
Introduction to UDI
Version 1.0

Uniform Driver Interface

http://www.project-UDI.org

Technical White Paper

http://www.project-UDI.org

Introduction to UDI

Introduction to UDI - Version 1.0 - 8/31/99 i

The Uniform Driver Interface (UDI) allows device drivers to be portable across both hardware
platforms and operating systems without any changes to the driver source. With the participation
of multiple operating system (OS), platform and device hardware vendors, UDI is the first
interface that is likely to achieve such portability on a wide scale. UDI provides an encapsulating
environment for drivers with well-defined interfaces which isolate drivers from OS policies and
from platform and I/O bus dependencies. This allows driver development to be totally independent
of OS development. In addition, the UDI architecture insulates drivers from platform specifics
such as byte-ordering, DMA implications, multi-processing, interrupt implementations and I/O
bus topologies. The formal UDI specifications are currently available from the Project UDI web
page (http://www.project-UDI.org).

Abstract

http://www.project-UDI.org

Preface

ii Introduction to UDI - Version 1.0 - 8/31/99
UDI Technical White Paper: Preface

Copyright Notice
Copyright © 1999 Adaptec, Inc; Compaq Computer Corporation; Hewlett-Packard Company;
International Business Machines Corporation; Interphase Corporation; Lockheed Martin
Corporation; The Santa Cruz Operation, Inc; SBS Technologies, Inc; Sun Microsystems
(“copyright holders”). All Rights Reserved.

This document and other documents on the Project UDI web site (www.project-UDI.org) are
provided by the copyright holders under the following license. By obtaining, using and/or copying this
document, or the Project UDI document from which this statement is linked, you agree that you have
read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the Project UDI document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby
granted, provided that you include all of the following on ALL copies of the document, or portions
thereof, that you use:

1. A link or URI to the original Project UDI document.

2. The pre-existing copyright notice of the original author, or, if it doesn’t exist, a Project
UDI copyright notice of the form shown above.

3. If it exists, the STATUS of the Project UDI document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The names and trademarks of copyright holders may NOT be used in advertising or publicity pertaining
to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

http://www.project-UDI.org

Introduction to UDI - Version 1.0 - 9/7/99 iii

Table of Contents

Abstract ... i
Copyright Notice ..ii
Table of Contents...iii

1 Introduction to UDI ...1
1.1 Introduction ..1
1.2 The UDI Advantage ...1
1.3 UDI Functional Requirements ...3
1.4 UDI Driver Types ..4

1.4.1 Device Types ..4
1.4.2 UDI Drivers ..5

1.5 UDI Documents ...6
1.6 Packaging and Distribution ..6

2 UDI Concepts ...7
2.1 Overview ..7
2.2 The UDI Model ..8

2.2.1 UDI Driver Organization ..8
2.2.1.1 Regions ...9

2.2.2 Region Synchronization ..9
2.2.3 Asynchronous Services ...10
2.2.4 Inter-Module Communication ..10

2.2.4.1 Channel Context ...11
2.2.5 Metalanguages ..11
2.2.6 Handles ...12

2.3 Interrupts ..12
2.3.1 Interrupt Roles ..13

2.4 The UDI Non-Blocking Model ..13
2.5 Conclusion ...14

A UDI Functional Requirements ..15

B A Brief History of UDI...19

 Table of Contents

 iv Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Table of Contents

Introduction to UDI - Version 1.0 - 9/7/99 1
UDI Technical White Paper: Introduction

Introduction to UDI 1

1.1 Introduction

Operating systems access I/O devices through the use of device-specific software modules called device
drivers, or simply “drivers”. By limiting interaction between the device driver and the rest of the system
to a well-defined interface, development of device drivers can be undertaken independently from core
operating system development. This is particularly valuable when device drivers are written by
independent companies such as Independent Hardware Vendors (IHVs).

Historically, drivers have needed to be modified for each hardware platform and operating system. This
is becoming a considerable maintenance burden, requiring significant development resources, since the
number of devices and the number of operating systems and platforms is growing dramatically.

The Uniform Driver Interface (UDI) allows drivers to be ported across hardware platforms and across
operating systems without any changes to the driver source code. By providing a single interface which
is identical across all supported platforms and operating systems, UDI allows a single driver to run
unmodified on a wide range of systems. This will result in a significant reduction of the effort required
to develop and maintain device drivers.

UDI provides a common framework for drivers of many different device types (e.g., SCSI HBAs, CD-
ROMs, network interface cards, serial ports, etc.). This makes it easy to write new types of drivers, since
all drivers share a common look and feel. It also allows great flexibility in hardware and software
configurations, since any driver can potentially communicate with any other driver.

1.2 The UDI Advantage

Creating a device driver interface that can be efficiently supported on multiple operating systems and a
wide variety of hardware platforms involves significant challenges. UDI is the first multi-vendor
interface designed for meeting these challenges.

There are many differences among current operating systems that influence the environment for device
drivers and other kernel modules. Some support kernel threads; others do not. Some support preemption;
others do not. Some support dynamically loadable kernel modules; others do not. Variations in memory
management and synchronization models also impinge upon the device driver environment.

Operating system differences will likely increase in the future, as vendors move to support distributed
systems, fault tolerance/isolation, and other advanced features, using technologies such as microkernels,
I/O processors, and user-mode drivers.

