
MDINK32/DINK32 User’s
Guide

Interactive Debugger for PowerPC Microprocessors

Motorola
RISC Applications

Release Date: November 30, 1999
Updated: December 6, 1999

Version 12.0
Revision 0.0

Altivec Enabled
. -1

long
ions,
plica-

tent

E

F

te-
MOTOROLA MDINK32/DINK32 Version 12.0
User’s Guide

© Copyright Motorola, Inc. 1993-1999
ALL RIGHTS RESERVED

You are hereby granted a copyright license to use, modify, and distribute the SOFTWARE so
as this entire notice is retained without alteration in any modified and/or redistributed vers
and that such modified versions are clearly identified as such. No licenses are granted by im
tion or otherwise under any patents or trademarks of Motorola, Inc.

The SOFTWARE is provided on an “AS IS” basis and without warranty. To the maximum ex
permitted by applicable law, MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER
EXPRESSED OR IMPLIED, INCLUDING IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY AGAINST
INFRINGEMENT WITH REGARD TO THE SOFTWARE (INCLUDING ANY MODIFIED
VERSIONS THEREOF) AND ANY ACCOMPANYING WRITTEN MATERIALS.

To the maximum extent permitted by applicable law, IN NO EVENT SHALL MOTOROLA B
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS O
BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE
OR INABILITY TO USE THE SOFTWARE. Motorola assumes no responsibility for the main
nance and support of the SOFTWARE.
-2 Dink32 R12 User’s Manual

Chapter 1 DINK32 User’s Guide Index

Chapter 1, “DINK32 User’s Guide Index"

Chapter 2, “Introduction"

Chapter 3, “MDINK32/DINK32 Features"

Chapter 4, “MDINK32/DINK32 Commands"

Chapter 5, “DINK32 Command Form Summary"

Chapter 6, “Utilities"

Chapter 7, “User Program Execution"

Chapter 8, “Errors and Exceptions"

Chapter 9, “Restrictions"

Chapter 10, “Known Bugs"

Appendix A, “Adding Commands and Arguments"

Appendix B, “Adding ERROR Groups to MDINK/DINK32"

Appendix C, “History of MDINK32/DINK32 changes"

Appendix D, “S-Record Format Description"

Appendix E, “Example Code"

Appendix F, “Updating DINK32 from the Web"

Appendix G, “Dynamic functions such as printf"

Appendix H, “MPC8240 (Kahlua) Drivers"

Appendix I, “MPC8240 DMA Memory Controller."

Appendix J, “MPC8240 I2C Driver Library."

Appendix K, “MPC8240 I2O Doorbell Driver"

Appendix L, “MPC8240 EPIC Interrupt Driver"
Chapter 1. DINK32 User’s Guide Index 1-3

rPC
cture
debug
ange,
ful for
gging
re.

ment
ram

on
ctor

the
ew
an
Chapter 2
Introduction
DINK is an acronym for Demonstrative Interactive Nano Kernel.

DINK32 is a flexible software tool enabling evaluation and debugging of the Powe
32-bit microprocessors. The introduction of the PowerPC microprocessor archite
provided an opportunity to create an interactive debugger independent from previous
monitors. Since the family of PowerPC microprocessors spans a wide market r
DINK32 has to be extensible and portable, as well as being specific enough to be use
a wide variety of applications. It is designed to be both a hardware and software debu
tool. DINK32 was written in ANSI C and built with modular routines around a central co
Only a few necessary functions were written in PowerPC assembly. This docu
describes the DINK32 software, the DINK32 command set, utilities, user prog
execution, errors and exceptions, and restrictions.

MDINK32 (Minimal DINK32) is a limited version of DINK32. It’s major purpose is to
download versions of DINK32 to the board. Currently, MDINK32 is only available
Excimer and Maximer boards. MDINK32 is supplied with the board. It is burned into se
A15, which is protected. The user can obtain new executable versions of DINK32 from
web site and download them onto the Excimer and Maximer board via MDINK32. N
versions of MDINK32 are only available by returning the board to Motorola for
MDINK32 upgrade or building it from the source code.
2-4 Dink32 R12 User’s Manual

l

y of

or
ns.

ad

to see
bling

e.

ect
the
Chapter 3 MDINK32/DINK32 Features
The MDINK32/DINK32 software package provides:

• Supports the MPC601, MPC603, MPC603e, MPC604, MPC604e, MPC740,
MPC750, and the MPC7400.

• Modification and display of general purpose, floating point, altivec, and specia
purpose registers.

• Assembly and disassembly of PowerPC instructions for modification and displa
code.

• Modification, display, and movement of system memory.

• A simplified breakpoint command, allowing setting, displaying, and removing
breakpoints.

• Single-step trace and continued execution from a specified address.

• Automatic decompression of compressed s-record files while downloading

• Extensive on-line help.

• Ability to execute user-assembled and/or downloaded software in a controlled
environment.

• Logging function for generating a transcript of a debugging session.

• Register set includes all of the PowerPC implementation specific registers.

• Modification of memory at byte, half-word, word and double-word lengths.

• Extensive support for the MPC 60x, MPC 740, MPC750, MPC7400 simplified
extended mnemonics during assembly and disassembly of PowerPC instructio

• Ability to input immediate values to the assembler as binary, decimal, or
hexadecimal.

• Command line download functionality that allows the user to select the downlo
port and then send the data.

• An assembler and disassembler that understands branch labels and the ability
and clear the branch table that DINK32 is using while assembling and disassem
PowerPC instructions.

• Ability to read and write MPC106 configuration registers. (Not supported on
Excimer and Maximer).

• Support for PCI with new “pci-” commands. (Not supported in minimal builds, i.
Excimer and Maximer).

• Support for Excimer and Maximer flash, fl –dsi and –se, and automatically det
flash on Revision 2 versus 3 of the board. fl -dsi has been expanded to display
memory range for each sector.
Chapter 3. MDINK32/DINK32 Features 3-5

MDINK32 Overview

, the
nly

is

is
t is
M

ds that
ry

nce

is
er
• Support for Excimer and Maximer flash, fl -sp and -su.

• Support for Max chip and altivec registers and instructions.

• Support for Kalua chip.

• Support for MPC107 Memory bridge.

• Support for dynamically assigned dink function addresses for downloaded
programs, see Appendix G, “Dynamic functions such as printf".

3.1 MDINK32 Overview
The following sections describe the MDINK32 methodology and limited command set.
minimum required hardware configuration, and the memory model. MDINK32 is o
available with the Excimer and Maximer platform. The current release of MDINK32
Version 12.0.

3.2 New features for MDINK32 V12.0
No new functionality.

3.3 MDINK32 Design Methodology
The MDINK32 program’s only purpose is to download DINK32 programs. MDINK32
loaded at 0xfff00000 and begins execution at 0xfff00100. It’s limited command se
designed to allow easy loading of DINK32 or other programs into FLASH or RO
memory and starting those programs.

3.4 Hardware Configuration Requirements
This MDINK32 software package can be executed on the same microprocessor boar
support DINK32, which include the following devices and minimum memo
configuration:

• PowerPC™ 601, 603(e), 604(e), 740/750, MPC7400 microprocessors

• National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Refere
Design).or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

• 512 K-byte EPROM or Flash

• 512 K-byte RAM

3.5 MDINK32 Software Build Process
MDINK32 can be built from the dink source base. Information for building MDINK32
given in the DINK32 build section. There is only one version of mdink32 for all Excim
3-6 Dink32 R12 User’s Manual

MDINK32 Memory Model

ired
rsion

n Unit

sign
s a

de the

nce
and Maximer boards. Flash memory is automatically detected.

3.6 MDINK32 Memory Model
See Figure 3-3., “MDINK32/DINK32 Memory Model - Excimer and Maximer".

The following sections describe the DINK32 design methodology, the minimum requ
hardware configuration, and the memory model. The current release of DINK32 is Ve
12.0.

3.7 New features for DINK32 V12.0
1. Detects MPC107.

2. Added makefiles for the GNU gcc compiler in every directory.

3. New commands: env, tau.

4. Support for dynamically assigned dink function addresses for downloaded
programs, see Appendix G, “Dynamic functions such as printf".

5. Improved printf formats including floating point displays.

6. Quiet mode on many register displays.

7. Shared memory between host and agent targets using the Address Translatio
(ATU).

3.8 DINK32 Design Methodology
The modular design of the DINK32 program, its extensive commenting, and its de
methodology enable efficient user modification of the code. Thus, DINK32 provide
flexible and powerful framework for users who desire additional functionality.

Hardware Configuration Requirements

This DINK32 software package can be executed on microprocessor boards that inclu
following devices and minimum memory configuration:

• PowerPC™ 601, 603(e), 604(e), 740/750, 7400 microprocessors

• National Semiconductor PC87308 DUART (Yellowknife and Sandpoint Refere
Design). or National Semiconductor 16552 DUART (Excimer and Maximer
Minimal Evaluation Board)

• 512 K-byte EPROM or Flash

• 32 M-byte RAM
Chapter 3. MDINK32/DINK32 Features 3-7

DINK Software Build Process

ch as
. are
to

n of

mer

Chip
sy as
imer
). It is
e this
in

des

ile
3.9 DINK Software Build Process
There are two types of platforms.

1. YellowKnife and Sandpoint. DINK32 is loaded at 0xfff00000. The config.h file
must set theRESET_BASEmacro to RESET_BASE_OTHERS as shown in
Table 3-1., “RESET_BASE value"

2. Excimer and Maximer. The config.h file must set theRESET_BASEmacro to
RESET_BASE_EXCIMER as shown in Table 3-1., “RESET_BASE value"

DINK32 is a sophisticated debug ROM program. Most hardware specific features su
the specific PowerPC processor, the memory map, the target platforms, etc
automatically detected at run time. This flexibility allows a single version of DINK32
run on different platforms with different processors; for example the same versio
DINK32 will boot the Yellowknife X2 platform with memory map A, the Yellowknife X4
platform with memory Map B, the Sandpoint, as well as the Excimer and Maxi
platforms with all the supported PowerPC processors.

The ROM device on the Yellowknife and Sandpoint system is the Plastic Leaded
Carrier (PLCC) device. Upgrading the firmware on such system could be as ea
removing and replacing the old ROM with the new one. The ROM devices on the Exc
and Maximer platform however are the thin small surface mount packages (TSSOP
not easy to remove such devices on the target hardware for upgrading. To solv
problem, Motorola provides a smaller version of DINK32 called MDINK. The ma
purpose of mdink is to download DINK32 or other boot program to ROM, thus it provi
a robust way for upgrading the firmware.

There are two different versions of DINK:

1. DINK32 provides the capability to download and debug application programs,

2. MDINK32 provides the capability to download and upgrade firmware.

Only DINK32 is available in executable form. It is delivered in the following eight f
formats as shown in Table 3-2., “DINK32 File Formats"

Table 3-1. RESET_BASE value

Macro Name Value

RESET_BASE_OTHERS 0xFFF0 (default)

RESET_BASE_EXCIMER 0xFFC0
3-8 Dink32 R12 User’s Manual

DINK Software Build Process

IX
ram

ine

iles
ith
lp.c

n a

tory
ion

_dir"
dir".
y is

and
The source files can be used to build DINK32 or MDINK32.

The source files are *.c, *.s, and *.h.

Other files are makefile and READ_ME

Motorola uses the Metaware tool set to build MDINK32 and DINK32 in a UN
environment. The syntax of the makefile, therefore, complies with the make prog
available on UNIX machines. The command to build DINK32 on a UNIX command l
is "make dink", and the command to build MDINK32 is "make mdink".

MDINK32 is a subset of DINK32. Both versions share many source files. Of all the f
that contribute to the making of MDINK32, the files that MDINK32 does not share w
DINK32 is mpar_tb.c and mhelp.c. DINK32's version of mpar_tb.c is par_tb.c and mhe
is help.c.

Both can also be build on UNIX with the GNU gcc tool set using makefile_gcc, and o
PC/NT with the Metaware tool set using makefile_pc.

The source files and the makefile of DINK32 and MDINK32 reside in the same direc
structure. However, the object files (*.o), the ELF file and S-record file of each vers
reside on a different directory. When the "make dink" command is executed, the "dink
directory is created, and the output files produced by "make" are put in "dink_
Likewise, when the "make mdink" command is executed, the "mdink_dir" director
created, and the output files are put in "mdink_dir" (see Figure 3-1).

In addition, the makefile, makefile_pc, is used to build on the PC (windowns) platform,
the makefile_gcc is used to build on UNIX with a GNU gcc compiler.

Table 3-2. DINK32 File Formats

Board S record S Record (-g) elf elf/dwarf (-g)

Yellowknife and Sandpoint dinkyk.src dinkyk_g.src dinkyk dinkyk_g

Excimer dinkex.src dinkex_g.src dinkex dinkex_g
Chapter 3. MDINK32/DINK32 Features 3-9

DINK32 Memory Model

it is
st be
s to
opy
tor
ust
r or
new
iginal
load
0"

uld
sh. See

-

Figure 3-1. DINK32/MDINK32 Directory Organization

When compiling a version of DINK32 to upgrade an Excimer and Maximer board
important to realize that this module, while relocatable, has a dependency that mu
accounted for during compilation. Since, MDINK32 and DINK32 both copy themselve
RAM (and then execute from RAM) it is important to know which address range to c
from FLASH to RAM. If you are building an image which will be located at the reset vec
(0xFFF00100) then the #define RESET_BASE (which is located in the config.h file) m
be set to 0xFFF0. If, however, you are upgrading a version of DINK32 on an Excime
Maximer board RESET_BASE should be changed to 0xFFC0 before building your
image. This S-record would then be loaded at address 0xFFC00000. This is the or
configuration that came with the Excimer and Maximer board. The command to down
a new version of DINK32 on an Excimer and Maximer board would be "dl -fl -o ffc0000
if there is nothing at location 0xffc00000. If replacing an older version then “fw -e” wo
be used to erase the version (and everything else that was not sector protected) in Fla
Table 3-1., “RESET_BASE value".

3.10 DINK32 Memory Model

The memory model for DINK32 is shown in Figure 3-2., “DINK32 Memory Model

.../DINK32

board.h *.o dink32.src dink32 board.h *.o mdink32.src mdink32

dink_dir *.h *.c *.s mdink_dir drivers

epic dma i2o i2c
3-10 Dink32 R12 User’s Manual

DINK32 Memory Model

-
ithin

the
, the

dify”

of the
000000
ill be

RAM’s

de.
with
nflict
Yellowknife and Sandpoint" or Figure 3-3., “MDINK32/DINK32 Memory Model
Excimer and Maximer". The exception vectors and exception code are located w
address offsets 0x0000 - 0x2100. The DINK32 code through 0x80000 is copied from
EPROM to RAM so that the data structures can be modified at run time. For example
data structures for the chip registers need to be modified when the “register mo
command is executed.

The EPROM must be located at address 0xFFF00000 because this is the beginning
exception address space at system reset. The RAM must be located at address 0x00
since that is the low-memory exception address space, where the DINK32 code w
copied. Available user memory space begins at address 0x90000 and ends at the
upper boundary; address space below 0x90000 is reserved for DINK32.

DINK32 sets the stack pointer, r1, to 0x80000 for the C portion of the DINK32 co
DINK32 sets the user’s stack pointer, r1, to 0x8fff0. As long as the user, once started
a go or trace command, does not use more than 0xfff0 bytes for it’s stack there is no co
with the stack used by DINK32.

Please reference Figure 3-2 and Figure 3-3 on the following page.
Chapter 3. MDINK32/DINK32 Features 3-11

DINK32 Memory Model

f

Note: The .text and .data sections are approximates depending
on each build version. Actual locations can be ascertained from
the xref.txt file in the dink_dir directory.

Figure 3-2. DINK32 Memory Model - Yellowknife and Sandpoint

0xFFFFFFFF - End of ROM space
512 K-byte EPROM 0xFFF8FFFF - End of DINK32 Code

0xFFF00100 - Reset Vector

User Memory

Top of User Memory (depending on the amount o
RAM installed); 1M = 0x000FFFFF, Typical size is
32M = 0x00200000

0x00090000 - Start of User Memory
DINK32 stack 0x0008FFFF - Top of Stack for user

0x00080000 - Top of Stack for DINK32

0x00070000 - Bottom of stack
.data 0x0006FFFF - Top of.data section

0x00040000 - Bottom of.data section

0x000303FF - Top of RODATA

0x0002FD00 - Bottom of RODATA
.text 0x0002FFFF - Top of.text section

0x00003000 - Bottom of.text section

Exception table

0x00002FFF - Top of Exception table

0x00000000 - Bottom of Exception Table
3-12 Dink32 R12 User’s Manual

DINK32 Memory Model
Chapter 3. MDINK32/DINK32 Features 3-13

DINK32 Memory Model
System ROM

System RAM

Note: The .text and .data sections are approximates depending
on each build version.

Figure 3-3. MDINK32/DINK32 Memory Model - Excimer and Maximer

4 Meg Flash ROM 0xFFFFFFFF - End of ROM space

MDINK32

0xFFF60000 - End of MDINK32 Code

0xFFF00100 - Reset Vector (MDINK32)
User Flash Space 0xFFEFFFFF - Top of User Flash Space

0xFFC90000 - Bottom of User Flash Space
DINK32 0xFFC8FFFF - End of DINK32 Code

0xFFC00100 - Start of DINK32 Code

0xFFC00000 - Beginning of Flash space

User Memory

Top of User Memory - 0x000FFFFF (1 Meg)

0x00090000 - Start of User Memory

DINK32 stack 0x0008FFFF - Top of Stack for user

0x00080000 - Top of Stack for DINK32

0x00070000 - Bottom of stack
.data 0x0006FFFF - Top of .data section

0x00040000 - Bottom of .data section

0x00030000 - Top of RODATA

0x0002FD00 - Bottom of RODATA
.text 0x0002FFFF - Top of .text section

0x00003000 - Bottom of .text section

Exception table

0x00002FFF - Top of Exception table

0x00000000 - Bottom of Exception Table
3-14 Dink32 R12 User’s Manual

Commands

listed
aller
nds

een

inue

y that

two
two

8-bit
ily due

ar
Chapter 4 MDINK32/DINK32
Commands
This chapter describes the DINK32 user commands. The full command mnemonic is
in the upper left-hand corner and the short command (abbreviation) is listed next in sm
type. All commands listed (except fw -e) are available to DINK32, those comma
available to MDINK32 are marked as MDINK32 Compatible.

Commands appear in boldface throughout this chapter.

Note: All addresses entered must be in hexadecimalbut not preceded by “0x”.

Leading zeros will be added as needed.

Definitions

“MDINK32 Compatible”

This command is also available in MDINK32. Where commands are different betw
MDINK32 and DINK32, the DINK32 format will be shown first.

“plus”

Usually implies that the command form includes “+”. This allows the command to cont
to the next stopping place appropriate for its functionality.

“range”

Indicates a two-address form, and usually signifies an inclusive area of code or memor
will be operated on by the command.

“entire family”

Refers to a family of registers. The general purpose registers are a family of thirty
32-bit registers, numbered 0 to 31. The floating point registers are a family of thirty-
64-bit registers, numbered 0 to 31. The altivec registers are a family of thirty-two 12
registers, numbered 0 to 31.The special purpose registers are not classified as a fam
to their architectural design.

“x”

Typing “x” will exit a command if DINK32 is in an interactive mode when a particul
command form is used.

4.1 Commands
Chapter 4. MDINK32/DINK32 Commands 4-15

Commands
4.1.1 .(period) .

repeat last command MDINK32 Compatible

Typing a period will repeat the last command entered.

Example:

DINK3 2_750 > > t rac e 2100
A Run Mode o r Trac e excep t ion h as occu rred.

Curre nt inst ruct io n Point er : 0x 0000210 4 stw r13, 0x f f f8(r 01)

DINK3 2_750 > > trac e +
A Run Mode o r Trac e excep t ion h as occu rred.
Curre nt inst ruct io n Point er : 0x 0000210 8 add r03, r0 0, r01

DINK3 2_750 > > .
A Run Mode o r Trac e excep t ion h as occu rred.
Curre nt inst ruct io n Point er : 0x 0000210 c mfsp r r04, s0274

DINK3 2_750 > >
4-16 Dink32 R12 User’s Manual

Commands

be
4.1.2 about about

(M)DINK32 version information MDINK32 Compatible

The version information for the current implementation of the DINK32 monitor will
displayed on the terminal.

DINK32 Example:

DINK3 2_MPC60 3ev >> about

A Res et Exce pt ion '0x100' in i t i a ted th is res tar t
Cache s Enabl ed: [L1- ICac he L1 -DCache]

DDD II I N N K K 333 222
D D I N N N K K 3 3 2 2
D D I N N N KK 33 22
D D I N NN K K 3 3 22
DDD II I N N K K 333 22222 for MP C603ev

Metaw are Bui ld

Vers i on 12, Revis i on 0

Wri t t en by : Motor o la 's R ISC Ap pl icat i ons, A ust in , TX
Rel eased : Novem ber 30, 1999:

S ystem : Welco me to E xcimer . A Min imum S ystem P owerPC Design !
Proc essor : MPC60 3ev V12 .1 @ 1 33 MHz, Memor y @ 66 MHz

Copyr ight Mo toro la , Inc. 1993, 1994, 1 995, 1 996, 19 97, 19 98, 199 9

Chang es for each r elease, Errat a for d ink, F uture E nhance ments
and b ug f ixe s are documen ted in the f i le h is tory.c

DINK3 2_MPC60 3ev >>

MDINK32 Example:

MDINK 32_603e >>abo ut

Data Cache h as bee n enabl ed. . .
Inst r uct ion Cache has bee n enab led. . .

