ISO C 9-2

L

line terminator 30-3

list head element 21-2
location-independence 4-2
logical buffer A-3

loose end A-3

loose ends 9-10

M
MA A-3
macros

implementation-dependent 33-1

definition 33-3
Management Agent 24-1, A-3

management channel A-3

mapper A-3

marshalling A-4

MEI A-4

metalanguage 4-2, 8-1, A-4
metalanguage index 9-7

metalanguage library 30-2
metalanguage-selectable trace event 17-2
metalanguage-specific trace events 17-2
module A-4

modules 30-1

movable memory 5-2

N

non-transferable handle A-4
NULL 9-2

null handle 9-8

O

opaque handle A-4
opague handles 9-8
Opaque Types 9-8
opaque types 9-1
operation A-4

ops index 9-7

orphan drivers 24-2, 30-14

P

parameter marshalling A-4
parent driver instance A-4
placeholder 9-3

posting 24-2

primary region A-4
property declaration 30-4
provider A-4

proxy 23-1

R
recoverable operation A-5
region 16-1, A-5
context 4-2
definition 4-1
multi-region driver 4-2
primary region 4-2

X-2 UDI Core Specification - Version 1.01 - 2/2/01

Index

secondary regions 4-2
single-region driver 4-2
sub-instance 4-1
region attribute A-5
region data 5-5
region data area 10-6, 10-7
region index 9-7
region kill A-5
region-global 5-1
responder 16-9, A-5

S
scratch pointer 5-3
scratch space 5-3, A-5
semi-opaque object A-5
semi-opaque types 9-1, 9-13
service call A-5
service calls 4-4
Specifications
binary-level 33-1
source-level 33-1, 33-2
Specific-Length Types 9-4
specific-length types 9-1
standard metalanguages 23-1
static driver properties 30-1
static properties 6-1, 17-6
structures
fixed binary representation 9-14
hardware-defined 9-14
synchronous service call A-5
synchronous service calls 11-1
system abort A-5

T
target channel A-5
timeout distortion A-6
token 30-3

Trace events 17-2
transferable handle A-6

U
UDI environment
implementations
portability 1-1

statically conformant 1-2

UDI package file 31-2

udi_init_info 6-1

UDI_TREVENT IO_COMPLETED 25-4

UDI_TREVENT _I0_SCHEDULED 25-4

UDI_TREVENT_META_SPECIFIC_1
25-4

UDI_TREVENT_META _SPECIFIC_2
25-4

UDI_TREVENT_META _SPECIFIC_3
25-4

UDI_TREVENT_META_SPECIFIC_4
25-4

UDI_TREVENT_META _SPECIFIC_5
25-4

UDI_VERSION 8-1

udibuild 6-2

udimkpkg 6-2, 30-2

udiprops.txt 6-1, 30-2

udisetup 6-2

URI A-6

utility functions 4-4

\Y
visible fields A-6

w
whitespace 30-3

UDI Core Specification - Version 1.01 - 2/2/01 X-3

Index

X-4

UDI Core Specification - Version 1.01 - 2/2/01

	Copyright Notice
	Acknowledgements
	Abstract
	Table of Contents
	List of Reference Pages by Chapter
	Alphabetical List of Symbols
	Section 1: Overview
	Introductory Material
	1.1 Introduction
	1.2 Scope
	1.3 Normative References
	1.4 Conformance

	Document Organization
	2.1 Overview of UDI Documentation
	2.2 Overview of the UDI Core Specification

	Terminology
	3.1 Introduction
	3.2 Definitions

	Section 2: Architecture
	Execution Model
	4.1 Introduction
	4.2 Driver Object Modules
	4.3 Driver Instances
	4.4 Regions
	4.5 Multi-Module Drivers
	4.6 Channels
	4.7 Driver Execution Environments
	4.8 Function Call Classifications
	4.9 Location Independence
	4.10 Driver Faults/Recovery
	4.11 Metalanguage Model

	Data Model
	5.1 Overview
	5.2 Data Objects
	5.3 Channel Context
	5.4 Transferable Objects
	5.5 Implicit MP Synchronization

	Configuration Model
	6.1 Overview
	6.2 Static Configuration
	6.3 Dynamic Configuration

	Calling Sequence and Naming Conventions
	7.1 Overview
	7.2 Channel Operations
	7.3 Asynchronous Service Calls
	7.4 Channel Operations Vectors
	7.5 Control Block Groups

	Section 3: Core Services
	General Requirements
	8.1 Versioning
	8.2 Header Files
	8.3 C Language Requirements
	8.4 Endianness Requirements

	Fundamental Types
	9.1 Overview
	9.2 Usage of Standard ISO C Data Types and Macros
	9.3 Notation for Implementation-Dependent Types and Constants
	Table 9�1 Placeholder Designators