The UDI Advantage UDI Intro

2 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Introduction

UDI is operating system neutral. It abstracts OS services and execution environments through a set of
interfaces that are designed to hide differences like those listed above. All OS-specific policy and
mechanisms are kept out of the device driver. This allows UDI to be supported on a wide range of
systems such as traditional OS kernels, client/server LAN OSs, microkernel-based OSs, and distributed
or networked OSs.

Variations in hardware platforms add additional challenges such as:

• Devices may be connected via different I/O buses, some proprietary, on different systems.

• Different systems have different types of caches and buffers in I/O data paths.

• Bus bridges in the path to an I/O device may introduce additional alignment constraints.

• The “endianess” (byte ordering) of an I/O card may be different from the endianess of the
CPU on which the driver is running.

• Some systems access card registers via special I/O instructions; others use memory-mapped
I/O.

• Interrupt notification and masking mechanisms differ greatly from system to system.

UDI is platform neutral. It abstracts all Programmed I/O (PIO), Direct Memory Access (DMA), and
interrupt handling through a set of interfaces that hide the variations listed above.

UDI drivers are written in ISO standard C and do not use any compiler-specific extensions. Thus, a
single driver source works regardless of compiler, operating system, or hardware platform.

UDI helps IHVs:

• Reduced number of driver variants means lower development and maintenance costs.

• Implicit synchronization and other techniques reduce driver complexity.

• High-performance design features such as resource recycling and parallelism are easy to
achieve with UDI.

UDI also helps operating system vendors:

• OS vendors can utilize drivers not directly targeted for their OS.

• OS vendors can more easily take advantage of IHV-provided solutions.

• UDI allows a high degree of flexibility in OS implementation.

• UDI allows high-performance implementations (such as copy-avoidance and resource
recycling) while retaining support for a large number of devices via standardized drivers.

UDI provides location independence for drivers. This allows drivers to be written without
consideration for where the code must operate (e.g., kernel, application, intra-OS, interrupt stack, I/O
front end). Code regions may even be divided among multiple nodes in a cluster, if desired.

UDI imposes restrictions on shared memory which, by design, prevent the driver from affecting other
portions of the system. This allows the system to isolate and effectively “firewall” the driver code from
the remainder of the OS, improving reliability and debuggability.

UDI scales well across all target platforms, from the low-end such as embedded systems and personal
computers to high-end servers and multi-user MP platforms.

Introduction to UDI - Version 1.0 - 9/7/99 3
UDI Technical White Paper: Introduction

UDI Intro UDI Functional Requirements

UDI provides strict versioning that allows evolution of the interfaces while preserving binary
compatibility of existing drivers.

UDI facilitates rapid deployment of new I/O technologies across a broad range of systems and
architectures.

1.3 UDI Functional Requirements

The UDI design is based on a set of functional requirements established by a multi-vendor working
group, comprised of several systems and IHV vendors. These requirements are documented in
AppendixA and define the design objectives for the UDI environment as described in this
documentation.

UDI Driver Types UDI Intro

4 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Introduction

1.4 UDI Driver Types

In UDI terminology, a hardware device driver is any software module that controls a piece of hardware
in the I/O path (including bus-bridges, host bus adapters, and attached devices). Device drivers also
include software-only drivers that do not control any hardware. One type of software-only driver is a
pseudo-device driver, such as a RAM disk, which presents the appearance of a hardware device driver,
but operates entirely in software.

1.4.1 Device Types

The interface to a UDI driver is specific to the type of device controlled by the driver (or, in the case of
software-only drivers, the device model presented by the driver). This allows the interface to be strongly
typed and tuned to the needs of a particular device model. All UDI drivers, therefore, can be viewed as
being associated with a type of device (see Figure 1-1). Some of the device types expected to be
supported by UDI include:

• Storage (disk, tape, CD-ROM, etc.)

• SCSI

Filters
(Filters data in a communication path)

Multiplexers
(Provides N-to-M communication paths)

Mappers
(Converts requests from one device type to another)

UDI Drivers

Non-blocking execution
Inter-module Communication
Error Handling
Clean-up

PIO Abstraction
Pseudo-
Drivers
(No hardware)

SCSI Driver

Pointer Driver

Network Driver

Other Driver Types...

Figure 1-1 UDI Driver Classification

Introduction to UDI - Version 1.0 - 9/7/99 5
UDI Technical White Paper: Introduction

UDI Intro UDI Driver Types

• Network Packet Transceiver

• USB

• Fibre Channel

• Parallel

• Serial

• Pointing Device

• Keyboard

• Bus Bridge (including interrupt controllers)

1.4.2 UDI Drivers

As seen in Figure 1-1, UDI supports a number of different types of drivers operating simultaneously.
Some drivers will operate completely independently of other drivers and some drivers are “stacked” with
other drivers to provide more versatile functionality. A UDI Environment can comprise an entire I/O
subsystem rather than simply a shell or wrapper placed around an individual driver implementation.
Within such an environment, there are several different classifications of these drivers:

Drivers:
Drivers are a general term typically used to refer to a software module that is
installed into the system to extend the capabilities of that system, typically in the
area of I/O activities. UDI drivers may take several different forms and may or may
not control actual hardware, but each is essentially a service provider module that
can be supplied by IHV’s or other third parties and loaded into the UDI
environment.