M M DDD II I N N K K 333 222
MM MM D D I NN N K K 3 3 2 2
M M M D D I N N N KK 33 22
M M D D I N NN K K 3 3 22
Chapter 4. MDINK32/DINK32 Commands 4-17

Commands
M M DDD II I N N K K 333 22222 for t he MPC 603

Vers i on 10, Revis i on 7

Wri t t en by : Motor o la 's R ISC Ap pl icat i ons, A ust in , TX
Relea sed : March 1, 1999
Welco me to E xcimer . A Mi nimum System PowerP C Desig n!

Copyr ight Mo toro la , Inc. 1993, 1994, 1 995, 1 996, 19 97, 19 98
4-18 Dink32 R12 User’s Manual

Commands

the
nics
mory

start
the

rn the

at the
urrent

ctions.
ch
if the
h table

“.dc”
them.

e. In
to be
neral

gister
not

e the
lways

the
he
4.1.3 assemble as

DINK32 mini-assembler

• assembleaddress

• assemblestart+

• assemblestart- end

The mini-assembler for the DINK32 system will display the contents of memory at
given location and enter interactive mode. The user will be queried for a valid mnemo
and operands which will be assembled into a valid opcode and stored at that me
location. A location can be left unmodified by typing <return> to pass over it.

The “plus” form of the command will allow the user to start assembling code at a given
location and will be terminated at the end of memory. The “range” version will start at
first address location and automatically terminate at the given end address.

At any point “x” can be entered as a mnemonic and assemble will terminate and retu
user to the DINK32 prompt.

Branch labels are recognized by the assembler as a word followed by a colon (:)
address currently being displayed by the assembler. The assembler tracks the c
branch labels and automatically calculates the address to be entered into future instru
Thesymtab,stinstruction is available for manipulating the branch table in DINK32. Bran
labels within PowerPC assembly instructions will not be recognized by the assembler
branch label has not yet been entered into the table. The user may display the branc
list with the st instruction.

The DINK32 assembler ignores any comments preceded by a ‘#’ and any “.org” and
commands. The assembler does not interpret these lines as anything. It only ignores
The simplified mnemonics that DINK32 Version 10.5 understands is quite extensiv
general, immediate values, including condition register bit offsets, are assumed
hexadecimal unless preceded by 0b (binary) or 0d (decimal). Floating point and ge
purpose registers are recognized just like previous versions of DINK32 where the re
number may be preceded by an “r” (general purpose) or an “f” (floating point) but is
necessary. Simplified branch mnemonics involving the condition registers may hav
condition register number preceded by “cr” but isn’t necessary. The assembler a
expects a “cr” field for compare and branch instructions where, according to
architecture, cr0 is implied if a “cr” field is not given. DINK32 does not implement t
implied cr0 functionality of the simplified mnemonics.

Examples:
Chapter 4. MDINK32/DINK32 Commands 4-19

Commands
DINK3 2_603e >>as 6 0100+
0x000 60100 0 x85f f f fc4 lwz u r15 , 0xf fc 4(r31) r l mi
r00,r 02,r05, 0,0
0x000 60104 0x00 f f f fa0 WO RD 0 x00f f f f a0 l fd f0,0x0 ec5(r1)
0x000 60108 0x f f0040e f fse l . f24, f0 0, f08, f0 3 r lw nm
r0,r1 3,r23,0 x1,0xa
0x000 6010c 0 xfe400 4f f fnm add. f18, f00, f19, f0 0
0x000 60110 0x 00f f f f0 1 WORD 0x00 f f f f01 loo p: #bran ch labe l
0x000 60110 0 x00f f f f01 BRA NCH LA BEL loo p:
0x000 60110 0x00f f f f01 WO RD 0x00f f f f01 or i r26,r 2,0xf f f
0x000 60114 0 x00f f f f00 WOR D 0x0 0f f f f00 l fd f00,0x0 503(r0)
0x000 60118 0 xef0040 fd fnm subs. f24, f 00, f03 , f08 cm pw
cr3,r 26,r0
0x000 6011c 0 x7f000 0f f WOR D 0x7f 0000f f bne c r3, loop
0x000 60120 0 x22f fb f80 sub f ic r23, r31, 0xbf80 x

VERIF YING BR ANCH L ABELS.. . . .

DONE VERIFYI NG BRA NCH LAB ELS!
DINK3 2_603e >> st
Curre nt l is t of DI NK bran ch lab els:

KEY BOARD: 0x0
get _char: 0x1 e5e4

wr i te _char: 0x5 fac
TBas eIn i t : 0x3 9c4

TB aseRead Lower: 0x3 9e8
TB aseRead Upper: 0x3 a04

CacheIn hib i t : 0x3 a20
I nvEnL1D cache: 0x3 a40

DisL1D cache: 0x3 a88
I nvEnL1I cache: 0x3 aac

DisL1I cache: 0x3 b00
Burs tMode: 0x3 bfc

Ram InCBk: 0x3 c3c
RamIn WThru: 0x3 c7c

dink _loop: 0x5 660
dink_p r int f : 0x6 368

Curre nt l is t of US ER bran ch lab els:
loop: 0x6 0110

DINK3 2_603e >> asse mble 60 300-60 310
0x000 60300 0x82f f f f00 lwz r2 3, 0x f f00(r31) fadd 1 2 3
0x000 60304 0 x00f f f f00 WOR D 0x00 f f f f00 stw 1 2
0x000 60308 0 xef008 0f f fnm adds. f24, f00, f03, f1 6 sc
0x000 6030c 0xf f0000f f fnmadd. f24, f0 0, f03, f00 bd nz
0x600 10
0x000 60310 0 x04f f f f00 WOR D 0x04 f f f f00 #Comm ent
0x000 60310 0 x04f f f f00 WOR D 0x04 f f f f00 nop
DINK3 2_603e >>

DINK3 2_MAX > >as 70 010
4-20 Dink32 R12 User’s Manual

Commands
0x000 70010 0xf f 8000f f fn madd. f28, f00 , f 03, f00 mfvsc r v 3
DINK3 2_MAX > >as 70 014+
0x000 70014 0 xf f000 0f f fnm add. f24 , f00, f03, f 00 mtv scr v1 2
0x000 70018 0x00 fbf f00 WO RD 0 x00fbf f 00 v mhadds hs
v3,v1 9,v3,v3 1
0x000 7001c 0x00f f f f00 WORD 0x00 f f f f00 vsld oi
v30,v 16,v17, 7
0x000 70020 0 xf f000 0f f fnm add. f24, f00, f03, f0 0 x
DINK3 2_MAX > >ds 70 010+
0x000 70010 0 x10600 604 mfv scr V3
0x000 70014 0 x10006 644 mtv scr V12
0x000 70018 0 x10731 fe0 vmh addshs V3,V19 ,V3,V3 1
0x000 7001c 0 x13d08 9ec vsl doi V30,V 16,V17 ,0x7
0x000 70020 0 xf f000 0f f fnm add. f24, f00, f03, f0 0
Chapter 4. MDINK32/DINK32 Commands 4-21

Commands

ete a
ndex

de at
kpoint

eady
an be
of 20
4.1.4 bkpt bp

set, delete, list breakpoints

bkpt

• bkpt address

• bkpt -d index

The bkpt command allows the user to set a breakpoint at a given address, del
breakpoint at a given index in the breakpoint list, and list the current breakpoints by i
and address.

Breakpoints allow the user to run an application program and stop execution when co
the specified address is encountered. This command will set or delete only one brea
at a time, and must be repeated for each breakpoint.

Setting a breakpoint will not remove a breakpoint from an address if a breakpoint alr
exists there. Deleting a breakpoint from an invalid index has no effect. Breakpoints c
set or deleted one at a time and all are displayed during a breakpoint list. A maximum
breakpoints can be set in the system.

Examples:

DINK3 2_750 > > bkpt 60100
Break point s et at 0x00060 100

DINK3 2_750 > > bkpt
Curre nt brea kpoint l is t :
1 . 0x 0006010 0

DINK3 2_750 > > bkpt -d 1
Break point d eleted

DINK3 2_750 > > bkpt
Curre nt Brea kpoint L is t :
4-22 Dink32 R12 User’s Manual

Commands

ds, da

by a
e

as to
4.1.5 defalias da

define alias

The runalias, ra, command is the companion to this command. While these comman
and ra, are still available, theenv command is more flexible.

• defalias

This command will allow the user to define an alias to a list of commands (separated
semicolon). Once the alias has been defined,runalias can be used instead of retyping th
list of commands. Only one alias may be set at a time, and usingdefaliasa second time will
overwrite the previously aliased command list. Below is an example of using an ali
single step and display registers.

Example:

DINK3 2_750 > > t rac e 2100
A Run Mode o r Trac e excep t ion h as occu rred.
Curre nt Inst ruct io n Point er : 0x 0000210 4 lwz r03, 0x 0000(r 02)

DINK3 2_750 > > defa l ias
Curre nt a l ia s def i n i t ion:
New a l ias : t r +; rd r
Al ias def ine d as : t r +; rd r

DINK3 2 wi l l no w si ngle step and displ ay t he r egister set eac h t i me
runal ias is entere d.

DINK3 2_750 > > runa l ias
A Run Mode o r Trac e excep t ion h as occu rred.
Curre nt Inst ruct io n Point er : 0x 0000210 8 add r03, r0 0, r01
gpr00 : 0x000 00000 gpr01: 0x0006 0000
gpr02 : 0x000 00000 gpr03: 0x0002 bc00
gpr04 : 0x000 00000 gpr05: 0x0000 0000
gpr06 : 0x000 00000 gpr07: 0x0000 0000
gpr08 : 0x000 00000 gpr09: 0x0000 0000
gpr10 : 0x000 00000 gpr11: 0x0000 0000
gpr12 : 0x000 00000 gpr13: 0x0000 0000
gpr14 : 0x000 00000 gpr15: 0x0000 0000
gpr16 : 0x000 00000 gpr17: 0x0000 0000
gpr18 : 0x000 00000 gpr19: 0x0000 0000
gpr20 : 0x000 00000 gpr21: 0x0000 0000
gpr22 : 0x000 00000 gpr23: 0x0000 0000
gpr24 : 0x000 00000 gpr25: 0x0000 0000
gpr26 : 0x000 00000 gpr27: 0x0000 0000
gpr28 : 0x000 00000 gpr29: 0x0000 0000
gpr30 : 0x000 00000 gpr31: 0x0000 0000
Chapter 4. MDINK32/DINK32 Commands 4-23

Commands

to that

s

ytes

.

4.1.6 devdisp dd

DINK32 Peripheral device display

dd,devdisp

• dd [device [-b|-h|-w] addr1-addr2]

The devdisp command displays the contents of device registers in a manner similar
of the memory display command.

• device Is the name of the device. If not entered display all known device

• -b, -h, -w Set size of device accesses. If not specified, the default size is b
for devices.

• addr1 Is the starting address to display.

• addr2 Is the optional ending address.

• The dd command with no parameters will display a list of all the known devices

Example:

DINK3 2_ARTHU R >> d d
Dev ice Star t En d Sizes
=== ===== ====== == == ====== =====
mem 000000 00 FF FFFFFF [BHW]
nvr am 000000 00 00 000FFF [B]
i2c 000000 00 00 00007F [B]
r tc 000000 00 00 00000D [B]
r tc ram 000000 0E 00 0000FF [B]
apc 000000 40 00 000048 [B]

DINK 32_ART HUR >> dd nvr am 40
0x0040 14 3E 27 9C EE FA E9 C0 04 6B 2A 87 08 9C 66 7E

..
0x00 50 . . .

. . .
dd>x

DINK3 2_ARTHU R >>
4-24 Dink32 R12 User’s Manual

Commands

ters
me

s

ytes

ify

. The
mory.

lts
4.1.7 devmod dm

DINK32 Peripheral device modify

devmod,dm

dm [device [-b|-h|-w] addr1-addr2]

The device modify command allows interactive modification of device data in regis
and/or indirect memory. Thedd command operates similar to the mm command, with so
additional flexibility.

• device Is the name of the device. If not entered display all known device

• -b, -h, -w Set size of device accesses. If not specified, the default size is b
for devices.

• addr1 Is the starting address to display.

• addr2 Is the optional ending address or if not specified then display/mod
until user types x or ESC.

While examining data, the contents may be modified by entering a hexadecimal value
value entered is truncated to the specified size and is then written to the device or me

When prompted for location, any of the following may be entered:

• <enter> go to the next location using the current selected direction (defau
to forward)

• 'v' set the direction to forward.

• '^' set the direction to reverse.

• '=' set the direction to 0. dm will keep examining and modifying the
same location until 'v' or '^' is entered.

• hex a value to write.

• '?' help
DINK 32_ARTH UR >> dm nvram 40

0x0040 : 14 ? <ente r> -- s k ip
0x0041 : 3E ? 47 -- n ew val ue
0x0042 : 27 ? ^ -- g o back
0x0041 : 47 ? 48 -- r ight v alue
0x0040 : 14 ? v -- g o forw ard
0x0041 : 48 ? =<ent er>
0x0041 : 48 ? <ente r>
0x0041 : 48 ? <ente r>
0x0041 : 4A ? <ente r> -- e rrat ic b i t?
Chapter 4. MDINK32/DINK32 Commands 4-25

Commands
4.1.8 devtest dev

DINK32 Peripheral device test <Kahlua only>

dev,devtest

• dev [+|-] epic

• dev [+] [-r] i2c <addr> <-n> [<timeout>]

• dev [+] -w i2c <addr> <-n> <str> [<timeout>]

• dev [+] DMA p<type>] <src> <dest> [<chn>] [<n>]]

Perform a given I/O test on Kahlua.

DINK3 2_KAHLU A>> de vtest - r i2c

0x40: FE FE FE FE 47 4A 4 E 4F FE FE FE FE 47 4 A 4E 4F
.. . .G JMN.. . . GJMN
4-26 Dink32 R12 User’s Manual

Commands

t the
as in

nue
“x”.

each

ith a
ory

bly. In
efore
4.1.9 disassem ds

DINK32 mini-disassembler

• disassemaddress

• disassemstart+

• disassemstart- end

The mini-disassembler for the DINK32 system displays the contents of memory a
given address. The contents are shown in hexadecimal opcode format as well
PowerPC assembly instruction format.

If the “plus” form is used, the command goes into interactive mode and will conti
reading and disassembling until the end of memory is reached or until the user types

If the “range” form is used, the command will continue reading and disassembling for
inclusive address in the range specified.

Note that the above parameter forms can be combined by separating the forms w
comma or white space. This will display multiple disassembled portions of the mem
space with one command.

Branch labels entered during an assemble session are displayed during disassem
order for branch labels to be calculated correctly, branch labels must be entered b
instructions refer to that label.

Examples:

DINK3 2_750 > > ds 6 0100
0x000 60100 0 x58402 800 r lm i r00, r02, 0 x05, 0 x00, 0x 00

DINK3 2_750 > > ds 6 0118-60 120
0x000 60118 0 xc8000 503 l fd f00, 0x0503(r00)
0x000 6011c 0 x243f0 02c doz i r01, r31, 0 x002c
0x000 60120 0 x00000 000 WOR D 0x00 000000

DINK3 2_750 > > ds 6 0100+
0x000 60100 0 x58402 800 r lm i r00, r02, 0 x05, 0 x00, 0x 00
0x000 60104 0 xc8010 ec5 l fd f00, 0x0ec5(r01)
0x000 60108 0 x5da0b 854 r lw nm r00 , r13, r23, 0 x01, 0x 0a
0x000 6010c 0 x00000 000 WOR D 0x00 000000
0x000 60110 0 x00000 000 WOR D 0x00 000000
0x000 60114 0 x605af f f f or i r26, r02, 0x f f f f
0x000 60118 0 xc8000 503 l fd f00, 0x0503(r00)
0x000 6011c 0 x243f0 02c doz i r01, r31, 0 x002c
0x000 60120 0 x00000 000 WOR D 0x00 000000
0x000 60124 0 x00000 000 WOR D 0x00 000000
x to qui t , a nyth in g else to con t inue >
Chapter 4. MDINK32/DINK32 Commands 4-27

Commands

erial
which
mory
wo
ords

ry,
ust

h

lines

er is
4.1.10 download dl

download data from the host MDINK32 Compatible

RAM download Syntax:

• download -k (keyboard port - duart channel A)

• download -h (host port - duart channel B)

• download {-k|-h} [-q] [-fx] [-v] [-o offset]

FLASH download Syntax:

• download -fl [-e] -o address (download directly to flash memory)

This instruction provides the ability to receive data from the host keyboard via the s
port. The data received can be in two formats: S-Records or compressed S-Records,
are automatically decompressed. The data which is downloaded will be placed in me
locations specified by the input file for RAM or as specified for FLASH. There are t
separate forms, one for RAM and one for FLASH downloads. Information on S-Rec
can be found in Appendix D.

RAM download options:

• The "-k" option copies the data stream from the keyboard serial port into memo
while "-h" option copies data from the host serial port. One of these two options m
be supplied.

• The "-q" option is quiet mode, no indication of download progress is supplied.

• The "-fx" option enables XON/XOFF (software) flow control for downloading at
higher speeds.

• The "-v" option verifies a previous download, printing an error message for eac
difference found.

• The "-o offset" option adds a hexadecimal offset to the address of the S-Record
to relocate code.

FLASH download options:

• The “-fl” option indicates a load to FLASH memory.

• The “-e” option indicates to erase all of flash memory before the load.

• The -o address specifies the offset address, default is 0xfff00000.

Default download baud rate is 9600. Maximum baud rate on Excimer and Maxim
57600 and Yellowknife and Sandpoint is 38400.

See Section 4.1.34, “setbaud sb".
4-28 Dink32 R12 User’s Manual

Commands
Examples:

DINK3 2_750 > > dl -k

Set I nput Po rt : se t to Ke yboard Port
Downl oad Com plete.

. . .

Use t he fo l l owing example when upgradi ng DIN K on Ex cimer
wi th a s-rec ord fr om the PowerP C websi te:

MDINK 32_603e >> dl - f l -o f fc00 000
Offse t : 0xf fc0 0000
Wri t i ng new data t o f lash .
L ine: 50

NOTE: Th e c omplet e sequenc e for upgr ading DIN K on Excime r would be :
MDINK 32_603e >> fw -e
Reboo t the E xcimer board
MDINK 32_603e >> sb -k 576 00
MDINK 32_603e >> dl - f l -o f fc00 000

MDINK 32_603e >>
Chapter 4. MDINK32/DINK32 Commands 4-29

Commands

AM
s (")

EF
d.

er
on't
sets.

cked:

ial

to

ain'

'

.

4.1.11 env env
Syntax: env [-c][-d][-s][var[=value]]

Description: This command displays or sets environment variables stored in the NVR
(if available). If no argument is given, the current settings are displayed. Note: quote
are usually required.

The ENV command manipulates environment variables, which are of the form VAR=D
or VAR="def def def". Quotes are needed if non-alphanumeric characters are include

• For YK/SP, NVRAM is used and preserved, and 4K is available.

• For Excimer and Maximer, the uppermost 1K of SRAM is used. Currently, Excim
and Maximer don't save/restore SRAM->Flash. Since Excimer and Maximer d
wipe the SRAM it can be somewhat useful since it will be preserved between re

Using ENV, the system can be configured on startup. The following variables are che

• IO -- sets I/O type and modes

— IO=COM1 Use standard COM port

— IO="COM1:[9600|19200|..." Use standard COM port and optionally set ser
port.

— IO="PMC:[9600|19200|..." Use serial port on PMC8240/etc.

— IO=XIO Use VGA card in first slot with a VGA-class code.

— IO=XIO:USE=nn Use VGA card on slot #nn even if it doesn't appear
be a video card (old cards w/out CLASS codes).

• MEMOPT -- if defined, the equivalent of "meminfo -c -c" is run,which tunes
memory using SDRAM I2C info and bus speed.

• ALIAS -- stores last defined alias (da/ra).

• MDMODE -- if set to 1, use the dm/dd commands in place of the mm/md
commands. If set to 3, do that and also enable denser output for 'md'.

• RDMODE -- if set to 'q', 'quieten' the register display for SPR's. If set to 'e', 'expl
the fields of SPRs.

• TAUCAL -- saves/restores the TAU calibration field (32-bit ULONG).

• L2CACHE -- sets L2 cache parameters. Options are:

— L2CACHE={256K|512K|1M|2M} ',' {/1|/1.5|/2|/2.5|/3|/3.5} ',' [late] ',' [do] ',
{0.5ns|1.0ns|1.5ns|2.0ns} ',' [wt] ',' [diff]

If any key is pressed on startup (recommendation is Backspace), the ENV is ignored

ENV allows for multiple command aliases

Example:
4-30 Dink32 R12 User’s Manual

Commands

ses
LIAS

the

et.

nly.