	9.4 Specific-Length Types
	9.5 Abstract Types
	9.6 Opaque Types
	NAME udi_channel_t
	NAME udi_buf_path_t
	NAME udi_origin_t
	9.7 Semi-Opaque Types
	9.8 Structures Requiring a Fixed Binary Representation
	9.9 Common Derived Types
	NAME udi_status_t
	Table 9�2 Common UDI Status Codes

	NAME udi_layout_t
	Table 9�3 Specific-Length Element Type Codes
	Table 9�4 Abstract Element Type Codes
	Table 9�5 Opaque Handle Element Type Codes
	Table 9�6 Indirect Element Type Codes
	Table 9�7 Nested Element Type Codes

	9.10 Implementation-Dependent Macros
	NAME UDI_HANDLE_IS_NULL
	NAME UDI_HANDLE_ID
	NAME UDI_VA_ARG
	Table 9�8 UDI_VA_ARG Data Type Codes

	Initialization
	10.1 Overview
	10.2 Per-Driver Initialization Structure
	NAME udi_init_info
	NAME udi_primary_init_t
	NAME udi_secondary_init_t
	NAME udi_ops_init_t
	NAME udi_cb_init_t
	NAME udi_cb_select_t
	NAME udi_gcb_init_t
	10.3 Initial Region Data Structures
	NAME udi_init_context_t
	NAME udi_limits_t
	NAME udi_chan_context_t
	NAME udi_child_chan_context_t

	Control Block Management
	11.1 Overview
	11.2 Control Block Service Calls and Macros
	NAME udi_cb_t
	NAME udi_cb_alloc
	NAME udi_cb_alloc_dynamic
	NAME udi_cb_alloc_batch
	NAME udi_cb_free
	NAME UDI_GCB
	NAME UDI_MCB
	NAME udi_cancel

	Memory Management
	12.1 Overview
	12.2 Memory Management Service Calls
	NAME udi_mem_alloc
	NAME udi_mem_free

	Buffer Management
	13.1 Overview
	13.2 Buffer Type
	NAME udi_buf_t
	13.3 Transfer Constraints
	NAME udi_xfer_constraints_t
	13.4 Buffer Management Macros
	NAME UDI_BUF_ALLOC
	NAME UDI_BUF_INSERT
	NAME UDI_BUF_DELETE
	NAME UDI_BUF_DUP
	13.5 Buffer Management Service Calls
	NAME udi_buf_copy
	Table 13�1 Common actions for udi_buf_copy/udi_buf_write arguments

	NAME udi_buf_write
	NAME udi_buf_read
	NAME udi_buf_free
	13.6 Buffer Paths
	NAME udi_buf_best_path
	NAME udi_buf_path_alloc
	NAME udi_buf_path_free
	13.7 Buffer Tags
	NAME udi_tagtype_t
	NAME udi_buf_tag_t
	Table 13�2 Tag structure field usage

	NAME udi_buf_tag_set
	NAME udi_buf_tag_get
	NAME udi_buf_tag_compute
	NAME udi_buf_tag_apply

	Time Management
	14.1 Timer Services
	NAME udi_time_t
	NAME udi_timer_start
	NAME udi_timer_start_repeating
	NAME udi_timer_cancel
	14.2 Timestamp Services
	NAME udi_time_current
	NAME udi_time_between
	NAME udi_time_since

	Instance Attribute Management
	15.1 Overview
	15.2 Instance Attribute Names
	15.3 Persistence of Attributes
	15.4 Classes of Attributes

	15.4.2.1.1 identifier attribute
	15.4.2.1.2 address_locator attribute
	15.4.2.1.3 physical_locator attribute
	15.4.2.1.4 physical_label attribute
	15.4.2.1.5 Generic Enumeration Attribute Example
	Table 15�1 Instance Attribute Classification Table
	15.5 Instance Attribute Services
	NAME udi_instance_attr_type_t
	NAME udi_instance_attr_get
	NAME udi_instance_attr_set
	NAME UDI_INSTANCE_ATTR_DELETE
	NAME udi_instance_attr_list_t
	NAME UDI_ATTR32_SET/GET/INIT

	Inter-Module Communication
	16.1 Overview
	16.2 Service Calls
	NAME udi_channel_anchor
	NAME udi_channel_spawn
	NAME udi_channel_set_context
	NAME udi_channel_op_abort
	NAME udi_channel_close
	16.3 Channel Event Indication Operation
	NAME udi_channel_event_cb_t
	NAME udi_channel_event_ind
	NAME udi_channel_event_complete

	Tracing and Logging
	17.1 Overview
	17.2 Tracing and Logging Service Calls
	NAME udi_trevent_t
	NAME udi_trace_write
	NAME udi_log_write

	Debugging Services
	18.1 Overview
	18.2 Debugging Service Calls
	NAME udi_assert
	NAME udi_debug_break
	NAME udi_debug_printf

	Index