Libraries:
Some IHV or third-party distributions do not supply a complete service module but
instead supply a component that might be used by multiple service modules of the
same or different types. These are supplied within UDI as Libraries, which may be
combined with Drivers to provide the complete functionality. One example would
be a library that provides PPP protocol functionality, which could be combined with
a Driver for a Serial Adapter to provide Network Functionality.

Filters:
Filters are software-only drivers that can be “stacked” on top of other drivers,
providing a filter on data passing to/from that driver. An example of a filter would
be a disk compression driver.

Multiplexers:
Multiplexers, like filters, are software-only drivers. Unlike filters, however, they
may be connected between more than two other drivers. Multiplexers take incoming
data on one of their connections and route it to another one of their connections.
Multiplexers are typically used in implementing network protocols.

UDI Documents UDI Intro

6 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Introduction

Mappers:
Mappers are software-only drivers that map one device type to another. For
example, a SCSI-to-FC mapper would map SCSI requests to FC (Fibre Channel)
requests, allowing a low-level Fibre Channel driver to be used to access SCSI
devices on the fibre.

1.5 UDI Documents

The UDI documents have been divided into a sequence of books by functional area. There are two main
groups: informative books, such as this White Paper, which help you to understand the UDI technology
but do not provide definitive interface specifications; and normative books, which are the set of UDI
Specifications, that provide the official definitions of the UDI interfaces.

This book, which is the initial book in the sequence, describes the motivations behind the creation of a
Uniform Driver Interface (UDI), introduces the basic concepts and terminology used in UDI, and gives
an overview of the UDI architecture. It enumerates the benefits of UDI for both operating system
providers and I/O hardware vendors. This book stands on its own, but may also be used as an
introduction to the UDI Specifications.

The remaining books are described in the Document Organization chapter of the UDI Core
Specification.

1.6 Packaging and Distribution

The UDI specification describes the source-level interfaces necessary to write a driver. In order to get
the driver onto a target system, the driver source or compiled binary, combined with static configuration
information, must be grouped into a single bundle, or package, for distribution. UDI defines a standard
packaging format for UDI drivers and libraries, so they can be distributed to any UDI-compliant system
and installed using a standard UDI command called “udisetup ”.

The UDI package format supports:

• Multiple media types to allow for systems that do not support particular media types.

• Well-accepted filesystem formats on all media types.

• Multiple UDI drivers on a particular piece of media.

• Other files, in arbitrary directory structure, on the same media as UDI drivers.

• Encapsulation in a file, for network distribution.

Note – UDI packages do not contain any OS-specific files, such as UNIX shell scripts or DOS .BAT
files.

Introduction to UDI - Version 1.0 - 9/7/99 7
UDI Technical White Paper: Concepts

UDI Concepts 2

2.1 Overview

The UDI environment is a relatively autonomous, low level, I/O subsystem. It surrounds conforming
device driver modules, providing them with a consistent interface to and from the host operating system
and among cooperating driver modules, as shown in Figure 2-1.

.

The environment includes interfaces for configuration, diagnostics, error handling, interrupts, system
services and hardware access. UDI thus creates a completely specified and encapsulated environment in
which UDI-compliant drivers live. Therefore, UDI drivers are not influenced by OS-specific factors; all
those details are hidden within each UDI implementation on each individual OS. This is why UDI-
compliant drivers are transparently portable: they are truly OS-neutral.

UDI device drivers exchange information among one another and with the environment through a non-
blocking, strongly-typed, remoteable procedural interface. These interfaces are designed to span thread
and/or domain boundaries and to provide driver synchronization.

Application Programs

Operating System

Hardware I/O Interface

Interfaces

Computer CPU and I/O Hardware

I/O Requests

Interrupts

UDI Environment

System I/O
Configuration
Diagnostics
Error Handling
System Services
Interrupts

Portable
Device

Figure 2-1 UDI Defines All Driver Interfaces

Drivers

The UDI Model UDI Concepts

8 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Concepts

The following discussion of UDI fundamentals is key to understanding why UDI-compliant drivers are
completely source-code portable between operating systems.

Figure 2-2 shows an abstract view of how an application would access a hardware device through a UDI
driver. Applications access I/O services through OS requests (such as system calls); these requests are
mapped to standard UDI operation calls and passed to the UDI driver by an external mapper, or directly
as part of the OS I/O subsystem. An external mapper acts as a UDI driver on one side and an OS-
specific driver on the other side. The UDI driver then accesses the actual hardware device through UDI
service calls. Interrupts, as well as I/O requests, are also delivered to the driver via UDI operations.

2.2 The UDI Model

2.2.1 UDI Driver Organization

UDI drivers can be connected together in any way appropriate to their semantics. This allows the UDI
driver organization to mirror the hierarchical hardware organization. Each I/O hardware component has
a corresponding software device driver instance.

When we describe the relationship between two communicating driver instances, we refer to one driver
as the child and one as the parent. A child driver accesses its device through the parent driver. In a
hierarchical organization this means the parent driver is the one closest to the root of the device tree.