.

sults.
ENV R ="rd"
ENV X ="tr ; r d msr; md 900 00-901 00"

You can enter 'r' to do 'rd' (or 'r r3' to do 'rd r3') or 'x' to do all the above def's. Alia
cannot be nested. Note that the ENV does not distinguish between ENV vars and A
vars -- they're lumped together.

ENV allows changing the prompt dynamically. If the string PROMPT is defined in
ENV, it is expanded and displayed using the following rules:

• $d -- dink name, either DINK or MDINK

• $P -- formal processor name, e.g. "MPC7400"

• $p -- informal processor name, e.g. "MAX"

• $T -- current time, "12:34:56PM"

• $t -- TAU temperature, e.g. "26" if 26 deg. C or "26u" if not calibrated y

• $! -- history index

• $_ -- CRLF

• All other characters are copied as-is.

Flags:

• -c Clear/Initialize the NVRAM.

• -d Delete named variable.

• -s Saves environment to permanent storage, used for excimer and maximer o

Most of the SPR’s can suppress the verbose mode, see Section 4.1.30, “regdisp rd"

Example:

This example sets the non verbose mode for certain commands.

DINK3 2_ARTHU R >>en v -c
DINK3 2_ARTHU R >>en v rdmod e=e

After the non verbose mode is set, the following command gives non verbose re
Contrast this with the verbose display in Section 4.1.30, “regdisp rd".

DINK3 2_ARTHU R >>rd msr
MSR : 0x0000 3930

POW =0 EE= 0 PR= 0 FP=1 ME=1 FE0=1 SE=0
BE= 0 FE1= 1 IP= 0 IR=1 DR=1 RI=0 LE=0
TLB /GPR=0 VMX =0 PM= 0
Chapter 4. MDINK32/DINK32 Commands 4-31

Commands

VD
4.1.12 flash fl

flash memory commands; mdink32 limited compatibility

flash

This command will perform a variety of flash memory operations.

Syntax: fl -flags -o value -s sector number

Description: This command performs actions to the flash memory

• -dsi display sector information (dink32/mdink32)

• -e erase all of flash (dink32/mdink32)

• -cp copy MDINK from RAM to Flash (dink32 only)
Required Flags: -o <value> copy address in flash
Optional Flags: -e erase flash first

• -sp protect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

• -su unprotect indicated sector (dink32 only)
Required Flags: -n <value> sector number 0-18

• -se erase indicated sector (mdink32/dink32)
Required Flags: -n <value> sector number 0-18

For Version 12.0: -cp is not implemented.

Sector Protect/Unprotect commands require a 12V power supply. See AMD Bulletin, N
Flash, Sector Protection, available on the www.amd.com web site.

Example:

DINK3 2_603e >>f l - se -n 6
Erasi ng sect or 6

DINK3 2_603e >>f l - ds i
Displ ay Sect or Inf ormat io n 0.7 Excime r Rev 2 and p r ior
Descr ipt ion v alue
Manuf acturer ID is 0x1, D evice ID is 0 x225b
Secto r SA0 UNPRO TECTED
Secto r SA1 UNPRO TECTED
Secto r SA2 UNPRO TECTED
Secto r SA3 UNPRO TECTED
Secto r SA4 UNPRO TECTED
Secto r SA5 UNPRO TECTED
Secto r SA6 UNPRO TECTED
Secto r SA7 UNPRO TECTED
Secto r SA8 UNPRO TECTED
Secto r SA9 UNPRO TECTED
4-32 Dink32 R12 User’s Manual

Commands
Secto r SA10 UNPRO TECTED
Secto r SA11 UNPRO TECTED
Secto r SA12 UNPRO TECTED
Secto r SA13 UNPRO TECTED
Secto r SA14 UNPRO TECTED
Secto r SA15 UNPRO TECTED
Secto r SA16 UNPRO TECTED
Secto r SA17 UNPRO TECTED
Secto r SA18 UNPRO TECTED
Chapter 4. MDINK32/DINK32 Commands 4-33

Commands

on a

nt or
o use
, and
n for

INK
INK
ading

K32
has

nt or
4.1.13 fupdate fu

FLASH update

fupdate, fu

• fupdate -h [-o offset]

• fudpate -i

The flash update command is used to initialize the contents of the flash devices
Sandpoint or Yellowknife system. There are two separate functions:

• PPMC ROM Initialization

When used with the '-i' option, the host ROM (the 32-pin PLCC socket on Sandpoi
Yellowknife motherboards) can be copied to the local flash devices on PPMC cards. T
this feature, the system must be set to boot from the host ROM on PCI (usually true)
the PROGMODE switch must be set on the PPMC card (refer to PPMC documentatio
details).

• Motherboard Flash updates

When used with the '-h' option the host ROM can be updated with new versions of D
or with the boot code of an RTOS. Usually the memory contents will be downloaded D
upgrade or an RTOS boot image. See Section 4.1.10, “download dl" for details on lo
the memory image.

NOTE: The entire flash is erased and replaced with the
supplied contents.

If the programming mode fails or is interrupted the flash may be unusable. If the DIN
code is replaced with another program DINK will be lost unless the new program
similar facilities to download and program DINK into the flash ROM.

Examples

Use the following example store a program in the PCI-based ROM of a Sandpoi
Yellowknife (for example, a DINK upgrade).

DINK3 2_750 > > dl - k -o 10 0000
Downl oad fro m Keyb oard Po rt
Of fse t Sreco rds by 0x0010 0000

. . .
Downl oad Com plete.
DINK3 2_750 > > fu - h 10000 0
YK/SP PCI Fl ash Pr ogramme r
Are y ou sure ? Y
Check f lash type: AMD Am2 9F040
Erasi ng f las h : OK
4-34 Dink32 R12 User’s Manual

Commands
Progr am f las h : OK
Ver i f y ing f l ash : OK
DINK3 2_750 > >

Use the following example to copy DINK32 into a local-bus Flash on a PPMCcard:

DINK3 2_750 > > fu - i
PPMC Local F lash P rogramm er\
Are y ou sure ? Y
Check f lash type: AMD Am2 9LV800 BB
Erasi ng f las h : OK
Progr am f las h : OK
Ver i f y ing f l ash : OK
DINK3 2_750 > >
Chapter 4. MDINK32/DINK32 Commands 4-35

Commands

lash
h
s. (I.e.
4.1.14 fw fw -e

Specific FLASH download MDINK32 Only

fw –e [-o <flash address>]

This command copies the contents of the entire 512K of RAM to FLASH starting at f
address 0xFFF00000. The parameter-e is required. The optional parameter –o <flas
address> can be used to specify a specific address to copy from ram to rom addres
replacing flash address 0xfff00000 with the flash address of the user’s choosing.

Examples:

MDINK 32_603e >>fw -e
Chip erase s et .
Erasi ng ent i re f la sh memo ry. . .
Enter ing ver i fy er ase loo p . . .
F lash erased ! ! !
Done erasing f lash memory .
Copyi ng 512K ram t o f lash addre ss f f f0 0000. . .
4-36 Dink32 R12 User’s Manual

Commands

“plus”
tore)
reak

. The
l be
oint in

ce the
4.1.15 go go

execute user code MDINK32 Compatible

go address

go +

This command allows the user to execute user code starting at the given address. The
form will allow execution at the address in the SRR0 (Machine Status Save / Res
register - bits 0-29. This is useful for continuing where a breakpoint or a user b
(<ctrl>-c) had previously stopped execution.

A program exception occurs when a breakpoint or illegal opcode is encountered
breakpoint address will be displayed and the instruction at that address wil
disassembled. Note: If a breakpoint is encountered, the user must clear the breakp
order for execution to continue.

When the user program begins execution, the stack pointer, r1, is set to 0x8fff0. Hen
user stack begins at 0x8fff0.

Examples:

DINK3 2_750 > > ds 1 81dc-18 1f8
0x000 181dc 0 x3c600 000 add is r03 , r00, 0x0000
0x000 181e0 0 x60631 234 or i r03, r03, 0x 1234
0x000 181e4 0 x3c800 000 add is r04 , r00, 0x0000
0x000 181e8 0 x60845 678 or i r04, r04, 0x 5678
0x000 181ec 0 x7c632 214 add r03, r03, r0 4
0x000 181f0 0 x38841 234 add i r04, r04, 0 x1234
0x000 181f4 0 x7c032 000 cmp 0, 0, r03, r 04
0x000 181f8 0 x4182f fe4 bc 0x0c, 0x02, 0 xf fe4

DINK3 2_750 > > bkpt 181f4
break point s et at 0x00018 1f4

DINK3 2_750 > > go 1 81dc
A Pro gram ex cept io n has o ccurre d.
Break point E ncount ered:
Curre nt Inst ruct io n Point er : 0x 000181f 4 cmp 0, 0, r 03, r0 4

DINK3 2_750 > > go +
A Run Mode o r Trac e excep t ion h as occu rred.
A Pro gram ex cept io n has o ccurre d.
Break point E ncount ered:
Curre nt Inst ruct io n Point er : 0x 000181f 4 cmp 0, 0, r 03, r0 4
Chapter 4. MDINK32/DINK32 Commands 4-37

Commands

32
4.1.16 help he

help on DINK32 commands MDINK32 Compatible

help <command>

This provides information on the commands implemented by DINK32. Since MDINK
only has a subset of commands, the help command displays different information.

Examples:

DINK3 2_KAHLU A >>he lp
Sandpo int /MPC 8240 D INK COM MAND L IST

Comma nd Mnem onic C ommand Mnemoni c
===== == ==== ==== = ====== ======= =
About . . . a bout , ab As semble assem ble, a s
Bench mark ben chmark, bm Breakpo int op s bkpt , bp
Def in e Al ias defa l ias, da Devic e Di splay devdisp , d d
Devic e Mo di fy devm od, dm De vice Tests d evtest , de v
Disas semble disa ssem, ds Downl oad dow nload, d l
F lash comman ds f la sh, f l F lash u pdate fu -s
Go go Help help, he
Info inf o, in Log ses sion log
Memor y Displ ay mem disp, m d Memory Modi fy memod , mm
Memor y Fi l l mem f i l l , m f Memory Move memov e, mv
Memor y S earch memsrc h, ms M emory Test m emtest , m t
Menu menu, me PCI Bus P robe pcip robe, pp r
PCI Slot Disp lay pci d isp, pd PCI Reg Modi fy pcimod , p m
PCI Con f ig Regs pci conf , pc f R egiste r Displa y re gdisp, r d
Regis ter Mod i fy re gmod, rm Real-T i me Clo ck r tc
Run Al i as runal ias, ra S et Baud Ra te se tbaud, s b
Set I nput set i nput , s i S how SP Rs spr_n ame, s x
Symbo l tabl e symta b, st Transp arent Mode trans par, t m
Trace trac e, t r . (repe at las t comma nd)

DINK3 2_MPC60 3ev >> help
Excime r DINK COMMAN D LIST

Comma nd Mnemoni c Co mmand Mne monic
===== == ======= = == ===== === =====
About . . . about , ab As semble ass emble, as
Bench mark benchma rk, bm Br eakpoi nt ops bkp t , bp
Def in e Al ias defa l ia s, da Di sassem ble dis assem, ds
Downl oad downloa d, d l F l ash co mmands f la sh, f l
Go go He lp hel p, he
Histo ry his tory ,h is t In fo inf o, in
Log s ession log Me mory D isplay mem disp, m d
Memor y Modi f y memod, mm Me mory F i l l mem f i l l , m f
Memor y Info meminfo , mi Me mory M ove mem ove, mv
Memor y Searc h memsrch , ms Me mory T est mem test , m t
Menu menu, m e Re gister Displa y reg disp, r d
Regis ter Mod i fy regmod, rm Re set res et , rs t
Run A l ias runal ia s, ra Se t Baud Rate set baud, s b
Set I nput set inpu t , s i Sh ow SPR s spr _name, sx
4-38 Dink32 R12 User’s Manual

Commands
Symbo l table symtab, st Ta u tau
Trans parent Mode transpa r, tm Tr ace tra ce, t r
. (re peat la st com mand)

For add i t ional d eta i ls a bout a comm and, ple ase type " help <mne monic> "
DINK3 2_MPC60 3ev >>

MDINK
MINIMU M DINK COMMAN D LIST

Comma nd Mnemoni c
===== == ======= =
About . . . about , ab
Downl oad downlo ad, d l
Help help,h e
Go g o
Menu menu, me

DINK3 2_750 > > help go

Individual Commands

DINK3 2_MPC60 3ev >> help go
GO
==
Mnemo nic: go
Synta x: go [<addre ss>|+]
Descr ipt ion: This co mmand al lows the user to execute user co de
star t ing at

the speci f ied addre ss. Ex ecut io n wi l l c ont inu e un t i l a
break point o r

an exce pt ion occurs.
I f the "+" form is used, then exe cut ion wi l l s t ar t at the addres s

def ined by th e conte nts of b i ts 0 -29 of SRR0.

T he user s hould te rminat e thei r co de wi th a n i l lega l opcode or
wi th a

br eakpoin t . The value o f d ink_ loop() is in i t ia l ly p laced in
the U ser

Program ming M odel l i nk reg is ter . I f yo u termi nate y our cod e
wi th a bl r to th at loca t ion yo u wi l l re-ent er DINK . In t he

proce ss,
h owever, you wi l l p er form t he prolo g of the di nk_loo p funct i on

which
wi l l s ave reg isters (ex. l r) of f onto the cu rrent ly def in ed

stack (ie.
the val ue in r1) . Th is may be an unexpe cted si de-ef f ect .

Note: I f a br eakpoin t is e ncounte red, t he user must c lear t he
breakpo int in order for ex ecut ion to co nt inue.

DINK3 2_MPC60 3ev >>
Chapter 4. MDINK32/DINK32 Commands 4-39

Commands

es the
l be
m. On
.34,
4.1.17 log log

Toggles logging

Only available on yellowknife and sandpoint.

• log

This command provides the capability to log a debug session. The command toggl
logging function. When logging is enabled, all characters sent to the terminal wil
echoed to the host port, the second com port, com2 (duart channel B) in the syste
Yellowknife, this will be the alternate com port to the terminal port. See Section 4.1
“setbaud sb".

Example:

DINK3 2_750 > > log

You a re ena bl ing logging ! Af te r th is messa ge al l input and o utput to
your te rminal w i l l be mir rored ou t to the ho st por t . N ow would b e a
t ime to open an ed i tor on the h ost and get i nto ins er t mo de

DINK3 2_750 > > log
Loggi ng disa bled!
4-40 Dink32 R12 User’s Manual

Commands

will
d. In
ed on
at the

ser
nters

ts of
r lines
e end

nding
ss was
If the
ld be
4.1.18 memdisp md

display memory

• memdispaddress

• memdispstart +

• memdispstart - end

This command displays data stored in the specified memory locations. The display
always be aligned on a 16-byte boundary in which the address given will be include
order to keep from saturating the screen, a maximum of four lines of data are display
the screen, followed by a prompt. To continue viewing data, the user enters <return>
prompt. Multiple parameters may be entered.

If the \"+\" form is used, the command will continue to display blocks of memory if the u
enters <return> at the prompts, until the end of memory is reached or until the user e
an \"x\". If the two-address version is used, the command will display the conten
memory between and including each address specified in the range. If more than fou
of data are requested, the user can then enter an \"x\" at the prompt to quit before th
of the display range.

The start address is normalized to the previous quad-word boundary. Likewise, the e
address is normalized to the next quad-word boundary. For example, if the start addre
0x00000104 then the first memory address to be displayed would be 0x00000100.
end address was 0x00000104 then the last memory location to be displayed wou
0x0000010C.

Examp les :
DINK3 2_750 > > memd isp 601 00,602 00
0x000 60100 0 000004 1 00000 042 00 000043 000000 44
0x000 60200 0 000000 0 00000 000 00 000000 000000 00

DINK3 2_750 > > memd isp 601 00-601 30
0x000 60100 0 000004 1 00000 042 00 000043 000000 44
0x000 60110 0 000004 5 00000 046 00 000047 000000 48
0x000 60120 0 000000 0 00000 000 00 000000 000000 00
0x000 60130 0 000000 0 00000 000 00 000000 000000 00

DINK3 2_750 > > memd isp 602 60+
0x000 60260 0 000000 0 00000 000 00 000000 000000 00
0x000 60270 0 000000 0 00000 000 00 000000 000000 00
0x000 60280 0 000000 0 00000 000 00 000000 240024 00
Chapter 4. MDINK32/DINK32 Commands 4-41

Commands

lled in
4.1.19 memfill mf

memory fill

memfill start end data

The range of memory spanning from the starting address to the ending address is fi
with the given 32-bit data pattern. The fill is inclusive of the end point.

Examples:

DINK3 2_750 > > memf i l l 601 00 602 00 8989 8989
DINK3 2_750 > > memf i l l 601 40 601 5c 0000 0000
DINK3 2_750 > > memd isp 601 20-601 60
0x000 60120 8 989898 9 89898 989 89 898989 898989 89
0x000 60130 8 989898 9 89898 989 89 898989 898989 89
0x000 60140 0 000000 0 00000 000 00 000000 000000 00
0x000 60150 0 000000 0 00000 000 00 000000 000000 00
0x000 60160 8 989898 9 89898 989 89 898989 898989 89

DINK3 2_750 > > memf i l l 601 44 601 44 4444 4444
DINK3 2_750 > > memd isp 601 20-601 60
0x000 60120 8 989898 9 89898 989 89 898989 898989 89
0x000 60130 8 989898 9 89898 989 89 898989 898989 89
0x000 60140 0 000000 0 44444 444 00 000000 000000 00
0x000 60150 0 000000 0 00000 000 00 000000 000000 00
0x000 60160 8 989898 9 89898 989 89 898989 898989 89
4-42 Dink32 R12 User’s Manual

Commands

rrent

ed
e is
4.1.20 meminfo mi
mi [-s][-c][-c]

mi displays information about the memory settings. If no option is selected, the cu
memory controller settings are decoded.

Options (for SODIMM/DIMM-based systems only):

• -s -- show I2C ROM info.

• -c -- compare I2C info to memory controller settings for errors. If -c is enter
a second time, the settings will be corrected. Setting the MEMOPT ENV variabl
equivalent to enteringmi -c -c at startup.

Example:

DINK3 2_ARTHU R >>mi
Memor y set t i ngs:

ROM Speed: 30 ns (2 clo cks)
SDR AM Bank 0: D isabled
SDR AM Bank 1: D isabled
SDR AM Bank 2: E nabled

R ange: [000000 00 -> 0 00f f f f f] 1 M Bytes
S peed: 0 /1/1/1

SDR AM Bank 3: E nabled
R ange: [080000 00 -> 0 80f f f f f] 1 M Bytes
S peed: 0 /1/1/1

SDR AM Bank 4: E nabled
R ange: [084000 00 -> 0 94f f f f f] 17 MBytes
S peed: 0 /1/1/1

SDR AM Bank 5: E nabled
R ange: [000000 00 -> 0 00f f f f f] 1 M Bytes
S peed: 0 /1/1/1

SDR AM Bank 6: E nabled
R ange: [000000 00 -> 0 00f f f f f] 1 M Bytes
S peed: 0 /1/1/1

SDR AM Bank 7: D isabled
Chapter 4. MDINK32/DINK32 Commands 4-43

Commands

en
idered

e end

the
n type
4.1.21 memod mm

memory modify

• memodaddress

• memodstart+

• memodstart- end

Memory modify is an interactive command. It will display the contents of the giv
memory address and allow the user to change the value stored there. Memory is cons
to be a contiguous set of 32-bit integers.

The “plus” form causes the command to start at a given address and continue until th
of memory or until the user types “x” to exit the memory modify loop.

The “range” form allows modifications for the inclusive range from start to end. When
end address is reached the memory modify loop is automatically exited. The user ca
“x” at any time to exit the memory modify loop.

• -b for byte

• - h for halfword

• -w for word (default))

Examples:

DINK3 2_750 > > memo d 60100
0x000 60100 : 0x898 98989 : ? 444 44444

DINK3 2_750 > > memo d -b 60 100
0x000 60100 : 0x444 44444 : ? 66

DINK3 2_750 > > memo d -h 60 100
0x000 60100 : 0x664 44444 : ? 333 3

DINK3 2_750 > > memo d -w 60 100
0x000 60100 : 0x333 34444 : ? 222 22222

DINK3 2_750 > > memo d 60110 -60118
0x000 60110 : 0x898 98989 : ? 111 11111
0x000 60114 : 0x898 98989 : ? 222 22222
0x000 60118 : 0x898 98989 : ? 333 33333

DINK3 2_750 > > memo d 60200 +
0x000 60200 : 0x898 98989 : ? 123 41234
0x000 60204 : 0x000 00000 : ? 123 41234
0x000 60208 : 0x000 00000 : ? x
4-44 Dink32 R12 User’s Manual

Commands

two
mand
wo
4.1.22 memove mv

memory move

• memove <start addr> <end addrs> <dest addr>

This command copies data from a block of memory, bounded inclusively by the first
addresses, to a block of memory starting at the third address. The result of this com
will be two identical blocks of memory. If the third address falls between the first t
addresses, an error message is returned and memory will not be modified.