Figure 2-3 shows a simplified example of a possible system configuration. It illustrates how a collection
of UDI device drivers might be organized to reflect the I/O hardware subsystem they support. Here an
I/O interconnect adapter is attached to the system’s CPU/Memory bus. It in turn supports a base I/O
adapter with a monitor and a keyboard, and a SCSI bus adapter with two disks and a tape.

UDI

OS Requests

 Applications

System Hardware

UDI Services

Interrupts

UDI Driver

OS - to - UDI External Mapper

Standard UDI Operations

Hardware Access

Figure 2-2 User view of UDI driver isolation

Introduction to UDI - Version 1.0 - 9/7/99 9
UDI Technical White Paper: Concepts

UDI Concepts The UDI Model

Each UDI driver may be associated with multiple instances of its corresponding device, resulting in
multiple instances of the driver. These instances have unique data but may share the same code.

2.2.1.1 Regions

Driver instances may be further divided into regions. Drivers can specify different attributes for different
regions. These attributes allow the environment to determine appropriate priorities and contexts (e.g.
user, kernel, or interrupt) for each region. For example, a driver’s interrupt handler might run in kernel
mode at interrupt priority while other parts of the driver run in user space.

Every driver instance starts with one region. From this region, drivers may optionally create additional
regions. With multiple regions, drivers can obtain increased parallelism, as described in Region
Synchronization.

2.2.2 Region Synchronization

When multiple operations are invoked for a particular driver instance, something needs to prevent them
from interfering with each other. Since the operations may operate on the same set of driver data, this
access must be serialized. UDI accomplishes this by serializing all operations that have access to the
same data. That is, operation invocations that occur while an operation is already in progress are
deferred until the first operation completes.

UDI Environment

HOST OPERATING SYSTEM

I/O HARDWARE

I/O SOFTWARE

Base I/O
 Adapter
Driver

Instance

SCSI
 Adapter
Driver

Instance

I/O Bus Adapter
 Driver Instance

I/O Bus Adapter

Base I/O
Adapter

SCSI
Adapter

Monitor Keyboard Disk Disk Tape

Disk
 Driver*
Instance

Disk
 Driver*
Instance

Keyboard
Driver

Instance

Monitor
Driver

Instance

CPU, Memory and System Bus

Tape
Driver

Instance

Figure 2-3 Example of Hierarchical Driver Organization

Parent

Child

* Multiple instances of the same driver may share the same driver code.

The UDI Model UDI Concepts

10 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Concepts

The unit of serialization in UDI is a region. Each region provides the execution context for operations
invoked on a set of channels. All channel operations within a region are serialized with respect to each
other. Operations in different regions may be executed concurrently. Drivers can control their degree of
parallelism by creating multiple regions per instance.

All driver data is contained within a region, and may only be accessed from channel operations running
within that region. Since these operations are serialized, access to all region data is implicitly
synchronized. Driver code contains no explicit synchronization primitives. Data may not be directly
shared between regions because the access to that data would not be synchronized or controlled in any
manner; instead, inter-module communications techniques must be used to explicitly transfer ownership
of data objects or values between regions.

The region serialization mechanism handles single-processor concurrency cases, such as interrupts and
preemption, as well as multi-processor concurrency.

2.2.3 Asynchronous Services

To prevent the execution context of one operation within a region from excessively blocking the
handling of other operations for that region or for the calling thread, the service requests that a region
makes to the environment are asynchronous (also referred to as “non-blocking”). This means that when
a region’s code calls a UDI environment service function, execution control is returned to the caller
without necessarily having provided the requested service (e.g. memory allocation). This allows the
region to continue executing for the current or other operations without needing to wait until the
environment service completes. When the environment service is finally completed, the environment
schedules a callback to run in the execution context of the region and the callback supplies the requested
service. If the resource was available immediately, the service function can invoke the callback function
immediately, before returning to the calling driver code.

2.2.4 Inter-Module Communication

To pass data object ownership and request operations between UDI driver modules UDI defines
bidirectional communication channels. These channels are established by a configuration process
according to the required driver organization. Channels may be used to interconnect any pair of modules
in any topology appropriate to the semantics of the modules involved. There may be multiple
communication channels active for each module, each of which may communicate with a different target
module.

For example, a module that can support multiple channels to several child modules may redirect those
communications to one or more parent modules. This type of functionality is typical of a multiplexer.

Each channel supports a set of channel operations (i.e. function calls) that a region may issue to its local
end of the channel. These operations result in scheduling the execution of registered operations handlers
in the region at the other end of the channel. Although the environment may implement a channel
operation as a very thin veil between the two regions, the specification requires that the two regions
remain unaware of the implementation details of the other region. Because of this separation, it is
possible for a channel to cross a domain boundary, thereby allowing two regions to operate in a
relatively asynchronous manner as needed. To support this, channel operations are non-blocking, in that
any information or data that is requested via the channel operation is provided by a separate operation in
the other direction rather than by waiting for completion of the initial operation to return the
information.

Introduction to UDI - Version 1.0 - 9/7/99 11
UDI Technical White Paper: Concepts

UDI Concepts The UDI Model

Domain boundaries may represent the division between kernel space and application space, or they may
represent multiple machines in a distributed cluster environment. The driver itself and its
implementation remains unware of the level of domain distribution (if any).