Examples:

DINK3 2_750 > > memf i l l 601 00 601 10 f f f f f f f f
DINK3 2_750 > > memd isp 601 00-601 50
0x000 60100 f
0x000 60110 f f f f f f f f 00000 000 00 000000 000000 00
0x000 60120 0 000000 0 00000 000 00 000000 000000 00
0x000 60130 0 000000 0 00000 000 00 000000 000000 00
0x000 60140 0 000000 0 00000 000 00 000000 000000 00
0x000 60150 0 000000 0 00000 000 00 000000 000000 00

DINK3 2_750 > > memo ve 6010 0 6011 0 60140
DINK3 2_750 > > memd isp 601 00-601 50
0x000 60100 f
0x000 60110 f f f f f f f f 00000 000 00 000000 000000 00
0x000 60120 0 000000 0 00000 000 00 000000 000000 00
0x000 60130 0 000000 0 00000 000 00 000000 000000 00
0x000 60140 f
0x000 60150 f f f f f f f f 00000 000 00 000000 000000 00
Chapter 4. MDINK32/DINK32 Commands 4-45

Commands

y the
n error

sses of

200
4.1.23 memsrch ms

memory search

ms <address> <address> <data>

This command searches for a 32-bit data pattern in the inclusive block specified b
range of the two addresses. If the second address is less than the first address, a
message is returned and no search is performed. If the pattern is found, the addre
matching data are printed to the screen. The command,

ms 50100 50200 fff01234
searches for the data pattern "fff01234" in memory locations 0x50100 to 0x50
inclusive, and prints the matching addresses.

Example:

DINK3 2_603e >> md 6 0100-60 120
0x000 60100 10f f7f 00 00f f f f00 f f2023f f f f040 2f f
.
0x000 60110 00f f f f00 00 f f f f00 f f5008f f f f1002 f f
.P.
0x000 60120 00ef ef00 00 f f f f00 f f0100f f f f0030 f f
.0 .

DINK3 2_603e >> ms 6 0100 60 120 f f 5008f f
0x00 060118
4-46 Dink32 R12 User’s Manual

Commands

evice

ces

es.
t

all
st is

d.

ing
4.1.24 memtest mt

memory test

• mt [-d dev][-b|-h|-w][-l loop][-t][-h][-a][-q] addr1-addr2

The memtest command performs various memory tests on local memory or d
registers. The basic format is:

mt [-d dev][-b|-h|-w][-l loop][-t][-h][-a][-q] addr1-addr2

• -d device Test the indicated device instead of memory. Use the "dm"
command to get a list of devices. NOTE: testing non-volatile I2C EEPROM devi
can destroy valuable information as well as reduce the life expectancy of those
devices.

• -b, -h, -w Test memory or device using byte, half-word or word access
Memory can be tested in any size, while devices may be limited to bytes. If no
specified, the default size is word for memory and bytes for devices.

• -l loop-cnt Specifies the number of times the memory test should perform
tests. If not specified, each test is performed once, while if '0’ is specified, the te
run forever.

• -x If specified, the testing halts immediately when any error is foun
This is useful for extended passes to trap on any error.

• -q Perform only a quick test.

• -a Perform all defined memory tests (can be slow).

• -n list Perform only specified memory tests. Tests are selected by add
one or more of the following letters to "list":

— -0 : walking 0's test (non-destructive, slow)

— -1 : walking 1's test (non-destructive, slow)

— -A : address=data test (destructive)

— -Q : quick pattern test (non-destructive)

— -R : random pattern test (non-destructive)

— -S : write sensitivity test (destructive, slow)

• -t Show elapsed time (only on systems with a real-time clock).
Chapter 4. MDINK32/DINK32 Commands 4-47

Commands

e
w
safe
• addr1-addr2 Specifies the starting and ending address, respectively. Th
addresses must be aligned to the size of the access (as specified by the-b/-h/-
option) Note: be careful not to test memory regions used by DINK. 0x90000 is a
starting point for DINK 11.0.2 or earlier.

Examples:

DINK3 2_ARTHU R >>mt -q 900 00-1f f f f fc
T his qui ck ly t ests th e defau l t

32MB SDRAM D IMM
on Y el lowkn i fe/Sa ndpoint s ystems .

DINK3 2_ARTHU R >>mt -q 900 00-1f f f f fc
PAS S 1:

Qui ck Test .PAS S
Compl eted te sts: N o error s.

DINK3 2_ARTHU R >> m t -b -a - l 0 -x 9000 0-1f f f f f f
Use al l def ined test to test 32MB of memory, us in g on ly by te
acces ses. R epeat the tes t fore ver unl ess an error occurs .

DINK3 2_ARTHU R >>mt -b -a - l 0 - x 90000 -1f f f f f
PAS S 1:

Qui ck Test .PAS S
Rand om Patt ern Tes t .PAS S
Walk ing 1's Test .PAS S
Walk ing 0's Test .PAS S
Addr ess Mar ch Test .PAS S
Wri t e Sensi t iv i ty Test .PAS S

DINK3 2_ARTHU R >>m t -n S -t 900 00-1f f f f f
Test 32M B using on ly the wr i t e s ensi t i v i ty test , a nd report t he
elaps ed t ime .

DINK3 2_ARTHU R >>mt - t -n S 9000 0-A0000
PAS S 1:

Wri t e Sensi t iv i ty Test .PAS S
Compl eted te sts: N o error s.
Elaps ed t ime : 0:00 :16
DINK3 2_ARTHU R >>
4-48 Dink32 R12 User’s Manual

Commands

tion
4.1.25 menu me

show list of DINK32 commands MDINK32 Compatible

menu (same as “help”)

This command will list all of the commands that are available in the current implementa
of DINK32.

Examples:

DINK3 2_ARTHU R >>me nu
Excime r DINK COMMAN D LIST

Comma nd Mnemoni c Co mmand Mne monic
===== == ======= = == ===== === =====
About . . . about , ab As semble ass emble, as
Bench mark benchma rk, bm Br eakpoi nt ops bkp t , bp
Def in e Al ias defa l ia s, da Di sassem ble dis assem, ds
Downl oad downloa d, d l F l ash co mmands f la sh, f l
Go go He lp hel p, he
Histo ry his tory ,h is t In fo inf o, in
Log s ession log Me mory D isplay mem disp, m d
Memor y Modi f y memod, mm Me mory F i l l mem f i l l , m f
Memor y Info meminfo , mi Me mory M ove mem ove, mv
Memor y Searc h memsrch , ms Me mory T est mem test , m t
Menu menu, m e Re gister Displa y reg disp, r d
Regis ter Mod i fy regmod, rm Re set res et , rs t
Run A l ias runal ia s, ra Se t Baud Rate set baud, s b
Set I nput set inpu t , s i Sh ow SPR s spr _name, sx
Symbo l table symtab, st Ta u tau
Trans parent Mode transpa r, tm Tr ace tra ce, t r
. (re peat la st com mand)

For add i t ional d eta i ls a bout a comm and, ple ase type " help <mne monic> "

MDINK 32_ARTH UR >>m enu
MINIMU M DINK COMMAN D LIST

Comma nd Mnemoni c
===== == ======= =
About . . . about , ab
Downl oad downloa d, d l
F lash ram to rom fw -e
Flash displa y f l -ds i
Help help,he
Go go
Menu menu, m e

For add i t ional d eta i ls a bout a comm and, ple ase type " help <mne monic> "
Chapter 4. MDINK32/DINK32 Commands 4-49

Commands

evice
ice is
4.1.26 pciconf pcf

pci probe command (on systems with a PCI bus)

pciconf <devNum>

This command displays 26 common PCI configuration registers, and 16 additional d
specific registers of a PCI device. The devNum depends on which PCI slot the dev
attached to, and it can be found by executing the ppr (PCI Device Probe) command.

Example:

DINK3 2_750 > > ppr
devNo P CI ADR . DEVICE ID VE NDOR I D
===== = ====== = ====== === === ======
11 0 x80005 800 0x0565 0x 10ad

DINK3 2_750 > > pcf 11
ADDR. V ALUE DESCRI PTION
===== = ==== ====== =====
0x00 0 x10ad Vendor ID
0x02 0 x0565 Device ID
0x04 0 x0007 PCI co mmand
0x06 0 x0200 PCI st atus
0x08 0 x04 Revis i on ID
0x09 0 x00 Standa rd Prog rammin g Inter face
0x0a 0 x01 Subcla ss code
0x0b 0 x06 Class code
0x0c 0 x00 Cache l ine si ze
0x0d 0 x00 Latenc y t imer
0x0e 0 x80 Header type
0x0f 0 x00 BIST c ontro l
0x10 0 x00000 000 Base A ddress Regist er 0
0x14 0 x00000 000 Base A ddress Regist er 1
0x18 0 x00000 000 Base A ddress Regist er 2
0x1c 0 x00000 000 Base A ddress Regist er 3
0x20 0 x00000 000 Base A ddress Regist er 4
0x24 0 x00000 000 Base A ddress Regist er 5
0x28 0 x00000 000 Cardbu s CIS P ointer
0x2c 0 x0000 Subsys tem Ven dor ID
0x2e 0 x0000 Subsys tem ID
0x30 0 x00000 000 Expans ion ROM Base Address
0x3c 0 x00 In terrupt l ine
0x3d 0 x00 In terrupt p in
0x3e 0 x00 MI N_GNT
Type <return > to c ont inue or "x " to qu i t >>
4-50 Dink32 R12 User’s Manual

Commands

The
cuting
4.1.27 pcidisp pd

pci display (on systems with a PCI bus)

pcidisp <devNum> <regNum>

This command reads a configuration register (regNum) of a PCI device (devNum).
devNum depends on the PCI slot the device)is attached, and it can be found by exe
the ppr (PCI Device Probe) command..

Example:

DINK3 2_750 > > pcid isp 11 10

0x10 0x12345 678 Ba se Addr ess Re gister 0
Chapter 4. MDINK32/DINK32 Commands 4-51

Commands

PCI
and it

first
value.

r.
4.1.28 pcimod pm

pci modify (on systems with a PCI bus)

pcimod <devNum> <regNum>

This command is used to modify the content of a configuration register (regNum) of a
device (devNum). The DevNum depends on the PCI slot the device is attached to,
can be found by executing the ppr (PCI Device Probe) command. This command
displays the current value of the desired register, then asks the user to enter the new

This command does not return an error if the register requested is a read-only registe

Example:

DINK3 2_750 > > pcim od 11 1 0
0x10 0x00000 000 Ba se Addr ess Re gister 0
New V alue? 1 234567 8

DINK3 2_750 > > pcid isp 11 10
0x10 0x12345 678 Ba se Addr ess Re gister 0
4-52 Dink32 R12 User’s Manual

Commands

er any
yed:
4.1.29 pciprobe ppr

pci probe command (on systems with a PCI bus; non-excimer build)

pciprobe

This command scans all legal PCI device numbers (from 10 to 31) and detects wheth
device is attached to them. If a PCI device is found, the following information is displa

Device number, PCI address, Device Id and Vendor Id.

Example:

DINK3 2_750 > > pcip robe

Dev # PCI AD DR D EVICE ID VENDOR ID CL ASS
===== ====== ==== = ======= = ==== ===== = ====== ======= ===

11 0x8000 5800 0 x0565 0x10ad Br idge I nter fac e
12 0x8000 6000 (canno t probe sel f)
15 0x8000 7800 0 x2000 0x1022 Ne twork Inter fa ce
Chapter 4. MDINK32/DINK32 Commands 4-53

Commands

82

user
rs or

notes
urpose
mber.

ster
ents

ial
ecial
lly.

white
nd.
if an

g it is
4.1.30 regdisp rd

display registers

Syntax:
rd[-v][-e][r|rx|rx+|rx-ry|f|fx|fx+|fx-fy|sx|spr_name|northbridge|nb|mpc106|mpc107|mpc
40]

• regdisp r - entire general register family

• regdisp rx - one general purpose register

• regdisp rx+ - from rx to r31

• regdisp rx-ry - from rx to ry

• regdisp f - entire floating point family

• regdisp fx - one floating point register

• regdisp fx+ - from fx to f31

• regdisp fx-fy - from fx to fy

• regdisp SPR by name- view spr by name, such as hid0, contents.

• regdisp sx - one special purpose register

• regdisp vx - one altivec vector register

• regdisp v+ - all altivec vector registers

• regdisp -v - verbose display, only valid ifenv -c, env rdmode=e is set.

This will display the contents of the specified registers. This command offers the
several options for viewing the registers. The whole family of general purpose registe
floating point registers can be viewed by typing “regdisp r” or “ regdisp f” respectively. A
single register can be viewed by specifying rx, fx, or sx, where the first character de
the register family and the second character denotes the register number. Special p
registers may be selected by their standard abbreviations as well as their register nu

The “plus” form displays the contents of the register family starting with the given regi
up to and including the last register in that family. The “range” form displays the cont
of the registers from rx to ry or from fx to fy.

Note that the “entire family”, “plus”, and “range” forms are not available in the spec
purpose register family. This is due to the architectural design feature in which the sp
purpose registers all have unique register numbers and are not numbered sequentia

The above parameter forms can be combined by separating them with a comma or
space. This will display multiple registers in different register families with one comma
Note that the register display is aligned on an even-numbered register boundary, so
even numbered register needs to be displayed, the odd-numbered register followin
4-54 Dink32 R12 User’s Manual

Commands

ibility
,
Rs
ed. To

,

3

also displayed.

Most of the SPRs can suppress the verbose mode. This is still the default for compat
purposes. If suppressed you can get verbose mode by with the following commands
rd -v and you can dord -e to get the fields explained (where possible). Not all SP
are quietened, just the most interesting ones. The 601 registers are not suppress
enable quiet mode use these commands:env -c, env rdmode=e , see Section 4.1.11
“env env".

Verbosity is suppressed for:

• XER SDR1 CR IABR PMC4 LR SRR0 FPSCR MMCR0 SIA

• CTR SRR1 MSR PMC1 THRM2 DSISR SPRGx SRx PMC2 THRM

• DAR EAR HID1 MMCR1 THRM1 DEC PVR PMC3 ICTC

• L2CR USIA HASH1 HID1 DBATxU

• UPMC2 UMMCR1 HASH2 SDA DBATxL

• UPMC3 UMMCR0 IMISS DABR TBU

• UPMC4 DMISS ICMP IBATxU TBL

• UPMC1 DCMP RPA IBATxL MSSCR0

• MSSCR1 UBAMR PIR UMMCR2

• VRSAVE VSCR MMCR2 BAMR

Field descriptions are interpreted for:

• DBATxU DBATxL SRx PVR IBATxU IBATxL HID1 L2CR

• CR FPSCR MSR IABR THRM1 THRM2 THRM3 L2CR DABR MPC10x:
PICR1/A8 and PICR2/AC

Examples:

DINK3 2_750 > > regd isp r1- r2, f4- f6,h id0
gpr00 : 0x000 00000 gpr01: 0x0006 0000
gpr02 : 0x000 00000 gpr03: 0x0000 68ac
fpr04 : 0x000 000000 0000000 fpr05 : 0x000 000000 0000000
fpr06 : 0x000 000000 0000000 fpr07 : 0x000 000000 0000000

DINK3 2_750> regdis p hid0
Hardw are Imp lement at ion D epende nt 0
-- -
h id0 : 0x800 10080
10000 0000000 000100 0000001 000000 0
Chapter 4. MDINK32/DINK32 Commands 4-55

Commands

ee the
+. === m aster checkst op ena ble
+. === m icrocod e sel f test c heckst op
latch
+. = == check stop fo l lowing a machi ne
check
+. = == mul t i -s ide hi t in the t lb
+. == = mul t i -s ide hi t in cache directo ry
+. === sequen cer ha ng
+. === dispatc h t ime -out
+. === b us addr ess pa r i ty er ror
+. === bu s data par i ty error
+. = == cac he par i ty err or
+. == = inva l id mic rocode instru ct ion
+. === pio b us prot ocol e rror
+++. === reserv ed
+++++ +++++++ +++. . === che ckstop enable s
+. == = error in ma in cach e (in array i n i t)
+ === reserv ed

DINK3 2_750 > > regd isp r1 f2 r3 f4 r8 s 5
gpr00 : 0x000 00000 gpr01: 0x0006 0000
fpr02 : 0x000 000000 0000000 fpr03 : 0x020 0feed0 10cab00
gpr02 : 0x000 00000 gpr03: 0x0000 68ac
fpr04 : 0x000 000000 0000000 fpr05 : 0x000 000000 0000000
gpr08 : 0x000 00000 gpr09: 0x0000 0000

DINK3 2_750 > > regd isp r23 +
gpr22 : 0x2ca b4dad gpr23: 0x0000 0000
gpr24 : 0x000 00000 gpr25: 0x0000 0000
gpr26 : 0x000 00000 gpr27: 0x0070 0007
gpr28 : 0x000 00000 gpr29: 0x0000 0000
gpr30 : 0x00f ace00 gpr31: 0x0000 0000

DINK3 2_MAX > >rd v2
vr 2 : 0x00 000000 0000 0000 000000 00 0 0abcdef

DINK3 2_MAX > >rm v2
vr 2 : 0x00 000000 0000 0000 000000 00 0 0abcdef : ? 123456 78

DINK3 2_MAX > >rd v2
vr 2 : 0x00 000000 0000 0000 000000 00 1 2345678

DINK3 2_MAX > >rd v
vr 0 : 0xf f
vr 1 : 0xf f
vr 2 : 0x00 000000 0000 0000 001234 56 7 8abcdef
. . .
vr 29 : 0xf f
vr 30 : 0xf f
vr 31 : 0x00 000000 1234 5678 abcdef 00 8 7654321

This example contrasts the verbose mode versus the non verbose mode of display. S
command env.
4-56 Dink32 R12 User’s Manual

Commands
DINK3 2_ARTHU R >>rd msr
MSR : 0x0000 3930

POW =0 EE= 0 PR= 0 FP=1 ME=1 FE0=1 SE=0
BE= 0 FE1= 1 IP= 0 IR=1 DR=1 RI=0 LE=0
TLB /GPR=0 VMX =0 PM= 0

DINK3 2_ARTHU R >>rd -v msr
Machi ne Stat e Regi ster
- -
- - - - - -
MSR : 0x0000 3930
00000 0000000 000000 1110010 011000 0
+++++ +++++++ +. === r eserve d

+. === a ct ivat es powe r mana gement
+. === t lb gpr over la y enab le

+. === r eserve d
+. === e xterna l in ter rupt e nable

+ === p r iv i le ge leve l
+. === f loat in g-point avai l able

+. === m achine check enable
+. === f loat ing point exc ept ion poi nt 0

+. === s ingle- step tr ace en able
+. === r eserve d

+. = == f loat ing poin t except ion point 1
+ === r eserve d

+. === e xcept i on pref ix
+. === in struct ion addr ess tran slat io n

+. . . . === d ata ad dress t ransla t ion
+. . . === r eserve d
+. . === per forman ce moni tor mar ked mod e

+. === RES ET o r MC exc ept ion reco verabl e
+ === l i t t le endian mode e nable

DINK3 2_ARTHU R >>
Chapter 4. MDINK32/DINK32 Commands 4-57

Commands

c82

ntire
ified
e data
ne
the

, the
ill do

nd not
yte,

.

4.1.31 regmod rm

modify registers

Syntax:
rm[-v][-e][r|rx|rx+|rx-ry|f|fx|fx+|fx-fy|sx|spr_name|northbridge|nb|mpc106|mpc107|mp
40]

• regmod r - entire general register family

• regmod rx - one general purpose register

• regmod rx+ - from rx to r31

• regmod rx-ry - from rx to ry

• regmod f - entire floating point family

• regmod fx - one floating point register

• regmod fx+ - from fx to f31

• regmod fx-fy - from fx to fy

• regmod SPR by name- view spr by name, such as hid0, contents.

• regmod sx - one special purpose register

• regmod vx - one altivec vector register

• regmod v+ - all altivec vector registers

• regmod -v - verbose display, only valid ifenv -c, env rdmode=e is set.

This command modifies the contents of the specified registers. r, f will access the e
general purpose or floating point family; rx, fx, sx, or spr_name will access the spec
register. Multiple parameters may be entered. The user can enter <return> to leav
unmodified, or an \"x\" to quit. If the \"+\" form is used, the command will display o
register at a time and prompt the user for a new value. It will continue to do this for
entire family starting with the specified register. If the two-address version is used
command will display one register at a time and prompt the user for a new value. It w
this for all the registers specified in the range.

Note that special purpose, and mpc106 registers can only be accessed individually a
as a family or with the \"+\" or range forms. mpc106 supports -b, -h, -w options for b
halfword, and word access.

Most of the SPR’s can suppress the verbose mode, see Section 4.1.30, “regdisp rd"

Examples:

DINK3 2_603e >> rm r 6
gpr06 = 0x00 000000 : ? 12 345678
4-58 Dink32 R12 User’s Manual

Commands
DINK3 2_603e >> rd r 6
gpr06 : 0x123 45678 gpr07: 0x0000 0000

DINK3 2_603e >> rm m pc106 7 0
ADDR. VALUE DESCRI PTION
===== ===== ====== =====
0x70 0x0000 Power managem ent co nf ig . 1
new v alue ? 1234

DINK3 2_603e >> rd m pc106 7 0
ADDR. VALUE DESCRI PTION
===== ===== ====== =====
0x70 0x1234 Power managem ent co nf ig . 1

DINK3 2_603e >> rm f4- f7, s8
"d isp lays the co ntents of f loat in g point reg is ter 4 and p rompts t he
user for ne w data, the n i ncremen ts throug h registe rs 5-7. Then t he
conte nts of s8 are displa yed an d can b e modi f ied.”

DINK3 2_603e >> rm mpc106 -h 0xa a
" s ets the content s of the mpc 106 r egiste r in hal fword star t ing at
of fse t 0xaa. ”
Chapter 4. MDINK32/DINK32 Commands 4-59

Commands

the

ssed
4.1.32 rtc rtc

modify/display real time clock <yellowknife and sandpoint only>

rtc [-s][-w]

The rtc command allows setting or displaying the real-time clock available on
Yellowknife or Sandpoint systems.

• -s Sets the clock; you are prompted for the date and time.

• -w Watches the clock. The date and time are repeated until a key is pre
on the keyboard.

If no option is given, the current date and time are displayed.

Example:

DINK3 2_KAHLU A >>rt c
2000/ 00/14 0 3:38:1 4
DINK3 2_KAHLU A >>rt c -s
Year : 99
Month : 06
Day : 21
Hour : 11
Minut e : 48
Secon d : 00
Set t o: 1999 /06/21 11:48: 00
1999/ 06/21 1 1:48:0 0
DINK3 2_KAHLU A >>
4-60 Dink32 R12 User’s Manual

Commands

, the
ands.
4.1.33 runalias ra

run alias

runalias

This instruction will read in the string which the user has defined as an alias. Then
commands in this string will be executed sequentially. Also see the da and env comm

Example:

DINK3 2_750 > > runa l ias

The r unal ia s comma nd can also be emb edded wi th in a com mand l ine. F or
examp le, i f the al ias st r ing ha s previ ously been de f ined as
t r +; rd r

Typin g the c ommand :

DINK3 2_750 > > log ; t race 2100; runal ia s ; log
is id ent ica l to ty ping

DINK3 2_750 > > log ; t race 2100; t r +; r d r ; l og
See d efa l ias for a comple te exa mple.
Chapter 4. MDINK32/DINK32 Commands 4-61

Commands

rt (-k)
te
te for

l",

al

ne
and,

tly.
4.1.34 setbaud sb

displays or changes the speed of the serial port <mdink32 compatible>

• setbaud [-h | -k]

• setbaud [-h | –k] rate

This command sets the baud rate for the host serial port (-h) or the keyboard serial po
by specifying the appropriate flag followed by a valid ra
(2400,4800,9600,19200,38400,57600). If only a flag is specified, the current baud ra
that serial port is returned.

• Example: "sb -h " would return the current baud rate for the host serial port.

• Example: "sb -k 9600 " would set the host serial port baud rate to 9600.

4.1.34.1 Host versus Keyboard.
Used by log , sb,dl, and tr commands. See Section 4.1.10, “download d
Section 4.1.17, “log log", and Section 4.1.37, “transpar tm".

• The keyboard serial port (-k) indicates serial port com1, which is used for norm
communication between the terminal emulator and the evaluation board. Thussb
-k anddl -k indicate to use the current serial port. Thus for,dl -k , use the
terminal emulator,transfer send text file, feature on the terminal
emulator connected to com1.

• The host serial port (-h) indicates serial port com2, which is not normally used. O
can connect another terminal emulator to this serial port and with the dl -h comm
download a file. This port is only available with the Sandpoint and Yellowknife
platforms.

NOTES:

• The maximum baud rate on the Yellowknife and Sandpoint platform is 38400.

• The Excimer and Maximer platform will not return the current baud rate correc

• The default baud rate on all platforms is 9600.

Examples:

MDINK 32_603e >> set baud -k 57600

Baud rate c hangin g to 57 600. . . BØ

<NOTE : u ser must th en change th e b aud rate on th e termina l to
corre spond t o 5760 0>
4-62 Dink32 R12 User’s Manual

Commands
MDINK 32_603e >>
Chapter 4. MDINK32/DINK32 Commands 4-63

Commands

their
ion is to
annot
dress
4.1.35 symtab st

displays DINK32 symbol table information

• symtab -c

• symtab -d

This command shows selected DINK symbols and user defined symbols and
associated addresses. User symbols can be defined by the as command. The -c opt
clear all user symbols. The -d option is to delete a single user symbol. The user c
delete or clear DINK's symbols. The symbols in the table can be used as the ad
(@symbol) of the branch instruction while executing the as command.

Examples:

DINK3 2_603e >>as 6 0000+
0x000 60000 0x f f0000 ef fse l . f24, f00 , f00, f 03 br1:x or
r1, r2 , r3
0x000 60000 0 xf f000 0ef BRA NCH LA BEL br1 :
0x000 60000 0xf f0000e f fse l . f 24, f00, f0 0, f03 xor r 3, r4, r 5
0x000 60004 0x f fc037 fc fnmsu b f30, f0 0, f31, f 06 br2:x or
r1, r5 , r6
0x000 60004 0 xf fc03 7fc BRA NCH LA BEL br2 :
0x000 60004 0 xf fc03 7fc fnm sub f30, f00, f31, f0 6 x

VERIF YING BR ANCH L ABELS.. . . .

DONE VERIFYI NG BRA NCH LAB ELS!
DINK3 2_603e >> ds 6 0000
0x000 60000 0 x7c832 a78 BRA NCH LA BEL br1 :
0x000 60000 0 x7c832 a78 xor r03, r04, r05
DINK3 2_603e >>as 6 0100
0x000 60100 0x 85f f f f c4 lwzu r 15, 0xf fc4(r31) br3:x or
r5, r6 , r7
0x000 60100 0 x85f f f fc4 BRA NCH LA BEL br3 :
0x000 60100 0 x85f f f fc4 lwz u r15, 0xf fc 4(r31) x

VERIF YING BR ANCH L ABELS.. . . .

DONE VERIFYI NG BRA NCH LAB ELS!
DINK3 2_603e >> st
Curre nt l is t of DI NK bran ch lab els:

KEY BOARD: 0x0
get _char: 0x1 e5e4

wr i te _char: 0x5 fac
TBas eIn i t : 0x3 9c4

TB aseRead Lower: 0x3 9e8
TB aseRead Upper: 0x3 a04

CacheIn hib i t : 0x3 a20
I nvEnL1D cache: 0x3 a40

DisL1D cache: 0x3 a88
4-64 Dink32 R12 User’s Manual

Commands
I nvEnL1I cache: 0x3 aac
DisL1I cache: 0x3 b00

Burs tMode: 0x3 bfc
Ram InCBk: 0x3 c3c

RamIn WThru: 0x3 c7c
dink _loop: 0x5 660

dink_p r int f : 0x6 368

Curre nt l is t of US ER bran ch lab els:
br1: 0x6 0000
br2: 0x6 0004
br3: 0x6 0100

DINK3 2_603e >> st - d br2
DINK3 2_603e >> st
Curre nt l is t of DI NK bran ch lab els:

KEY BOARD: 0x0
get _char: 0x1 e5e4

wr i te _char: 0x5 fac
TBas eIn i t : 0x3 9c4

TB aseRead Lower: 0x3 9e8
TB aseRead Upper: 0x3 a04

CacheIn hib i t : 0x3 a20
I nvEnL1D cache: 0x3 a40

DisL1D cache: 0x3 a88
I nvEnL1I cache: 0x3 aac

DisL1I cache: 0x3 b00
Burs tMode: 0x3 bfc

Ram InCBk: 0x3 c3c
RamIn WThru: 0x3 c7c

dink _loop: 0x5 660
dink_p r int f : 0x6 368

Curre nt l is t of US ER bran ch lab els:
br1: 0x6 0000
br3: 0x6 0100

DINK3 2_603e >> st - c
DINK3 2_603e >> st
Curre nt l is t of DI NK bran ch lab els:

KEY BOARD: 0x0
get _char: 0x1 e5e4

wr i te _char: 0x5 fac
TBas eIn i t : 0x3 9c4

TB aseRead Lower: 0x3 9e8
TB aseRead Upper: 0x3 a04

CacheIn hib i t : 0x3 a20
I nvEnL1D cache: 0x3 a40

DisL1D cache: 0x3 a88
I nvEnL1I cache: 0x3 aac

DisL1I cache: 0x3 b00
Burs tMode: 0x3 bfc

Ram InCBk: 0x3 c3c
RamIn WThru: 0x3 c7c

dink _loop: 0x5 660
dink_p r int f : 0x6 368
Chapter 4. MDINK32/DINK32 Commands 4-65

Commands
Curre nt l is t of US ER bran ch lab els:
DINK3 2_603e >>
4-66 Dink32 R12 User’s Manual

Commands

no
TAU
age

NV
4.1.36 tau tau

TAU Thermal Assist Unit CONTROL

tau [-c cal][-w][-fh]

Description: This command displays or calibrates the TAU (Thermal Assist Unit). If
option is entered, the current temperature is displayed (with or without calibration).
calibration values are always saved in the environment variable TAUCAL (if ENV stor
is available).

Flags:

• -c Calibrate the TAU to the actual temperature (in ^C).

• -w Watch the TAU (until a key is pressed)

• -fh Show results in Fahrenheit.

TAU calibration values are always saved in the environment variable TAUCAL, if E
storage is available.

Example:

DINK3 2_ARTHU R >>ta u
Tjc = 58 ^C (uncal ibrated)
DINK3 2_ARTHU R >>ta u -c 18
Tjc = 18 ^C
DINK3 2_ARTHU R >>ta u
Tjc = 18 ^C
DINK3 2_ARTHU R >>ta u - fh
Tjc = 32 ^F
Chapter 4. MDINK32/DINK32 Commands 4-67

Commands

ss to
irectly

ll be
yping
4.1.37 transpar tm

(transparent mode for com2; non-excimer build)

• transpar

This command will put DINK32 into a transparent mode, giving the user direct acce
the host. In other words, as the user types data into the keyboard, that data is sent d
to the host serial port. In addition, data that comes in from the host serial port wi
forwarded to the keyboard serial port. The user can exit from transparent mode by t
<ctrl>-a.

See Section 4.1.10, “download dl", and Section 4.1.37, “transpar tm"

Example:

DINK3 2_750 > > tm

<cntr -a>
4-68 Dink32 R12 User’s Manual

Commands

ecute
ss is
form
SRR0
ntrol is
el or
4.1.38 trace tr

single step trace

• trace address

• trace +

This allows the user to single-step through a user program. The microprocessor will ex
a single instruction, and then return control back to the firmware. If a specific addre
given, then a single instruction is executed from that address. However, if the “plus”
is used, then the address of the instruction to execute is derived from bits 0-29 of the
(Machine Status Save / Restore) register. After the instruction has been executed, co
returned to the firmware (DINK32) and the user can examine the programming mod
continue to trace through instructions.

Example:

DINK32_750 >> ds 2100

0x00002100 0x7c0802a6 mfspr r00, s0008

DINK32_750 >> trace 2100

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x00002104 stw r13, 0xfff8(r01)

DINK32_750 >> trace +

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x00002108 add r03, r00, r01

DINK32_750 >> .

A Run Mode or Trace exception has occurred.

Current instruction Pointer: 0x0000210c mfspr r04, s0274
Chapter 4. MDINK32/DINK32 Commands 4-69

Commands

rs.
Chapter 5 DINK32 Command Form
Summary

1. .(period) . - repeat last command

2. about about - displays version information

3. assemble as -address- assemble at one address

4. bkpt bp - set, delete, list breakpoints

5. defalias da -command list - define alias for listed commands

6. devdisp dd list - display contents of device registers

7. devmod dm list - modify device data in device registers.

8. devtest devlist - perform an I/O test on Kahlua

9. disassem ds -address - disassemble at one address

10.download dl - download S-Record file to board RAM or flash

11.env env- Environment controls

12.flash fl - flash commands

13.fupdate fu - copy PCI boot rom to local PPMC

14.fw fw -e - erase all of Flash memory and load RAM to ROM (mdink32)

15.go go -address - execute from given address

16.help he -command - show more information on command

17.log log - record debug session to host

18.memdisp md -address - display memory at one address

19.memfill mf - start, end, data - fill memory block with data pattern

20.meminfo mi - displays information about the memory settings

21.memod mmaddress - modify memory at one address

22.memove mv -start, end, dest - move memory block to destination

23.memsrch ms -start, end, data - search memory block for data

24.memtest mt -perform various memory tests on local memory or device registe

25.menu me -show list of available commands

26.pciconf pcf - display all config registers of a PCI device

27.pcidisp pd - display contents of a PCI config register

28.pcimod pm - modifies PCI device config register data

29.pciprobe ppr - scans for PCI devices

30.regdisp rd - display entire general register family
5-70 Dink32 R12 User’s Manual

Commands
31.regmod rm - modify entire general register family

32.rtc rtc - set and/or display the real time clock

33.runalias ra - execute the commands in the alias

34.setbaud sb -display or change the serial port baud rate

35.symtab st -displays DINK32 symbol table

36.tau tau display temperature from the Thermal Assist Unix

37.transpar tm - transparent mode Yellowknife only

38.trace tr -address trace from given address
Chapter 5. DINK32 Command Form Summary 5-71

S-Record Compression/Decompression

the
C,
th
press

d as
roper

ink.h,
must

p
ile.

or

r, cl

ard.
Chapter 6 Utilities

6.1 S-Record Compression/Decompression

6.1.1 Overview
To assist in the compression of S-Record files, a conversion utility is included with
source code for DINK32. The dcomp utility is written in portable ANSI-compliant
which is easily compiled under UNIX or a PC. The dcomp utility performs bo
compression and decompression of S-records. It is provided so that the user may com
their S-record before downloading them to the board. They will automatically detecte
compressed S-records by DINK and decompressed before being written to the p
memory locations.

6.1.2 Building

6.1.2.1 Files
The dcomp package consists of two c files, dc_tb.c, dc_unix.c and three header files, d
errors.h, and sublib.h. However, these header files call other header files, so dcomp
be built in the dink32 source directory.

6.1.2.2 Modification of header file
The dink.h file uses the #define macroON_BOARD, which is set by config.h. Since dcom
must be built with ON_BOARD undefined, it is necessary to modify the config.h f
Ensure that you return config.h to it’s released form before trying to build dink32
mdink32. At about line 84 of the config.h file, you will find the line,#define
ON_BOARD. Comment out this line. After the change this code will be:

/* For trying to build a version that runs under Unix,

comment out the #define for ON_BOARD. */

/* #define ON_BOARD */

6.1.2.3 Build command
Use any available c compiler, such as UNIX cc, or gcc, or Metaware, or PC compile
(Microsoft c compiler). This description uses the genericCCfor the compiler invocation.

CC dc_unix.c dc_tb.c -o dcomp

This command will build the executabledcomp. Dcomp will run on the machine on which
it is built. It does not run on the Excimer and Maximer or Yellowknife and Sandpoint bo
6-72 Dink32 R12 User’s Manual

bat_decode

The

ic
6.1.3 Command syntax

Usage :
dcom p -opt ions <i nput_f i le >ou tput_f i le .

Opt io ns:
-c C ompres s an SR ecord f i le .

-e Expand a pr evious ly compre ssed f i l e into an SRec ord f i le .
Examp les:

dcom p -c < a.out .m x >a.o ut .cmp
dcom p -e < a.out .c mp >a. out .mx

Note th at th is pr ogram us es std in and stdou t , so the < s ymbol an d >
symbo l are r equi re d.

examp le:

Unix $ dcom p -c < dink32. src >c _dink32 .src
This comman d wi l l compr ess th e f i le d ink3 2.src and cr eate t he
compr essed f i le c_ dink32. src.

Unix $ dcom p -e < c_dink3 2.src >e_dink 32.src
This comm and w i l l decomp ress (expan d) the f i le c_di nk32.s rc a nd
creat e the d ecompr essed (i .e . e xpanded) f i le e_dink 32.src .

e_din k32.src is eq uivalen t to t he or ig inal d ink32.s rc f i l e .

UNIX $ ls - l c_ dink32. src e_ dink32. src di nk32.sr c
-rw-r - - - - - 1 maur ie 361189 Jan 22 09:43 c_dink 32.src
-rw-r - - - - - 1 maur ie 597181 Jan 22 09:41 dink32 .src
-rw-r - - - - - 1 maur ie 597181 Jan 22 10:41 e_dink 32.src

6.2 bat_decode

6.2.1 Overview
The bat_decode program will decode BATU and BATL hex values supplied in hex.
value of the bats will be displayed and described.

6.2.2 Building
To compile and link the program use this command. This description uses the generCC
for the compiler invocation.:

CC bat_decoder.c -o bat_decoder.out

6.2.3 Command syntax

Usage :
Chapter 6. Utilities 6-73

bat_decode

must be
iptions
bat_decoder.out < inputfile > outputfile

Examp les:

bat_d ecoder. out < bat . in > bat . out

Note th at th is pr ogram us es std in and stdou t , so the < s ymbol an d >
symbo l are r equi re d.

examp le:

Input description:

<an integer> How many bat pairs per line are supplied?

<some_description>: <batlower_value> <batupper_value>

where:

<some_description> has no spaces or tabs (use underscore to connect names),
19 characters or less. The character array has only 20 characters. For bigger descr
this line can be changed.

<batlower_value> is a hex value

<batupper_value> is a hex value

As an example, if you wanted to decode two pairs of bats:

2
ibat0 : 10000 001 10 000f f f
dbat0 : 10000 01a 10 000f f f

If you want a description line you can use batlower=batupper=0 as in:

3
This_ is_a_te st 0 0
ibat0 : 10000 001 10 000f f f
dbat0 : 10000 01a 10 000f f f

The output is:

Bat D ecoder - ente r the b at val ues and displ ay the meanin g
I BAT and DBAT have sa me mea ning
F ormat: descr ipt ion: upper bat_val ue low erbat_v alue
H ow many bat e ntry pa i rs , o ne pair per l ine

Pleas e enter the L ower a nd Upp er bat value in hex
This_ is_a_te st : De coding the ba t
Both bats ar e zero , Disab led

Pleas e enter the L ower a nd Upp er bat value in hex
ibat0 : Decod ing th e bat

For batu = 0x100 00f f f
6-74 Dink32 R12 User’s Manual

Memory Test

in
M
000
and
then

d at
sily b

t into

ebug
BEPI Lo gical address is = 0x1 000000 0
BL Bloc k Leng th is = 0x3f f 128 MB

Ran ge is = 0x1 000000 0 - 0x1 7f f f f f f
VS is = 0x1 Superv i sor mo de acce ss
VP is = 0x1 User mo de acc ess

For bat l = 0x100 00001
BRPN Ph ysical addres s is = 0x 100000 00
WIMG = 0x 0

W of f Not Wri te T hrough i .e. W ri te b ack
I of f Not Cache I nhib i t ed, i .e . use cache
M of f Not Memory Cohere nt , i .e . non- coheren t
G of f Not Guarded , i .e . unguar ded

PP Bloc k Acce ss Prot ect ion Contro l = 0x1
Rea d Only

Pleas e enter the L ower a nd Upp er bat value in hex
dbat0 : Decod ing th e bat

For batu = 0x100 00f f f
BEPI Lo gical address is = 0x1 000000 0
BL Bloc k Leng th is = 0x3f f 128 MB

Ran ge is = 0x1 000000 0 - 0x1 7f f f f f f
VS is = 0x 1 Sup erv isor mod e acc ess V P is = 0x1 User mode acces s

For bat l = 0x100 0001a
BRPN Ph ysical addres s is = 0x 100000 00
WIMG = 0x 3

W of f Not Wri te T hrough i .e. W ri te b ack
I of f Not Cache I nhib i t ed, i .e . use cache
M on Memo ry Cohe rent
G on Guar ded

PP Bloc k Acce ss Prot ect ion Contro l = 0x2
Rea d and Wri te

6.3 Memory Test

A simple memory test is included in DINK as an option. It is enabled via a #define
config.h. If MEMORY_TEST is defined, then, before DINK is copied from ROM to RA
a memory test will be performed from address 0x0 to the MEMORY_END || 0x0
location. If MEMORY_END is defined as 0x7 then the test is performed between 0x0
0x70000. The address of the memory location is written into the memory location and
read back. If an error is detected then the verify loop will go to an infinite loop locate
error_memory_test. The location of this loop can be found in the map file and can ea

The following listing will show up on the flash screen:

Memory test performed from 0x00000000 - 0x70000

The user may feel free to enhance the memory test algorithm by adding additional tes
the memory_test function located in except2.s

Note: The user must ensure that the ending address (MEMORY_END) is valid or the d
Chapter 6. Utilities 6-75

Memory Test
monitor may not boot.

There is also a memory test command, mt.
6-76 Dink32 R12 User’s Manual

Execution Steps

ad

en in
r

ost

re
file.

les.

=
for

K32

rate
am in
to

ss
will

d is
Chapter 7 User Program Execution

The DINK32 firmware includes a file transfer utility that allows the user to downlo
S-Record files from the host to the target board.

This download function stores the S-Records into memory starting at the address giv
the S-Record file. The user can then use thego or trace command to execute the use
program. Listed below are the steps to take to execute a user program.