In many current operating systems, device drivers export well-known entry points to the OS in order to
establish communication. In UDI drivers, the only global information provided is a set of configuration
structures that register the functions used to handle channel operations (called an channel ops vectors)
and other structures that provide general configuration information about the driver. All execution of
driver code is done in the context of a specific region as a result of a channel operation and therefore
there are no “global entry points” or other implementation requirements for UDI drivers.

2.2.4.1 Channel Context

The channel context associated with each endpoint allows the driver entry points to find data and state
that is specific to the particular channel on which an operation was invoked. Multiple channels may
share the same ops vector, but they may each have a different channel context. The environment
automatically inserts the appropriate channel context pointer as part of a parameter to each channel
operation entry point invoked.

2.2.5 Metalanguages

Each UDI communication channel is associated with a specific type of activity and supports a specific
set of strongly typed operations. For example, a SCSI HBA driver would communicate with its child via
a channel that supports the standard UDI SCSI operations.

Specific channel operations are defined in the context of a set of operations that work together to achieve
some common goal, such as to communicate SCSI information among various SCSI drivers. This set of
channel operations, along with its rules of operation and related data structures (e.g., ops vector types) is
called a metalanguage.

Module A’s Region Module B’s Region

communication
channelchannel

channel handle

channel handle

Channel Context

channel endpoints

ops (entry)
vector

channel
ops (entry)
vector

Channel Context

Figure 2-4 Inter-Module Communication

Interrupts UDI Concepts

12 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Concepts

A metalanguage defines the communication paradigm used by two or more cooperating modules,
including any required channels and their associated channel operations. Metalanguages form the basis
for supporting specific device types. UDI provides metalanguages that are analogous to SCSI CAM,
DLPI, ODI, and other similar existing interfaces. A single driver may speak multiple metalanguages as
appropriate to the driver’s functionality.

The UDI specification defines several standard metalanguages and can be easily extended by Project
UDI, IHVs, or other third parties to implement new metalanguages. For example, the Univeral Serial
Bus Driver Interface (OpenUSBDI) Working Group has taken this approach to defining how USB
devices should be supported in an OS-neutral fashion.

2.2.6 Handles

UDI drivers access hardware and software components through opaque handles provided by the
environment. Opaque handles prevent the driver from directly accessing the internals of an object and
therefore allow the environment flexibility in the implementation and location of the actual objects. The
use of handles allows the driver to perform generic, portable actions which rely on the environment to
provide specific hardware or software functionality.

The handle also provides a mechanism for implementation-specific performance optimizations in the
environment. Since the handle can be allocated during early initialization processes, it can be pre-loaded
with information regarding desired optimizations, removing run-time decisions from the performance
path of the driver. UDI uses handles or related constructs for many objects or operations, including: PIO,
DMA, and buffer handling.

For example, a driver wishing to access device memory would obtain a PIO (Programmed I/O) handle to
that memory. It would then issue PIO requests to the environment using that handle to read from or write
to that memory. This allows the environment to handle platform-related issues such as byte-ordering,
intermediary caches, requirements for bus bridges, etc.

2.3 Interrupts

In most architectures, mechanisms are provided for I/O devices to send asynchronous notification of
events to their corresponding device driver software. Typically these are called interrupts.

Classic interrupts carry essentially one bit of information (with respect to a particular device): the fact
that an event occurred. The device driver software is then responsible for reading status information
provided by the device to find out more details about the event. Other architectures allow devices to send
additional information along with the interrupt. This can range from a small fixed number of bits to a
full-blown variable-length message. UDI interrupt handling is designed to work across this range of
architectures.

I/O devices commonly generate interrupts for the following reasons:

• An I/O operation completes and the driver needs to be notified.

• An asynchronous event occurs that requires the attention of the processor.

• An error condition is detected that requires corrective action by the processor.

UDI provides for interrupt handling as part of its Bus Bridge Metalanguage. This metalanguage covers
registration and de-registration of interrupt handlers, as well as delivery of the events themselves.

Introduction to UDI - Version 1.0 - 9/7/99 13
UDI Technical White Paper: Concepts

UDI Concepts The UDI Non-Blocking Model

Interrupts are initially fielded, of necessity, by the operating system’s first-level interrupt handler, which
hands appropriate I/O interrupts over to the UDI environment. The environment maps interrupts into
procedure calls to the appropriate driver channel operations for the driver closest to the processor-
memory interconnect (PMI). The interrupt definition is hierarchical, in that interrupt notification may be
forwarded through one or more bridge drivers before being handled by the driver for the ultimate
interrupting device.

The interrupt handling is then scheduled in the execution context of a driver’s region as a result of the
invocation of the channel operation for that driver. This initial region context is responsible for
acknowledging the hardware device’s interrupt to terminate the interrupt cycle. This interrupt region
then typically issues a channel operation to the driver’s primary region to further process the event that
caused the device to interrupt. Optionally the driver may provide a list of PIO operations that are to be
performed when an interrupt is fielded by the first-level interrupt handler, removing the need for the
interrupt region.

2.3.1 Interrupt Roles

The UDI interrupt handling model is based on a pair of agents: an interrupt handler, which is prepared
to receive notification of an interrupt event and provide the device-specific response; and an interrupt
dispatcher, which is responsible for reading hardware state (typically from an interrupt controller) to
determine which of a set of events (interrupt requests) occurred and then sending an event notification to
the appropriate interrupt handler(s).