7.1 Execution Steps
Download the user program to run on DINK32.

1. Create an executable S-Record file of the user program to be run on DINK32. M
modern compiler vendors supply a facility for converting an executable or
generating an S-Record file directly. E.g. Gnu supplies an elfhex tool, Metawa
supplies an elf2hex tool. Ensure that the S-Record is a Motorola type S-Record

2. Download the s-record file into memory on the target board using the DINK32
download command. The same command is used for compressed s-Record fi
Using a terminal program, receive an S-Record file into the target board. The
recommeded settings are databits = 8, parity = none, stopbits = 1, flowcontrol
hardware (although none will work), and baud rate = 57600 on excimer, 38400
yellowknife.

3. This optional step may be desired. The default baud rate is 9600, however, DIN
is capable of downloading at 57600 on Excimer and Maximer and 38400 on
Yellowknife and Sandpoint. For large programs, we suggest changing the baud
to 57600 before the download. One can start and debug the downloaded progr
any baud rate. However before pressing the reset button restore the baud rate
9600.

4. go 90000. One needs to build the executable program so that it starts at addre
0x90000. Upon invocation, the program will use r1 as the stack pointer, which
have been set to 0x8fff0 by DINK32.

Note: Hardware flow control is implemented on the Excimer and Maximer platform an
required for file downloading.

Example:

DINK3 2_750 > > sb - k 57600
Chang e the b aud rat e to 57 600. Al so chan ge the set t in g on yo ur
termi nal emu lator .

DINK3 2_750 > > dl - k
Downl oading in s-r ecord f ormat .
Chapter 7. User Program Execution 7-77

Execution Steps
Downl oad Com plete.

DINK3 2_750 > >

Set brea kpoint s, i f necess ary, and exe cute the use r program at t he
locat ion to which i t was downlo aded us ing go or t ra ce .

DINK3 2_750 > > go < address >
DINK3 2_750 > > t rac e <addr ess>
7-78 Dink32 R12 User’s Manual

Error Codes

ilies

lid

lid

ng

the
Chapter 8 Errors and Exceptions

8.1 Error Codes

8.1.1 Parser Errors
• 0xFB00 UNKNOWN_COMMAND unknown command

• 0xFB01 UNKNOWN_REGISTER unknown register

• 0xFB02 ILLEGAL_RD_STAGE cannot specify whole register family in range

• 0xFB03 ILLEGAL_REG_FAMILY cannot specify a range of special registers

• 0xFB04 RANGE_CROSS_FAMILY cannot specify a range across register fam

• 0xFB05 UNIMPLEMENTED_STAGE invalid rd or rmm parameter format

• 0xFB06 UNKNOWN_OPERATOR unknown operator in arguments

• 0xFB07 INVALID_FILENAME invalid download filename

8.1.2 Errors from Error Checking Toolbox
• 0xFD00 INVALID NOT valid

• 0xFD01 VALID valid

• 0xFD02 INVALID_SIZE the input was not 8 characters long

• 0xFD03 OUT_OF_BOUNDS_ADDRESS the address given falls outside of va
memory defined by MEM_START to MEM_END

• 0xFD04 INVALID_HEX_INPUT one of more of the characters entered are not va
hex

• characters. Valid hex characters are 0-9, A-F, a-f

• 0xFD05 INVALID_REGISTER a given register does not exist

• 0xFD07 NOT_WORD_ALIGNED the given address is not word-aligned. A
word-aligned address ends in 0x0,0x4,0x8,0xc

• 0xFD08 REVERSED_ADDRESS the starting address is greater than the endi
address.

• 0xFD09 RANGE_OVERLAP the address specified as the destination is within
source

8.1.3 addresses
• 0xFD0A ERROR an error occurred

• 0xFD0B INVALID_PARAM invalid input parameter
Chapter 8. Errors and Exceptions 8-79

Error Codes

at
8.1.4 Get Argument Errors
• 0xFE00 INVALID_NUMBER_ARGS invalid number of command arguments

• 0xFE01 UNKNOWN_PARAMETER unknown type of parameter

8.1.5 Tokenizer Toolbox Errors
• 0xFF00 ILLEGAL_CHARACTER unrecognized character in input stream

• 0xFF01 TTL_NOT_SORTED token translation list not sorted

• 0xFF02 TTL_NOT_DEFINED token translation list not assigned

• 0xFF03 INVALID_STRING unable to extract string from input stream

• 0xFF04 BUFFER_EMPTY input buffer is empty

• 0xFF05 INVALID_MODE input buffer is in an unrecognized mode

• 0xFF06 TOK_INTERNAL_ERROR internal tokenizer error

• 0xFF07 TOO_MANY_IBS too many open input buffers

• 0xFF08 NO_OPEN_IBS no open input buffers

8.1.6 Screen Toolbox Errors
• 0xFC00 RESERVED_WORD used a reserved word as an argument

8.1.7 Breakpoint Errors
• 0xFA00 FULL_BPDS breakpoint data structure is full

8.1.8 Download Errors
• 0xF900 NOT_IN_S_RECORD_FORMAT not in S-Record Format

• 0xF901 UNREC_RECORD_TYPE unrecognized record type

• 0xF902 CONVERSION_ERROR ascii to int conversion error

• 0xF903 INVALID_MEMORY bad S-Record memory address

8.1.9 Compression and Decompression Errors
• 0xF800 COMP_UNK_CHARACTER unknown compressed character

• 0xF801 COMP_UNKNOWN_STATE unknown binary state

• 0xF802 NOT_IN_COMPRESSED_FORMAT not in compressed S-Record form

8.1.10 DUART Handling Errors
• 0xF700 UNKNOWN_PORT_STATE unrecognized serial port configuration
8-80 Dink32 R12 User’s Manual

Exceptions

erial

hich
• 0xF600 TM_NEEDS_BOTH_PORTS transparent mode needs access to two s
ports

8.1.11 Register Errors
• 0xF600 SPR_NOT_FOUND cannot find register in special purpose register file

8.1.12 Flash Errors
• 0xF100 FLASH_ERROR error in flash command activity

8.2 Exceptions

There are twenty one exceptions in this version of DINK32. A message indicating w
exception has occurred is displayed for all of them except System Reset.

• 0x0100System Reset

• 0x0200Machine Check

• 0x0300Data Access

• 0x0400Instruction Access

• 0x0500External Interrupt

• 0x0600Alignment

• 0x0700Program

• 0x0800Floating-Point Unavailable

• 0x0900Decrementer

• 0x0A00 I/O Controller Interface Error

• 0x0C00System Call

• 0x0D00Trace

• 0x0E00Floating Point Assist

• 0x0F00Performance Monitor

• 0x1000Instruction Translation Miss

• 0x1100Data Load Translation Miss

• 0x1200Data Store Translation Miss

• 0x1300Instruction Address Breakpoint

• 0x1400System Management Interrupt

• 0x1600Java Mode denorm detection

• 0x2000Run Mode or Trace
Chapter 8. Errors and Exceptions 8-81

Exceptions

et. The

n the
etion
r can
m and

anuals
System Reset occurs when the software is booted up or the evaluation board is res
other exceptions occur due to interrupts or errors in the execution of the code.

When using DINK, the user is notified of exceptions by a message that appears o
terminal. Control is returned to the firmware. If the exception was caused by the compl
of a trace or by arriving at a breakpoint during execution of the user’s code, the use
continue testing. Otherwise the user may need to modify the code to correct a proble
download the program again to resume testing.

For details on what causes each exception, see the Programming Environments M
(PEM) and the appropriate PowerPC User’s Manual for the part in question.
8-82 Dink32 R12 User’s Manual

Special Purpose Registers

d when-
ity into
e.
Chapter 9 Restrictions

9.1 Special Purpose Registers

There are four Special Purpose General Registers (SPRGs), numbered 0 through 3.
DINK32 makes use of SPRG2 and SPRG3, so any user values placed into these two registers will be destroye
ever control is returned to DINK32. The user is encouraged to place any values that are of interest or necess
only SPRG0 and SPRG1, although the user can use the other two SPRGs for calculations or temporary storag
Chapter 9. Restrictions 9-83

ill

it’s
Chapter 10 Known Bugs

10.1 Known Bugs

• setbaudOn Excimer and Maximer platform the sb –h or –k without a baud rate w
always return 0.

• All of the user caches may not be flushed on exceptions and breakpoints.

• The assembler will silently ignore any register it doesn’t recognize, inserting 0 in
place. For example: mfspr r3,1010 will substitute mfsrp r3,0.

• env is not in the help menu, however, help env is available.

• The gcc built version of DINK32 srecord and elf file

— is 50% larger than the Metaware build
10-84 Dink32 R12 User’s Manual

Adding Commands and Arguments

the

y are
for
s are

file.

and

s of
e. The
the
sent
S

ion
with
null
d -
Appendix A Adding Commands and
Arguments

A.1 Help
All help information is displayed by the help.c file. The help file has two types of help,
main summary menu and the specific help information for a specific command.

A.1.1 Help Menus
There are two summary help menus, one for dink32 and the other for mdink32. The
discriminated by the "dink_type" variable. dink_type = 0 for dink32 and dink_type = 1
mdink32. Simply add the summary command to the appropriate menu. The menu
simply PRINT statements in the function menu().

There is no distinction between dink32 and mdink32 for the specific command help
Simply build a function calledhelp_<command> such ashelp_info(). This
function consists entirely of PRINT commands describing the new command.

To make the specific help commands available, specify the help function with the comm
function in the command_tb.h file. There are two steps.

1. add an extern for the command and help functions. Such as extern STATUS
par_bm() and extern void help_bm() for the benchmark command.

2. Add the command name, tag, function and help function name to the structure
cmd_struct dink_cmds.

— struct cmd_struct dink_cmds[NUM_CMD] = {

— {"ab", "about", NO_TAG, par_about, help_about},

— {"as", "assemble", MODIFY_TAG, par_asdm, help_asm},

— {"ds", "disassem", DISPLAY_TAG, par_asdm, help_disasm},

The entry in this table will "register" your command and your help file. The member
each entry are: short_name, long_name, tag, function_name, and help_function_nam
tag is used to specify the argument list for your function and is invoked in
par_head_parser function in par_tb.c. NO_TAB indicates that no command pointer is
to your function, i.e. define your function with a null argument list, as STATU
newcommand(); CMD_TAG will send you a pointer to a string with the invocat
command from the command line, but not the argument list. I.e. define your function
a string pointer, such as STATUS newcommand(char *dink_cmd), dink_cmd will be a
terminated string containing only the invocation command. Such as dink_cm
"new_command\0".
Appendix A. Adding Commands and Arguments 10A-85

Adding Commands and Arguments

two
efine
alled
veral
Example (existing about command)

help. c

void help_ab out()
{
PRINT ("ABOUT : \n") ;
PRINT ("===== = \n") ;
PRINT ("Mnemo nic: a bout , a b \n") ;
PRINT ("Synta x: ab \n") ;
PRINT ("Descr ipt ion : This comm and d isplays the gener al in f ormat i on
") ;
PRINT ("on DI NK32. \ n") ;
PRINT ("Examp le: \ "ab\" would disp lay t he op ening scree n of DINK3 2.
\n") ;
}

Example (fl command)

help. c

void help_f l ash()
{
PRINT ("FLASH COMMA NDS: \n ") ;
PRINT ("===== = \n") ;
PRINT ("Mnemo nic: f lash, f l \n") ;
PRINT ("Synta x: f l - f lags -o val ue -s s ector number\ n") ;
PRINT ("Descr ipt ion : Th is co mmand perf orms act ion s to the f la sh
memor y\n") ;
PRINT ("Flags : -e erase e rase al l o f f lash\n") ;
PRINT ("Flags : -cp copy c opy MDI NK fro m RAM t o Flas h\n") ;
PRINT (" Req uired Flags: -o <v alue> copy ad dress in
f lash \n") ;
PRINT (" Opt i onal F lags: -e erase f lash f i rs t \n") ;
PRINT ("Flags : -sp prote ct i ndicate d sect or \n") ;
PRINT (" Requi red Flag s: -n <valu e> sector number 0- 18\n") ;
PRINT ("Flags : -su unpro tect i ndicate d sect or \n") ;
PRINT (" Requi red Flag s: -n <valu e> sector number 0- 18\n") ;
PRINT ("Flags : -se erase i ndicate d sect or \n") ;
PRINT (" Requi red Flag s: -n <valu e> sector number 0- 18\n") ;
PRINT (" Exa mple: f l -sp -n 5 - secto r prot ect sec tor 5 \n") ;
}

A.2 Input Arguments
Now we are ready to specify input arguments. Arguments are effected by entries in
tables, one is toks.h and the other is toks.c. The toks.h table is a set of lines of #d
macros. Each argument is treated as a member of a symbol table c
SYMBOL_BASE_TOK. The base of the table is defined as some value. There are se
10A-86 Dink32 R12 User’s Manual

Adding Commands and Arguments

g the
e that
at can

than

and ?

n can

e, we
such bases for various other symbols, such as the REG_GEN_BASE_TOK. By readin
comments at the beginning of the file, we ascertain that this is a scheme to guarante
all tokens (command arguments, register names, etc.) have a unique integer value th
be used by the tokenizer to uniquely identify any symbol desired by the dink32 code.

A.2.1 Input Token Facility
Specify the name of your token with a #define macro, and give it the value of one more
the previous values.

Note: either do not exceed the MAX_SYMBOLS_TOKENS
size defined in toks.h, currently set at 32 or increase the value.

example:

toks.h
#def i ne DAS H_TO S YMBOL_B ASE_TO K + 2 /* s ymbol2 - the dash(-) symb ol
* /
. . .
#def i ne BOTH_ TOK SYMBOL_ BASE_T OK + 8 /* s ymbol8 to selec t bo th
ser ia l por ts * /
#def i ne HOS T_TOK SYMBOL_ BASE_T OK + 9 /* symbo l9 sel ect o nly t he ho st
por t * /
#def i ne KEY _TOK S YMBOL_B ASE_TO K + 10 /* s ymbol1 0 selec t only t he
keybo ard */
#def i ne QUE ST_TOK SYMBOL _BASE_ TOK + 1 1 / * sym bol11 the quest i on
mark (?) * /

This example is for the si (setinput command). It defines the dash token and the k,h,
command arguments, which are invoked as:

si [-k | -h | -?].

The ADD_TOKEN macro in toks.c adds these symbols to tokenizer so that the functio
search the argument list.

example:

toks.c
ADD_T OKEN("b oth" ,B OTH_TOK , &i) ; / * symbol 8 - to selec t bot h ser i a l
por ts * /
ADD_T OKEN("h ost" ,H OST_TOK , &i) ; / * sy mbol9 - to select on ly the ho st
por t * /
ADD_T OKEN("k ey" ,KE Y_TOK, & i) ; / * sy mbol10 - to sele ct only t he
keybo ard por t * /
ADD_T OKEN("k " ,KEY_ TOK, &i) ; / * same as abo ve */
ADD_T OKEN("? \0" ,QU EST_TOK , &i) ; / * symbol 11 - the quest ion m ark (?)
symbo l * /

Note that the token is a null terminated string, not a single character. In this exampl
Appendix A. Adding Commands and Arguments 10A-87

Adding Commands and Arguments

us

as this

and
are looking for the strings "both", "host", "key", "k", and "?" and the comment tells
which symbol it refers to in the toks.h file.

There are at least two ways to get these tokens. par_si uses the getarg_tok function
code fragment shows:

i f ((s tatus = geta rg_tok(&state)) !=SUC CESS) return status ;

P RINT(" Set Inp ut Por t : ") ;
s wi tch(state)
{
c ase BO TH_TOK : duar t_conf i gurat i on = BO TH_POR TS;

A more extensive method is to use the functions tok_is_next_token
tok_get_next_token.

These examples are from the new flash_commands that will be in the next release.

The code shown below extracts the arguments from the command line.

This code will parse the line:

f l -s p -n 5
howev er, i t wi l l g ive an error for the se l in es:
f l -s p -n f1 hex value
f l -x p -n 1 -xp instea d of v al id - sp | - su | -s e etc
f l -s p 1 mis s ing -n
f l -s p -n mis s ing a decima l value

toks.h:

#def i ne SEC TOR_PR OTECT_T OK SYMBOL_ BASE_T OK + 15 /* sym bol15 - 's p '
for s ector p rotect * /
#def i ne SEC TOR_UN PROTECT _TOK SYMBO L_BASE _TOK + 16 /* symb ol16 -
'su ' for sec tor un protect * /
#def i ne SEC TOR_ER ASE_TOK SYM BOL_BAS E_TOK + 17 /* symb ol17 - 'se ' f or
secto r erase */
#def i ne FLA SH_COP Y_TOK SYMBO L_BASE_ TOK + 18 /* sy mbol18 - 'cp ' f or
f lash copy * /
#def i ne SEC TOR_NU MBER_TO K S YMBOL_B ASE_TO K + 19 /* s ymbol19 - ' n '
for s ector n umber * /

toks.c

ADD_T OKEN("s p" ,SEC TOR_PRO TECT_T OK, & i) ; / * symb ol15 - Se ctor Prote ct
* /
ADD_T OKEN("s u" ,SEC TOR_UNP ROTECT _TOK, & i) ; / * s ymbol16 - Sect or
Unpro tect * /
ADD_T OKEN("s e" ,SEC TOR_ERA SE_TOK , &i) ; / * symb ol17 - Sector Erase */
ADD_T OKEN("c p" ,FLA SH_COPY _TOK, &i) ; / * symbol 18 - Se ctor E rase */
ADD_T OKEN("n " ,SECT OR_NUMB ER_TOK , &i) ; / * symbol 19 - Sect or Numb er
value */
10A-88 Dink32 R12 User’s Manual

Adding Commands and Arguments

se, e,

must
t by
fl.c

This code checks the first token for a dash, then the second token for one of sp, su,
cp. The function get_sector_number gets the sector number specified.

i f (! (tok_is_ next_t oken(DA SH_TOK)))
{
PRINT("Must s peci fy [-sp | -su | -se | -e | - cp] \n") ;

r eturn FAILURE ;
}

i f ((s tatus = tok_ get_nex t_toke n(&toke n, tem p)) != SUCCES S)
{

PRINT("Must s peci fy [-sp | -su | -se | -e | - cp] \n") ;
r eturn status;

}

s wi tch (token)
{

case SECTOR_ PROTEC T_TOK:
get _sector _numbe r(§ or_num ber) ;
PRI NT("Got -sp, -n is % d\n" ,s ector_n umber) ;
bre ak;

case SECTOR_ UNPROT ECT_TOK :
get _sector _numbe r(§ or_num ber) ;
PRI NT("Got -su, -n is % d\n" ,s ector_n umber) ;
bre ak;

This code gets the next token, which must be a -n and then gets the next token which
be an ascii string containing one valid decimal number, which will be converted to in
the ascii_to_int_dec function.

i f (! (tok_is _next_ token(D ASH_TO K)))
{

PRINT(" Must s peci fy [-n] \ n") ;
return FAILUR E;

}

i f ((s ta tus = tok_get _next_ token(& token, temp))
== SU CCESS)

{
i f (token != SE CTOR_NU MBER_T OK)
{

PRINT(" Must s peci fy [-n] \ n") ;
return FAILUR E;

}

i f ((s ta tus = tok_get _next_ token(& token, temp)) != SU CCESS)
{

return FAILUR E;
}

i f ((s t atus = as ci i_ to _int_de c(temp , sector _numbe r,
Appendix A. Adding Commands and Arguments 10A-89

Adding Commands and Arguments
str le n(temp)))
!= SUCCE SS)

{
P RINT(" Error g et t ing decima l valu e. \n") ;
r eturn (status) ;

}

10A-90 Dink32 R12 User’s Manual

Adding ERROR Groups to MDINK/DINK32

and

er

ing.

code

with

in as

along

o hex
in that
omly

r_tb.c.
error
)
hen
Appendix B Adding ERROR Groups to
MDINK/DINK32

B.1 Error Group Files
The two files used for adding an ERROR grouping to dink32 and mdink32 are err_tb.h
errors.h.

Both files contain the defined macro,NUM_ERRORS, and both must be changed whenev
a new error group is added.

B.1.1 err_tb.h
About line 30, increment NUM_ERRORS by the number of error groups you are add
In this case, change it from 46 to 47.

#define NUM_ERRORS 47

Now add the new entry to the structure err_element. This structure has two parts, the
and a string constant for the error message. Add the message

{FLASH_ERROR, "FLASH error") /* 46 */

It is a good idea to add a comment to the end of any added lines for the struct entries
the error number.

B.1.2 errors.h
About line 51 increment the defined macroNUM_ERRORSas in err_tb.h. It is important to
do this as err_tb.h includes this file. However, it then defines NUM_ERRORS aga
we saw above. In effect, overwriting theNUM_ERRORSvalue in this file, errors.h.

This file is used to define the code for each error message. This code is printed out
with the string for the error. About line 215, add the value for theFLASH_ERRORcode.

#define FLASH_ERROR 0xf100 .

0xF100 was chosen, because it appears that the grouping is determined by the first tw
characters and the last two hex characters are just sequential increments for errors
category. So codes 0xf5xx through 0xffxx were already in use. So chose 0xf1xx rand
from the available ones of 0xf0xx through 0xf4xx.

These are the only files that need to be changed. The actual work is performed by er
When a dink32 function returns to the main dink32 loop it can return one of these
messages. As in return(FLASH_ERROR);. Then the function err_print_error (about line 35
searches this structure, err_list, comparing the error number with the err_list[i].code. W
Appendix B. Adding ERROR Groups to MDINK/DINK32 10B-91

Adding ERROR Groups to MDINK/DINK32

, then
it finds the code, it prints the code value and the error message. If it can't find the code
it prints the message,UNKNOWN ERROR.
10B-92 Dink32 R12 User’s Manual

History of MDINK32/DINK32 changes

intf,
ine

ram.

are

ented

used
out
=e.

, 'E'
h

06,

ith

s.
sh.

slation
Appendix C History of MDINK32/DINK32
changes

C.1 Version 12.0 November 30, 1999.
1. Implement a dink transfer table to dynamically assign dink functions such as pr

dinkloop, getchar, in a table so that it is no longer necessary to statically determ
the function address and change them in demo or dhrystones or any user prog

2. Configuration (environment variables) are saved in NVRAM for yk/sp, saved in
RAM for Excimer and Maximer. New command, env, manipulates these
configurations. Also implements multiple command aliases, however, da and ra
still available.

3. New command, tau, display and/or calibrate the Thermal Assist Unit.

4. Faster download and no need to set character delays on the serial line, implem
by turning on the duart FIFO.

5. Turn on both banks of memory in the YellowKnife and Sandpoint, now
32Megabytes is available on dink32 startup.

6. Improved printf format facilities, including floating point.

7. Most commands can now be placed into quiet mode, and verbose mode can be
with the -v command. Default is verbose on both, same as always, with or with
ENV. The '-e' mode expands fields and can be made default with env RDMODE
Only Excimer and Maximer require the setup, and RDMODE can be 'Q' (quiet)
(expand fields), or anything else. On Excimer and Maximer it can be set up wit
these commands:
env -c, env rdmode=0

8. The dl command can be placed in silent mode with the "-q".

9. rd or rm can use these aliases for the memory register, northbridge, nb, mpc1
mpc107, or mpc8240.

10. Fixed command termination character, 'x', so it will not restart if unexpected.

11. Fixed problems with double prompts printed on startup with DCACHE.

12. Implement a new makefile, makefile_gcc, and conform the dink code to build w
the gcc PowerPC eabi compatible compiler. Build and load works, all memory
features are broken. This will be fixed in the next release.

13. Implemented flash programming for PCI-hosted boot ROM on YK/SP platform
The command 'fl -h' transfers 512k from a specified memory location to the fla

14. Added share memory between host and agent targets using the Address Tran
Unit (ATU).
Appendix C. History of MDINK32/DINK32 changes 10C-93

History of MDINK32/DINK32 changes

ugh

.

for

fuse
C.2 Version 11.0.2 June 1, 1999
1. Fixed invalid cacheing on 603. 603 does not reset the cache invalidate bits in

hardware, so added the facility in software.

2. Detects MPC107.

3. About command now reports board and processor identification.

4. Improved the help facility.

5. Added makefiles for the PC, makefile_pc in every directory.

C.3 Version 11.0.1 May 1, 1999 Not Released
1. Change the location of Stack pointer load/save. DINK code now occupies thro

0x0080000. USER CODE MUST NOT START EARLIER THAN 0x0090000!

2. Fixed vector alignment.

3. Fixed VSCR register implementation issue.

4. Fixed access issue for registers VRSAVE,RSCR,FPSCR,RTCU, RTCL & RPA

5. Fixed HID1 display for 603e, 604e.

6. Fixed breakpoint/exception problem broken in rev10.7 for 603e.

7. Fixed location of exception vectors after EH1200, they were wrong.

8. Fixed flushhead in except2.s to work correctly.

C.4 Version 11.0 March 29, 1999

1. Add AltiVec support for the MAX processor.

2. Added vector registers to register list.

3. Add assembler disassembler code for altivec mnemonics.

4. fl -dsi has been expanded to display the flash memory range for each sector.

C.5 Version 10.7 February 25, 1999
1. Add 1999 to copyright dates.

2. Add timeout to flash_write_to_memory, so an unfinished write to flash won't last
ever, it will timeout and issue an error message.

3. Add test all flash write for protected sector and if protected issue an error and re
the write.

4. Disable transpar,tm from excimer.

5. Set DCFA bit from 0 to 1 for MAX chips only
10C-94 Dink32 R12 User’s Manual

History of MDINK32/DINK32 changes
C.6 Version 10.6 January 25, 1999
1. Implement the history.c file and allow the about command to use constants for

Version, Revision, and Release.

2. Implement the fl –dsi and fl -se commands.

3. Automatically detect flash between Board Rev 2 and 3.

4. Remove the fw -e command from DINK32, it is only available in MDINK32.

C.7 Version 10.5 November 24, 1998
1. Changed default reset address to be -xfff0 for standalone dink

2. Fix bugs in trace command

C.8 Version 10.4 November 11, 1998
1. Recapture 10.3 LED post routine in MDINK

2. Add BMC_BASE_HIGH for kahlua to reach the high config registers

3. Added memory test feature during POR.

4. Corrected ending address for kahlua X4 configuartion

5. Added basic Kahlua support

C.9 Version 10.3 no date

1. This was never released

C.10 Version 10.2 September 11, 1998
1. This release is the same as Version 10 Revision 1

C.11 Version 10.1 September 10, 1999
1. Enable ICACHE and DCACHE

C.12 Version 9.5 August 5, 1998
1. Implement flash commands, fw -e and basic flash erase and write support.

2. Split dink into two types, mdink - minimal dink and dink.

3. Implement support for excimer.
Appendix C. History of MDINK32/DINK32 changes 10C-95

History of MDINK32/DINK32 changes
C.13 Version 9.4 May 22, 1998
1. Implement L2 Backside Code.

2. Turned on DCACHE and ICACHE as default at boot time.

3. Added Yellowknife X4 boot code (Map A & B)

C.14 Prior to Version 9.4 Approximately
October 10, 1997

1. Merged CHRP and PREP

2. Added W_ACCESS (Word access) H_ACCESS, and B_ACCESS

3. One version of dink works with all processors, 601, 603, 604, and ARTHUR.
10C-96 Dink32 R12 User’s Manual

S-Record Format Description

acter
some
cord

. The
. The
record

racters
ues in

are

nd S9
cters
n.

alue,

s where
bytes
3-byte
Appendix D S-Record Format
Description

D.1 General Format
An S-record is a file that consists of a sequence of specially formatted ASCII char
strings. Each line of the S-record file adheres to the same general format (with
variation of the specific fields) and must be 78 bytes or fewer in length. A typical S-re
file might look like this:

S0100 0007772 697465 6D656D2 E73726 563AA
S2190 7000074 000000 7000000 03D20D EAD6129 BEEF3C 6000006 0E0
S2190 7001563 00003C C000406 0C6000 07D2019 2E7CE0 182E7C0 7FC
S2190 7002A48 004082 0014386 304007 C033000 4180FF E848000 059
S2090 7003F00 480000 0068
S8040 70000F4

This information is an encoding of data to be loaded into memory by a S-record loader
address at which the data is loaded is determined by the information in the S-record
data is verified through the use of a checksum located at the end of each record. Each
in a file should be followed by a linefeed.

The general format of an S-record is as follows:

Type char[2]
Count char [2]
Addre ss char[4 ,6, or 8]
Data char [0-64]
Check sum ch ar[2]

Note that the fields are composed of characters. Depending on the field, these cha
may be interpreted as hexadecimal values or as ASCII characters. Typically, the val
the Type field are interpreted as characters, while the values in all other fields
interpreted as hex digits.

Type: Describes the type of S-record entry. There are S0, S1, S2, S3, S5, S7, S8, a
types. This information is used to determine the format of the remainder of the chara
in the entry. The specific format for each S-record type is discussed in the next sectio

Count: When the two characters comprising this field are interpreted as a hex v
indicates the number of remaining character pairs in the record.

Address: These characters are interpreted as a hex address. They indicate the addres
the data is to be loaded into memory. The address may be interpreted as a 2, 3, or 4
address, depending on the type of record. 2-byte addresses require 4 characters,
addresses require 6 characters, and 4-byte addresses require 8 characters.
Appendix D. S-Record Format Description 10D-97

S-Record Format Description

cimal
field.

ber is
ress,

of the

the

ory.
tains

as one
r the
ecimal

d into

d into

d into

ber of
Data: This field can have anywhere from 0 to 64 characters, representing 0-32 hexade
bytes. These values will be loaded into memory at the address specified in the address

Checksum: These 2 characters are interpreted as a hexadecimal byte. This num
determined as follows: Sum the byte values of each pair of hex digits in the count, add
and data fields of the record. Take the one's complement. The least significant byte
result is used as the checksum.

D.2 Specific Formats
Each of the record types has a slightly different format. These are all derived from
general format specified above and are summarized in the following table.

TypeDescription

S0

Contains header information for the S-record. This data isn't actually loaded into mem
The address field of an S0 record is unused and will contain 0x0000. The data field con
the header information, which is divided into several sub-fields:

char[2 0] mod ule nam e
char[2] vers ion num ber
char [2] rev i s ion nu mber
char [0 -36] t ext com ment

Each subfield is composed of ASCII characters. These are paired and interpreted
byte hex values in the case of the revision number and version number fields. Fo
module name and text comment fields these values should be interpreted as hexad
values of ASCII characters.

S1

The address field is interpreted as a 2-byte address. The data in the record is loade
memory at the address specified.

S2

The address field is interpreted as a 3-byte address. The data in the record is loade
memory at the address specified.

S3

The address field is interpreted as a 4-byte address. The data in the record is loade
memory at the address specified.

S5

The address field is interpreted as a 2-byte value which represents a count of the num
10D-98 Dink32 R12 User’s Manual

S-Record Format Description

ddress.

ddress.

ddress.

hort

at 16
S0 is
d in a
hing

ld be
r pairs

ory

have
racter
S1, S2, and S3 records previously transmitted. The data field is unused.

S7

The address field is interpreted as a 4-byte address and contains the execution start a
The data field is unused.

S8

The address field is interpreted as a 3-byte address and contains the execution start a
The data field is unused.

S9

The address field is interpreted as a 2-byte address and contains the execution start a
The data field is unused.

D.3 Examples
Following are some sample S-record entries broken into their parts with a s
explanation:

Examp le 1: S 010000 0777269 74656D 656D2E7 372656 3AA
Separ ated: S 0-10-0 000-777 269746 56D656D 2E7372 6563-AA

•Type: S0 - this is a header record •Count: 10 - interpreted as 0x10; indicates th
character pairs follow •Address: 0000 - interpreted as 0x0000. The address field for
always 0x0000. •Data: Since this is a header record, the information can be interprete
number of ways. It doesn't really matter since you usually don't use this field for anyt
interesting. •Checksum: AA - the checksum

Examp le 2: S 219070 0007400 000070 0000003 D20DEA D6129BE EF3C60 000060E 0
Separ ated:
S2-19 -070000 -74000 0007000 00003D 20DEAD6 129BEE F3C6000 0060-E 0

•Type: S2 - the record consists of memory-loadable data and the address shou
interpreted as 3 bytes •Count: 19 - interpreted as 0x19; indicates that 25 characte
follow •Address: 070000 - data will be loaded at address 0x00070000 •Data: Mem
loadable data representing executable code •Checksum: E0 - checksum

Examp le 2: S 804070 000F4
Separ ated: S 8-04-0 70000-F 4

•Type: S8 - this is the record with the execution start address; also indicates we
reached the end of our s-record •Count: 04 - interpreted as 0x04; indicates that 4 cha
Appendix D. S-Record Format Description 10D-99

S-Record Format Description

this

the
uring
pairs follow •Address: 070000 - execution will begin at 0x00070000 •Data: None -
field is unused for S8 records. •Checksum: F4 - checksum

D.4 Summary of Formats

The following table summarizes the length (in characters, bytes) of each field for
different S-record types. It is useful as a reference when parsing records manually d
debug.

Table 10-1. Summary of Formats in Bytes

Type Count Address Data Checksum

S0 2 n/a 0-60 2

S1 2 2 byte address 0-64 2

S2 2 3 byte address 0-64 2

S3 2 4 byte address 0-64 2

S5 2 2 byte count 0 2

S7 2 4 byte execution address 0 2

S8 2 3 byte execution address 0 2

S9 2 4 byte execution address 0 2
10D-100 Dink32 R12 User’s Manual

Example Code

ries
tain

t can

d

ore

that
ry has

nosc
tone

bat1l.
in the
Appendix E Example Code

E.1 General Information
Four example directories are included in the DINK32 distribution. These directo
include all the source files, a makefile, and a README. All these directories con
examples of using the new dynamic dink addresses as described in Appendix G.

E.2 Demo
The demo directory contains source files that can be built to build an application tha
then be downloaded into dink at address 0x90000 and run.

E.2.1 Building
The demo can be built with the UNIX or PC command,make -f makedemo . The
demo.src file can be downloaded with the DINK32 commanddl -k . It can be executed
with the DINK32 command,go 90000 . Demo will run continuously. It can be stoppe
by a reset, or by setting the flow control to none before the go 90000.

E.2.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for m
information.

E.3 Dhrystone
The dhrystone directory contains source files that can be built to build an application
can then be downloaded into dink at address 0x90000 and run. The dhrystone directo
two subdirectories ties, MWnosc and watch. The makefile is contained in the MW
directory. This directory contains all the code necessary to build and run a Dhrys
benchmark program. Before starting execution, change the value of hid0 and d
DINK32 by default starts the downloaded program with caches off and cache inabled
dbats. Change hid0 to 0000cc00 and dbat1l to 12. Use these commands:
rm hid0 | 0000cc00, rm dbat1l | 12.

E.3.1 Building
The demo can be built with the UNIX or PC command,make. After making the
dhrystone src, download the file, dhry.src with the DINK32 commanddl -k . Then change
the hid0 register to 8000C000 and change the dbat1L to 12.

There are two makefiles:
Appendix E. Example Code 10E-101

Example Code

ore

en be
ache

,
st.src

ore

en be
rious

,
st.src
• makefile - use the UNIX PowerPC cross tools.

• makefile_pc - use the PC PowerPC cross tools.

It can be executed with the DINK32 command,go 90000 .

E.3.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for m
information.

E.4 L2test
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This application will test the L2 c
and exercise the performance monitor. Read the l2test.readme for more information.

E.4.1 Building
The demo can be built with the UNIX or PC command,make. There are seven targets
composed of a UNIX PowerPC target, a UNIX native target, and a PC target. The l2te
file can be downloaded with the DINK32 commanddl -k . It can be executed with the
DINK32 command,go 90000 . There are two makefiles:

• makefile - used for this release of DINK32 R12 and beyond.

• makefile_dink11 - used for previous releases of dDINK32.

E.4.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for m
information.

E.5 printtest
The directory contains source files that can be built to build an application that can th
downloaded into dink at address 0x90000 and run. This application will test the va
printf features.

E.5.1 Building
The demo can be built with the UNIX or PC command,make. There are seven targets
composed of a UNIX PowerPC target, a UNIX native target, and a PC target. The l2te
file can be downloaded with the DINK32 commanddl -k .

There are two makefiles:

• makefile - use the UNIX PowerPC cross tools.
10E-102 Dink32 R12 User’s Manual

Example Code

ore
• makefile_pc - use the PC PowerPC cross tools.

It can be executed with the DINK32 command,go 90000 .

E.5.2 Function Addresses
All dink function addresses are determined dynamically, see Appendix G for m
information.
Appendix E. Example Code 10E-103

Updating DINK32 from the Web

n.

new
oad
.10,

e is
k32.
sing

form,
uilt.

site

ere as
on.
ry to
and
Appendix F Updating DINK32 from the
Web

F.1 General Information
The DINK32 web site is part of the motorola non-confidential web site. The URL is:

http://www.mot.com/SPS/PowerPC/tecsupport/tools/DINK32/index.html

The format in general includes elf and sfiles for DINK32 both debug and non-debug o

F.1.1 For YellowKnife and Sandpoint:
Using a ROM burner or in line ROM emulator load the dink32 sfile.

See Section 4.1.13, “fupdate fu".

F.1.2 For Excimer and Maximer:
Using the mdink32 facility running on an Excimer and Maximer board, download the
dink32 with the command dl -fl -o ffc00000, then using your terminals ascii downl
facility, download the dink32 sfile. See Section 4.1.14, “fw fw -e" and Section 4.1
“download dl".

MDINK32 is not supplied as elf or sfiles on this site. However, all the code (some cod
purposefully removed and the object files are substituted) is available to build mdin
Loading MDINK32 requires unprotecting sector 15 on the Excimer and Maximer and u
some type of emulator to download the code.

Selected DINK32 code is available at this site. Some files are not released in source
however, the object code for the removed files are supplied so that DINK32 can be b

All the source, including the removed code, is available from the Motorola confidential
and can be obtained from you Motorola Salesperson.

F.2 Makeing a DINK32 or MDINK32 from the Release
This release does not include several source files. These source files are included h
empty files. None of the dink_dir or mdink_dir directories are included in this distributi
In order to modify any of the source files and remake a dink or mdink, it is necessa
copy the appropriate directory from the "objects" directory to this source directory
name it dink_dir or mdink_dir.

The objects directories are:
10F-104 Dink32 R12 User’s Manual

Updating DINK32 from the Web

s,
• dink_excimer_met/

• dink_yk_met/

• mdink_excimer_met/

• dink_excimer_met_g/

• dink_yk_met_g/

• mdink_excimer_met_g/

• dink_excimer_pc/

• dink_yk_pc/

• mdink_excimer_pc/

• dink_excimer_pc_g/

• dink_yk_pc_g/

• mdink_excimer_pc_g/:

• dink_excimer_gcc/

• dink_yk_gcc/

• mdink_excimer_gcc/

The naming convention is:

• dink - dink

• mdink - mdink

• excimer - excimer or maximer

• met - metaware compiler on unix

• gcc - gnu gcc compiler on unix

• pc - metaware compiler on an NT/PC.

The steps to make a succesful compile are:

1. copy one of the sfile directories to the source directory and call it dink_dir or
mdink_dir

2. make tch This will touch all the object files in the dink_dir or mdink_dir directorie
so that none of the empty *.c files will replace the associated object file.

3. make your source file changes.

4. make dink or make mdink.

If you forget the "make tch", then remove the dink_dir or
mdink_dir directory, and recopy it.

example:
Appendix F. Updating DINK32 from the Web 10F-105

Updating DINK32 from the Web
• unzip the dink32_12_0.zip file, it will unzip to readable.

• unzip the dink32_12_0_objects.file it will unzip to objects.

• copy one of the objects to the unzipped readable file.

— e.g.
cp -r objects/dink_yk_met readable
make tch
make dink
10F-106 Dink32 R12 User’s Manual

Dynamic functions such as printf

ast,
th each
grams
NK32
th the
ed and
ue is
odify

ions
cess
K32
not

code
Appendix G Dynamic functions such as
printf

G.1 General Information
Many library functions such as printf are available via the DINK32 debugger. In the p
it has been necessary to ascertain the address of these functions, which change wi
compile, from the cross reference listing, and statically set these addresses in the pro
that used these features. The demo and dhrystone directories included with the DI
distribution contained examples of how to set these static function addresses. Wi
release of DINK32 V11.1 and V12.0, these addresses are now dynamically ascertain
the user only need call a few functions and set up some #defines. This techniq
described in this appendix. Users with access to the entire DINK32 source base can m
or add DINK32 functions.

G.2 Methodology and implementation.
This method is implemented with a static structure that is filled with the current funct
address during link time. The table is allocated in the file par_tb.c. Only users with ac
to this file can change the contents of the table, thereby, determining which DIN
functions are available. par_tb.c is only available via the motorola sales office, it is
included on the web site. However, all users can use the technique for linking their
with the these DINK32 functions.

The structure is defined in dink.h as dink_exports

typed ef st ru ct {
i n t vers ion; / * 0 * /
u nsigned long *keyboa rd; / * 4 * /
i n t (*pr in t f) (const c har* , . . .) ; / * 8 * /
u nsigned int (*d ink_l oop)() ; / * 12 */
i n t (* is _char_ in_duar t) () ; / * 16 */
u nsigned int (*menu)() ; / * 20 */
u nsigned int (*par_ab out) () ; / * 24 */
u nsigned int (*d isass emble) (/* long , long */) ; / * 28 */
c har (*g et_cha r)(unsi gned l ong) ; / * 32 */
c har (*w r i te_c har)(ch ar) ; / * 36 */
} d ink_e xports ;

and populated in par_tb.c as dink_transfer_table.

dink_ exports dink_ transfe r_tabl e = {
1,
&KEY BOARD,
(int (*) (c onst ch ar* , . . .))d ink _pr int f ,
d ink _loop,
Appendix G. Dynamic functions such as printf 10G-107

Dynamic functions such as printf

al or

ads
0000.
table
dress
pears

rams
tion,

ll the

ble.
is_c har_in _duart ,
menu ,
par_ about ,
d isa ssembl e,
get_ char,
wr i t e_char
} ;

As you can see, at this time, these are the only functions that are supported. Addition
replacement DINK32 functions can be added to the table.

This table is allocated and linked into the DINK32 binaries. The user typically downlo
his/her program into the starting location of free memory, at this release, address 0x9
Unfortunately, the user program has no way of determining where the dink_transfer_
is located. Therefore when DINK32 transfers control to the user program, it sets the ad
of the dink_transfer_table in general purpose register 21 in go_tr2.s. This register ap
to be immune from being used by the compiler prior to the invocation of the user prog
start address, usually, main(). Therefore the user must call the supplied func
set_up_transfer_base, or equivalent, which is described below in G.4. After this ca
address of the dink_transfer_table is available to the user program.