This model allows for cascaded interrupt dispatching, in which an interrupt handler is also an interrupt
dispatcher. This allows UDI to support hardware with interrupt delivery cascaded through multiple
interrupt controllers, bus bridges, and multi-function devices. Each level of interrupt handler understands
a particular (interrupt delivery) device and knows the set of sub-devices that can deliver interrupts to that
device. It reads out information from the device it controls and uses it to dispatch the handler for the
appropriate sub-device, which may in turn read out information from its device and dispatch a sub-
device handler.

Typically, the first level interrupt dispatcher will be part of the environment rather than strictly a UDI
driver, but it will look just like a UDI interrupt dispatcher driver to the interrupt handler, via the channel
operations for its channel, in much the same fashion as with other metalanguage mappers.

2.4 The UDI Non-Blocking Model

One of the key aspects of the UDI design is the capability of supporting many different OS and platform
architectures while providing a high-performance I/O subsystem. One of the ways UDI achieves this is
with its non-blocking execution model. Under this model, no driver code or service calls made by the
driver may sleep or otherwise block. Instead, operations that need to wait (e.g., to obtain resources) are
queued as described in Section 2.2.3, “Asynchronous Services”; when the needed condition is satisfied,
the driver is re-entered via a callback function to continue the operation.

The non-blocking model allows the environment to efficiently support multiple I/O operations while
preventing resource availability from affecting the thread of execution. It also minimizes dependencies
on underlying OS mechanisms (and differences therein) that would be required to support blocking.

Applications that directly interface to device drivers using the traditional blocking system-call model can
be supported by using an external mapper that provides this blocking effect for the application while
interacting with UDI via non-blocking operations.

Conclusion UDI Concepts

14 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: Concepts

2.5 Conclusion

UDI provides a portable, flexible, fully functional environment for device driver implementation,
through a uniform set of platform- and operating system-neutral interfaces. These interfaces define paths
for operating system access to device drivers for configuration, diagnostics, I/O requests and interrupt
handling. They define paths for device driver access to system services, related device drivers, and
underlying I/O hardware.

The implicit synchronization resulting from UDI’s region-based implementation facilitates the design of
drivers that are safe in multi-processor environments without sacrificing performance or resource use in
non-preemptive, uni-processor systems.

This paper has shown how UDI allows the flexible organization of its simple building blocks (channels
and regions) to build both simple and sophisticated device drivers. UDI allows the configuration process
to combine driver instances into a hierarchical representation of the underlying hardware.

The UDI architecture allows developers to support a device with a single driver, applicable across the
family of systems supporting the UDI environment. This will, in turn, greatly reduce the engineering
cost and accelerate the availability of I/O solutions for those systems.

Introduction to UDI - Version 1.0 - 8/29/99 15
UDI Technical White Paper: Functional Requirements

UDI Functional Requirements A

1. OS-Neutral: The interfaces exposed to drivers must allow the drivers to be OS-neutral. That is,
there should be no dependence on OS-specific features, behaviors, or execution
models.

1.1. The architecture must keep policy decisions out of the driver, since policies may
vary from OS to OS and may change over time. For example, drivers should
communicate errors to the OS, and let the OS determine the appropriate action to
take, rather than having the driver directly abend (panic) the server.

1.2. Driver interfaces must be well defined such that there is no ambiguity in method of
implementation.

1.3. The architecture must not preclude coexistence with non-conflicting native drivers
on each OS.

2. Simple Drivers: The IHV driver interface must be lightweight making it easy for developers to
create and maintain code and to port code to other hardware platforms.

2.1. The driver for a given device should be the same whether the device is a core I/O
device, a standalone card, or part of a multi-function card.

2.2. A single driver must be able to function with reasonable performance in both
uniprocessor and multiprocessor systems without modification.

2.3. The architecture must hide complexities of multi-processor systems and
asynchronous event synchronization from the driver.

2.4. The architecture must allow for driver implementations which focus primarily on
the hardware specifics of the device with minimal driver code devoted for
infrastructure functions such as configuration.

3. Support for Multiple Device Types:
The architecture must support drivers for multiple device types, such as network
adapters, mass storage adapters and attached devices (disk, tape, CD-ROM, etc.),
and serial ports.

3.1. As much as possible, services whose semantics are not device specific should be
exposed to drivers as generic interfaces available to drivers for all device types.
The framework should appear as a single unified framework.

3.2. Drivers must be able to be connected together in any way appropriate to their
semantics. This allows for stacked drivers, filters, and multiplexors.

Requirements

16 Introduction to UDI - Version 1.0 - 8/29/99
UDI Technical White Paper: Functional Requirements

3.3. The architecture must be extensible to dynamically support new devices (HBA and
peripherals) and future storage requirements.

3.4. The architecture must allow exploitation of the capabilities of new hardware
technology, such as Fibre Channel, SSA, Universal Serial Bus (USB), Plug-and-
Play, SCI or MCS based distributed systems, and I/O processors.

4. Platform and I/O Bus Abstraction:
The architecture must provide an abstraction layer for access to hardware and bus
interfaces which allows drivers to be portable across a wide range of platforms.

4.1. The environment must be able to compensate for any system architecture
differences, including byte ordering, memory management, and memory alignment.

4.2. The environment must be able to simultaneously support multiple I/O buses,
potentially of different types, including hierarchical bus organizations.

4.3. The interfaces exposed to drivers must be supportable on platforms on which some
sizes of programmed I/O transactions may be non-atomic.

4.3. The programmed I/O interfaces exposed to drivers must be supportable on all
platforms, regardless of the characteristics of I/O bus transactions, such as
atomicity.

4.4. The interfaces exposed to drivers must be supportable on platforms which require
explicit cache flushing or memory ordering for DMA or programmed I/O
transactions.

4.5. The interfaces exposed to drivers must be supportable on platforms which have
different physical address spaces for I/O cards than for CPU access to main
memory. It must support platforms which map these spaces via map registers and
those which use static mappings.

4.6. The DMA interfaces exposed to drivers allow for a variety of hardware
implementations, including shared DMA channels, physical DMA bus mastering,
and virtual DMA.

4.7. The architecture must enable ease of portability between processors of different
word size.

4.8. The architecture must allow for support of hot docking and power management.

5. Location-Independence:
Drivers must be location-independent.

5.1. If supported by a particular environment implementation, drivers must be able to be
run on host CPUs, I/O Processors, or remote nodes in a network with no change to
the driver.

5.2. The architecture must allow for drivers to be designed such that different pieces of
a driver can be split between different locations and domains; e.g., a driver
implementation in which its interrupt handler is separated from the rest of the
driver.

Introduction to UDI - Version 1.0 - 8/29/99 17
UDI Technical White Paper: Functional Requirements

Requirements

6. Flexible OS Implementation:
The architecture must allow for flexibility of OS implementation.

6.1. The architecture must not preclude (though specific implementations may not
support) running drivers in user mode.

6.2. The architecture must not preclude (though specific implementations may not
support) having driver code and/or data be pageable, even while the driver is
running.

6.3. The environment must be implementable on embedded systems.

6.4. The environment must be implementable with minimal memory usage. In
particular, the architecture must not require the use of multiple execution contexts
(i.e. threads) with separate stacks.

6.5. The architecture must allow for implementations with varying degrees of trust in
drivers, from completely trusted in-kernel drivers to fully-isolated user-mode
drivers. The drivers themselves must not be required to change as a function of
trust level.

7. Maximize I/O Performance:
Within its framework, the architecture must do all it can to maximize I/O
performance.

7.1. The architecture must perform efficiently in a local (host CPU) environment.

7.2. The architecture must scale well in both directions, from low-end (preferably
including embedded) systems to large MP and/or clustered servers, as well as large-
scale distributed systems.

7.3. The architecture must enable optimal performance through mechanisms such as
copy-avoidance and recycling of memory (allocation avoidance).

8. Source and Binary Compatibility:
The interfaces exported to drivers must allow for source and binary compatibility
between systems, where appropriate.

8.1. Driver source must not require any change in order to be compiled for any target
OS or platform.

8.2. Drivers must not be required to be recompiled to run on different versions of an OS
on the same machine.

8.3. Drivers must not be required to be recompiled to run on different OSes which
support the same ISA (Instruction Set Architecture), binary file format, and calling
conventions.

Requirements

18 Introduction to UDI - Version 1.0 - 8/29/99
UDI Technical White Paper: Functional Requirements

9. Versioning Control:
The architecture must facilitate driver maintenance and compliance.

9.1. The interfaces exported to drivers must be strongly typed.

9.2. Drivers must indicate the version of the specification to which they conform, so
that the environment can enforce conformance to the specific set of interfaces
documented in the appropriate specification.

9.3. The environment must be able to simultaneously support drivers which conform to
multiple versions of the specification.

10. Resource Allocation:
The architecture must provide a mechanism for dynamic allocation and reallocation
of hardware and system resources (interrupts, I/O ports, DMA channels, memory,
etc.)

10.1. The environment must be able to prevent resource allocation deadlocks.

11. Diagnostics, Monitoring, Tuning:
The architecture must provide hooks for standardized diagnostics, monitoring, and
tuning capabilities of a channel.

12. Inter-Driver Communication:
The architecture must provide a mechanism for asynchronous communication
between drivers and between drivers and the environment.

13. Timer Services:
The architecture must provide a mechanism for time-based driver callbacks.

Introduction to UDI - Version 1.0 - 9/7/99 19
UDI Technical White Paper: History

A Brief History of UDI B

UDI began in 1993 as an offshoot of an industry standard system I/O bus design (a system-level bus ala
PCI but driven by the needs of workstation and server vendors). The motivation was simple: having an
industry standard bus with industry standard I/O cards, chips, etc. increases the volume and lowers the
costs for getting the associated hardware into systems, but in order to use those cards and devices you
also need corresponding device drivers. So in the process of designing an industry standard bus, the
group also considered the software portion of the equation and looked at what it would take to provide
industry standard drivers.

The offshoot driver effort was originally called the Common Device Driver Environment (CDDE). The
bus effort didn’t go forward but several people involved in the CDDE effort continued pursuing the
software issues and developed a strawman document of how the device driver APIs and many of the
basic driver services would be designed. Three people were primarily involved with this initial strawman
development: Mike Wenzel at HP, Richard Arndt at IBM, and Larry Robinson at DEC. By late 1993 the
strawman had been developed and the CDDE working group went inactive, lacking resources or
commitment to take it further at that time.

In 1994 a group within X/Open began looking at what would be required for portable device driver
interfaces, with particular focus on resolving the differences among the various flavors of “DDI/DKI”
driver interfaces in SVR4-based UNIX systems. As a result of this investigation it became apparent that
the differences among the flavors were greater than the similarities (only about 30% of the interfaces
were common), and that resolving some of these differences without redesign or rethinking fundamental
assumptions would lead to additional problems. In the process of doing this, David Kahn at Sun
recommended that the folks involved in the X/Open group consider the CDDE approach to the problem,
which had already considered many of these issues in its basic design.

This led to restarting CDDE in mid-1994 with a larger group of companies and participants including
Adaptec, Apple, DEC, HP, IBM, Interphase, Novell, Sun, and Taligent, along with many other less
actively involved players. The primary focus during the rest of 1994 was to develop functional
requirements and to choose between two proposals as the basis for the CDDE design: the Strawman
from the previous CDDE effort and a competing proposal from Taligent that was based on their own
object-oriented I/O technology using C++. At the end of 1994 the group chose to go with the Strawman
and began specification development based on that in early 1995.

In mid-1995, for various marketing, aesthetic, and perceptual reasons, the name of the driver interface
was changed from CDDE to UDI (Uniform Driver Interface), and the working group became known as
Project UDI. 1995 also saw rapid development of the UDI Specification: proceeding to version 0.50 in
March, 0.60 in July and 0.70 in December. In late 1995, Project UDI hooked up with POSIX, giving a
day and a half presentation to the October quarterly POSIX Conference and forming a POSIX Study
Group. Participation in POSIX also generated additional interest and participation in UDI from
companies such as Lockheed-Martin and from the OSJTF (Open Systems Joint Task Force) of the US
Department Of Defense. However, in the spring of 1996 the Study Group voted to disband for the time

History

 20 Introduction to UDI - Version 1.0 - 9/7/99
UDI Technical White Paper: History

being and allow the Project UDI members to instead concentrate resources on constructing prototypes of
the environment interfaces. While the standardization of UDI within a recognized standards body was
still a goal, it was felt important to complete these implementation-related activities first.

There were three main goals for the prototyping effort: (1) proof-of-concept, (2) feedback into the UDI
specification to make it more robust and real-world-applicable, and (3) providing the foundation for
what could become a reference implementation of the UDI environment, allowing the UDI technology to
be more easily spread to additional OSes and platforms. By mid-1996, Project UDI completed version
0.75 of the UDI Specification, which was designed to be the basis for the prototyping effort. While some
individual companies began the prototyping work at this point, the effort could not begin in earnest until
a coordinated project could be put in place.

The signing of a landmark co-development agreement in December 1996 between eight Project UDI
member companies set the stage for full-scale joint development to begin. 1997 was the year of the
prototype, culminating in December with a successful multi-platform demonstration, with a follow-up
public demonstration at SCO Forum in mid-1998. These demonstrations of the UDI technology showed
a single UDI driver source running on both 32-bit and 64-bit processors and OSes, big and little endian
systems, single and multi-processor systems, x86, Sparc, Alpha, and PA-RISC processors, and systems
with and without software-visible caches, all with no changes to the UDI drivers or special cases to
accommodate the various systems and OSes. OSes demonstrated included Digital Unix, NCR MP-RAS,
HP-UX, SCO UnixWare, and Solaris. UDI drivers included a SCSI Adapter driver from Adaptec and an
Ethernet driver from Interphase.

In 1998 Project UDI focused on getting ready to fast-track through a standards body and updating the
Specification based on prototype implementation experience and getting it ready to be released as a
reference implementation. A lot of good experience and insights were gained from the prototype, which
resulted in significant changes and improvements being done to some of the core architecture.
Languishing somewhat in early 1998 due to outside demands on the Project UDI representatives, UDI
was revitalized in July and August of 1998 with the goal of completing quality 1.0 specifications as soon
as possible. At this point, Intel also joined in support of the effort in recognition of the need to facilitate
the support and adoption of hardware and software standards.

Over the next 12 months, a high-level of intensity was maintained by the core UDI members with
monthly face-to-face meetings for 3-4 days each and significant advancement of the specification. At
this time, key players were Kevin Quick (Interphase), Mark Evenson (Hewlett-Packard), Kurt Gollhardt
(SCO), Mark Bradley (Adaptec), James Smart (Compaq), Jim Partridge (IBM), and Linda Wang (Sun).
UDI was presented at the February’99 Intel IDF conference and forms the basis of the device support for
Intel’s UDIG (UNIX Developers Interface Guide) specification efforts.

As 1999 draws to a close, the development of a 1.0 reference implementation—primarily driven by SCO
but heavily supported by the other members—is expected to result in several UDI implementations in
the upcoming millenial transition, the final 1.0 versions of the initial set of specifications—ready for
implementation—were published on September 1st, and negotiation is under way to submit these
specifications for de-jure standardization. UDI is on its way.

- September 1999