G.3 Setting up the static locations.
The table below shows all the functions that are currently supported.

To change or add any new DINK32 functions, one must change the dink_transfer_ta

Table 1: DINK32 dynamic names

DINK32 name Common name

Version of table 1

&KEYBOARD com port for Keyboard support

dink_printf printf

dink_loop DINK32 idle function

is_char_in_duart has DINK32 detected a character

menu entry point for DINK32 menu function

par_about entry point for DINK32 about function

disassemble entry point for DINK32 disassemble function

get_char get_char - get next character from com port

write_char put_char - send character to com port
10G-108 Dink32 R12 User’s Manual

Dynamic functions such as printf

e dink
on,

ne

ng
t
e
and
The
To use any of these functions in user code, define the user code function name to be th
function name. For example, to link the user code printf to the DINK32 printf functi
#define printf dink_printf, to link the user code put_char to DINK32
write_char,#define put_char writechar . See the directories demo and dhrysto
for examples of setting up these #define statements.

G.4 Using the Dynamic Functions.
Using these functions is implemented via the assembly language file,dinkusr.s , and the
include file dinkusr.h . The user #includes dinkusr.h and links in dinkusr.s duri
compilation/link time. All of the functions in this table excep
set_up_transfer_base , transfer control to the DINK32 function while leaving th
link register, lr, unchanged. This effectively transfers control to the DINK32 function
the DINK32 function on completion returns directly to the caller in the user’s code.
functions supplied in dinkusr.s are shown in the table below.

Table 2: dinkusr.s Functions

Function name Function definition

set_up_transfer_base Capture the dink_transfer_table address
from r21 and store it into a local memory
cell for future use. You must call this func-
tion before using any of the functions below,
and it should be called immediately after
entry, such as the first statement in main().

dink_printf DINK32 entry into printf.

dink_loop DINK32 idle loop

is_char_in_duart DINK32 function to determine if a character
has been received.

menu DINK32 display menu function.

par_about DINK32 display about function.

disassemble DINK32 disassemble instruction

get_KEYBOARD Return address of keyboard com port

get_char DINK32 get next character from the duart
buffer, essentially the keyboard for the user.
This function requires the KEYBOARD
value, obtained from get_KEYBOARD, as
an argument. See G.6 example program
_getcannon for an example of the correct
way to obtain this value.
Appendix G. Dynamic functions such as printf 10G-109

Dynamic functions such as printf

s

();

the
:

the
32

y, a

ware
nd out
an is

or
scanf

sary
rintf
The simple steps for using these dynamic addresses are:

1. Use DINK32 V11.1 or later.

2. Use #define for local functions that you wish to connect to the DINK32 function
example: #define printf dink_printf

3. The first executable statement in your C code must be: set_up_transfer_base

4. Now whenever your program calls one of these functions, such as printf, it will
transfer control to the equivalent DINK32 function.

G.5 Error Conditions.
The only error condition is a trapword exception, which indicates that
dink_transfer_table address is zero. This is caused by one of the following conditions

1. The user has not calledset_up_transfer_base()

2. R12 is getting trashed before set_up_transfer_base() is called.

3. The DINK32 version does not support dynamic functions. DINK32 V11.0.2 was
last version that DID NOT support this feature. Ensure that you are using DINK
V12.0 or greater.

G.6 Alternative method for Metaware only.
While printf is fairly straightforward, scanf is more complex. In the drystone director
local copy of scanf is supplied in the file,support.c . Scanf and printf can also be
emulated in a simpler program when using the metaware compiler. Two meta
functions are supplied to the user to give control to characters that are scanned into a
of the program buffers. Refer to the metaware documentation for more information th
given here.

When the user compiles and links with the -Hsds flag, two functions,int
_putcanon(int a) , and int _getcanon() are called whenever the user gets
receives a character. Thus, the user can write the simple functions shown below, and
and printf will use the DINK32 functions for printf and scanf. In this case, it is not neces
to use #define to change the name of the printf or scanf functions or write your own p
or scanf function. It is still necessary to callset_up_transfer_base() as the first
statement in your program.

write_char DINK32 put character to the output buffer.

Table 2: dinkusr.s Functions

Function name Function definition
10G-110 Dink32 R12 User’s Manual

Dynamic functions such as printf
/ **** ******* ****** ******* ****** ******* ****** ******* ****** ******* **
**

* F unct ion s to c apture charac ters f r om pr i nt f and scanf using
* t he -Hsd s hook s in th e meta ware co mpi ler
* m lo 7/2 2/99

***** ******* ****** ******* ****** ******* ****** ******* ****** ******* **
* /

inc l ude "di nkusr . h"

in t _ putcano n(int a)
{
/ * g rab the chara cter se nt by pr int f in -Hs ds and

* u se i t i n d ink putcha r
* /
char c;

c=a;
wr i t e_char (c) ;
retu rn 1;

}

in t _ getcano n()
{
/ * e xt ract the ch aracter recei ved by scanf in -Hsd s and use

* i t in d i nk put char
* /

unsig ned lon g key;
key = get_ KEYBOAR D() ;
retu rn (ge t_char(key)) ;

}

Appendix G. Dynamic functions such as printf 10G-111

MPC8240 (Kahlua) Drivers

er the
wing
of the
Appendix H MPC8240 (Kahlua) Drivers

H.1 Drivers directory.
There are four drivers for the MPC8240 integrated peripheral devices.

• DMA - memory controller

• I2C - serial controller

• I2O - doorbell controller

• EPIC - interrupt controller

Sample code for each of these drivers are in the directory, drivers, under dink32. Und
drivers directory are four directories, one for each controller see Figure 3-1. The follo
sections describe the driver and the sample code. Each driver is discussed in one
following four appendices.

• Appendix I, “MPC8240 DMA Memory Controller."

• Appendix J, “MPC8240 I2C Driver Library."

• Appendix K, “MPC8240 I2O Doorbell Driver"

• Appendix L, “MPC8240 EPIC Interrupt Driver"
10H-112 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

API)
he

ocol.
hich

his
MA
tions

",
l
ter,
he
ions
ver,

the
Appendix I MPC8240 DMA Memory
Controller.
This section provides information about the generic Application Program Interface (
to the DMA Driver Library as well as information about the implementation of t
Kahlua-specific DMA Driver Library Internals (DLI).

I.1 Background
The intended audience for this document is assumed to be familiar with the DMA prot
It is a companion document to the Kahlua specification and other documentation w
collectively give details of the DMA protocol and the Kahlua implementation. T
document provides information about the software written to access the Kahlua D
interface. This software is intended to assist in the development of higher level applica
software that uses the DMA interface.

Note: The DMA driver software is currently under
development. The only mode that is functional is a direct
transfer (chaining is not yet implemented). Only transfers to
and from local memory has been tested. Controlling a remote
agent processor is not yet implemented. Of the various DMA
transfer control options implemented in Kahlua, the only ones
currently available in this release of the DMA library are
source address, destination address, length, channel, interrupt
steering and snoop enable.

I.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, "generic
application level programmatic interface to the DMA driver library that hides al
details of the Kahlua-specific implementation of the interface (i.e., control regis
status register, embedded utilities memory block, etc.). Features provided by t
Kahlua implementation that may or may not be common with other implementat
(i.e., not "generic" DMA operations) are made available to the application; howe
the interface is controlled by passing parameters defined in the API rather than
application having to have any knowledge of the Kahlua implementation (i.e.,
registers, embedded utilities memory block, etc.) The API will be expanded to
include chaining mode and additional DMA transfer control features in future
releases.

• DMA API functions showing the following:
Appendix I. MPC8240 DMA Memory Controller. 10I-113

MPC8240 DMA Memory Controller.

ble

r

eter

n,

.

dard
ore)
s to
the
ase
— how the function is called (i.e., function prototype) parameter definition possi
return values brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• A DMA Driver Library Internals (DLI) which provides information about the lowe
level software that is accessing the Kahlua-specific implementation of the DMA
interface.

• DMA DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition possible

— return values

— brief description of what the function does

I.3 DMA Application Program Interface (API)
API functions description

The DMA API function prototypes, defined return values, and enumerated input param
values are declared in drivers/dma/dma_export.h.

The functions are defined in the source file drivers/dma/dma1.c.

DMA_Status
DMA_Initialize(int(*app_print_function)(char*,...));

• app_print_function is the address of the optional application's print functio
otherwise NULL if not available

• Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR

Description:

Configure the DMA driver prior to use, as follows:

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the library function
report error and status condition information. If no print function is supplied by
application, the application must provide a NULL value for this parameter, in which c
the library will not attempt to access a print function.

NOTE: Each DMA transfer will be configured individually by
the function call that initiates the transfer. If it is desirable to
establish a default configuration, these could be added as
10I-114 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

ows:

.

us of
ust
parameters. Alternately, the first (or most recent) transfer
configuration values could also be used to establish defaults.

NOTE: This function call triggers the DMA library to read the
eumbbar so that it is available to the driver, so it is a
requirement that the application first call DMA_Initialize
before starting any DMA transfers. This could be eliminated if
the other functions read the eumbbar if it has not already been
done.

DMA_S tatus D MA_dir ect_t ra nsfer(DMA_IN TERRUP T_STEER int_s teer ,
DMA_T RANSFER _TYPE type,
unsig ned int sourc e,
unsig ned int dest ,
unsig ned int len,
DMA_C HANNEL channe l ,
DMA_S NOOP_MO DE sno op);

• int_steer controls interrupt steering, use defined constants as follows:
DMA_INT_STEER_LOCAL to steer to local processor
DMA_INT_STEER_PCI to steer to PCI bus through INTA_

• type is the type of transfer, use defined constants as follows:
DMA_M2M local memory to local memory (note, this is currently the only one
tested)
DMA_M2P local memory to PCI
DMA_P2M PCI to local memory
DMA_P2P PCI to PCI

• source is the source address of the data to transfer

• dest is the destination address, the target of the transfer

• len is the length in bytes of the data

• channel is the DMA channel to use for the transfer, use defined constants as foll
DMA_CHN_0 Kahlua has two channels, zero and one
DMA_CHN_1

• snoop controls processor snooping of the DMA channel buffer, use defined
constants a follows:
DMA_SNOOP_DISABLE
DMA_SNOOP_ENABLE

• Return: DMA_Status return value is either DMA_SUCCESS or DMA_ERROR

Description:

Initiate the DMA transfer.

This function does not implement any validation of the transfer. It does check the stat
the DMA channel to determine if it is OK to initiate a transfer, but the application m
Appendix I. MPC8240 DMA Memory Controller. 10I-115

MPC8240 DMA Memory Controller.

ata
r to
r as
arget)

ime
tiated
on,
not
sfer

trate
handle verification and error conditions via the interrupt mechanisms.

I.3.1 API Example Usage
The ROM monitor program DINK32 currently uses the DMA API to initiate a direct d
transfer in local memory only. The DINK32 program runs interactively to allow the use
transfer a block of data in local memory. DINK32 obtains information from the use
follows: interrupt steering, transfer type, source address of the data, destination (t
address, length of the data to transfer, DMA channel, and snoop control.

Note that the initialization call to configure the DMA interface is made once: the first t
the user requests a DMA transfer operation. Each transmit or receive operation is ini
by a single call to a DMA API function. The DINK32 program is an interactive applicati
so it gives the DMA library access to its own print output function. DINK32 does
currently implement any handling of interrupts for error handling or completion of tran
verification.

These are the steps DINK32 takes to perform a DMA transfer:

1. Call DMA_Initialize (if first transfer) to identify the optional print function.

2. Call DMA_direct_transfer to transmit the buffer of data.

The following code samples have been excerpted from the DINK32 application to illus
the use of the DMA API:

#def i ne PRIN T dink _pr int f
in t d ink_pr i nt f (u nsigned char * fmt , . . .)
{
/ * bo dy of a ppl ica t ion pr int ou tput fu nct ion , * /
}
/ * In th e funct i on par_d evtest , f or test i ng the DM A device i nter fa ce
*/
{
/ * in i t ia l iz e the DMA han dler , i f need ed */
i f (DMAIni t ed == 0)
{
DMA_S tatus s tatus;
i f ((s tatus = DMA_ Ini t ia l ize(P RINT)) != D MA_SUCC ESS)
{
PRINT ("devt est DM A: erro r in i n i t ia t i on\n") ;
retur n ERROR ;
} e ls e {
DMAIn i ted = 1;
}
}
retur n test_dm a(en_int) ; / * en_in t is the stee r ing cont ro l opt i on
*/
}
/ **** ******* ****** ******* ****** ******* ****** ******* *****
* fun ct ion: test_d ma
10I-116 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

/dma.h
*
* des cr ipt io n: run dma te st
*
* not e:
* tes t local dma c hannel
***** ******* ****** ******* ****** ******* ****** ******* *** /
s tat i c STATU S test _dma(i nt en_ int)
{
in t l en = 0, chn = 0;
long src = 0 , dest = 0;
in t m ode = 0 ;
DMA_S NOOP_MO DE sno op = DM A_SNOO P_DISAB LE;
DMA_C HANNEL channe l ;
DMA_I NTERRUP T_STEE R steer ;
/ * T he d efaul t for en_int is 0, t he d efaul t for steer ing D MA
inter rupts i s
* to rou te them to the PCI bu s throug h INTA_. At least , that is t he
DINK
* defaul t be havior . I f th e D INK user puts a '+ ' on th e co mmand l in e,
that
* means route to local pr ocesso r becaus e '+ ' mea ns "enab le
inter rupts" .
* /
s teer = (en _int == 0 ? DMA_I NT_STEE R_PCI : D MA_INT _STEER_ LOCAL);

/* re ad so urce a nd des t inat i on add resses , leng th, ty pe, sn oop a nd
chann el * /
. . .

/ * va l idate and tr anslate to AP I def in ed par ameter values */
. . .

/ * ca l l the DMA l i brary t o in i t ia te th e tran sfer * /
i f (DMA_dir ect_t r ansfer (s tee r , type , (uns igned i nt)src ,
(unsi gned i nt)dest , (uns igned int) len , chan nel , s noop) !=
DMA_S UCCESS)
{
PRINT ("dev DMA: e rror in DMA t ransfer test \ n") ;
retur n ERROR ;
}
retur n SUCCE SS;
}

I.4 DMA Driver Library Internals (DLI)
This information is provided to assist in further development of the DMA library.

All of these functions are defined as static in the source file drivers/dma/dma1.c.

I.4.1 Common Data Structures and Values
The following data structures, tables and status values are defined (see drivers/dma
Appendix I. MPC8240 DMA Memory Controller. 10I-117

MPC8240 DMA Memory Controller.

DMA
unless otherwise noted) for the Kahlua DMA driver library functions.

These a re the regi ster of f sets in a ta ble of the E mbedded U t i l i t i es
Memor y Block addre sses fo r the DMA reg isters .
#def i ne NUM_ DMA_RE G 7
#def i ne DMA_ MR_REG 0
#def i ne DMA_ SR_REG 1
#def i ne DMA_ CDAR_R EG 2
#def i ne DMA_ SAR_RE G 3
#def i ne DMA_ DAR_RE G 4
#def i ne DMA_ BCR_RE G 5
#def i ne DMA_ NDAR_R EG 6

The table that contains the addresses of the local and remote registers for both
channels (defined in drivers/dma/dma1.c):

unsig ned int dma_r eg_tb[] [14] = {
/* lo cal DMA regis ters * /
{
/ * DM A_0_MR */ 0x0 0001100 ,
/* DM A_0_SR */ 0x0 0001104 ,
/* DM A_0_CDA R */ 0 x000011 08,
/* DM A_0_SAR */ 0x 0000111 0,
/* DM A_0_DAR */ 0x 0000111 8,
/* DM A_0_BCR */ 0x 0000112 0,
/* DM A_0_NDA R */ 0 x000011 24,
/* DM A_1_MR */ 0x0 0001200 ,
/* DM A_1_SR */ 0x0 0001204 ,
/* DM A_1_CDA R */ 0 x000012 08,
/* DM A_1_SAR */ 0x 0000121 0,
/* DM A_1_DAR */ 0x 0000121 8,
/* DM A_1_BCR */ 0x 0000122 0,
/* DM A_1_NDA R */ 0 x000012 24,
} ,
/ * re mote DM A regi sters * /
{
/ * DM A_0_MR */ 0x0 0000100 ,
/* DM A_0_SR */ 0x0 0000104 ,
/* DM A_0_CDA R */ 0 x000001 08,
/* DM A_0_SAR */ 0x 0000011 0,
/* DM A_0_DAR */ 0x 0000011 8,
/* DM A_0_BCR */ 0x 0000012 0,
/* DM A_0_NDA R */ 0 x000001 24,
/* DM A_1_MR */ 0x0 0000200 ,
/* DM A_1_SR */ 0x0 0000204 ,
/* DM A_1_CDA R */ 0 x000002 08,
/* DM A_1_SAR */ 0x 0000021 0,
/* DM A_1_DAR */ 0x 0000021 8,
/* DM A_1_BCR */ 0x 0000022 0,
/* DM A_1_NDA R */ 0 x000002 24,
} ,
} ;

These values are t he func t ion s tatus r eturn values:
10I-118 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.
typed ef enum _dmas tatus
{
DMASU CCESS = 0x100 0,
DMALM ERROR,
DMAPE RROR,
DMACH NBUSY,
DMAEO SINT,
DMAEO CAINT,
DMAIN VALID,
DMANO EVENT,
} DMA Status;

These structures reflect the bit assignments of the DMA registers.

typed ef enum dma_m r_bi t
{
IRQS = 0x000 80000,
PDE = 0x0004 0000,
DAHTS = 0x00 030000 ,
SAHTS = 0x00 00c000 ,
DAHE = 0x000 02000,
SAHE = 0x000 01000,
PRC = 0x0000 0c00,
EIE = 0x0000 0080,
EOTIE = 0x00 000040 ,
DL = 0x00000 008,
CTM = 0x0000 0004,
CC = 0x00000 002,
CS = 0x00000 001,
} DMA _MR_BIT ;
typed ef enum dma_s r_bi t
{
LME = 0x0000 0080,
PE = 0x00000 010,
CB = 0x00000 004,
EOSI = 0x000 00002,
EOCAI = 0x00 000001 ,
} DMA _SR_BIT ;
/* s t ructure for D MA Mode Regis ter * /
typed ef st ru ct _dm a_mr
{
unsig ned int reser ved0 : 12;
unsig ned int i rqs : 1;
unsig ned int pde : 1;
unsig ned int dahts : 2;
unsig ned int sahts : 2;
unsig ned int dahe : 1;
unsig ned int sahe : 1;
unsig ned int prc : 2;
unsig ned int reser ved1 : 1;
unsig ned int e ie : 1;
unsig ned int eot ie : 1;
unsig ned int reser ved2 : 3;
unsig ned int d l : 1 ;
unsig ned int ctm : 1;
Appendix I. MPC8240 DMA Memory Controller. 10I-119

MPC8240 DMA Memory Controller.
/ * i f chain i ng mod e is en abled, any t i me, us er can modi fy the
* desc r iptor and do es not need to hal t t he curr ent DMA transa ct ion.
* Set CC bi t , enab le DMA to pro cess th e modi f ied de scr ipt ors
* Har dware w i l l c l ear th i s b i t each t i me, DM A star t s .
* /
unsig ned int cc : 1;
/* cs bi t ha s dua role, h al t th e curre nt DMA transa ct ion and
* (re)star t DMA tr ansact i on. In chain i ng mod e, i f t he des cr iptor
* nee ds modi f icat i on, cs bi t sh al l be used n ot the cc bi t .
* Har dware w i l l no t set /c lear t h is b i t each t ime DM A tran sact ion
* sto ps or s tar ts . Sof twa re sha l l do i t .
*
* cs bi t sha l l not be use d to h al t cha in ing DMA tra nsact i on for
* mod i fy ing the de scr ipto r . Tha t is th e ro le of CC bi t .
* /
unsig ned int cs : 1;
} DMA _MR;
/* st ructure for D MA Stat us reg ister * /
typed ef st ru ct _dm a_sr
{
unsig ned int reser ved0 : 24;
unsig ned int lme : 1;
unsig ned int reser ved1 : 2;
unsig ned int pe : 1;
unsig ned int reser ved2 : 1;
unsig ned int cb : 1;
unsig ned int eosi : 1;
unsig ned int eocai : 1;
} DMA _SR;
/* st ructure for D MA curr ent de scr ipto r addr ess reg ister * /
typed ef st ru ct _dm a_cdar
{
unsig ned int cda : 27;
unsig ned int snen : 1;
unsig ned int eosie : 1;
unsig ned int ct t : 2 ;
unsig ned int eotd : 1;
} DMA _CDAR;
/* st ructure for D MA byte count regis t er * /
typed ef st ru ct _dm a_bcr
{
unsig ned int reser ved : 6 ;
unsig ned int bcr : 26;
} DMA _BCR;
/* st ructure for D MA Next Descr iptor A ddress regist er * /
typed ef st ru ct _dm a_ndar
{
unsig ned int nda : 27;
unsig ned int ndsne n : 1;
unsig ned int ndeos ie: 1;
unsig ned int ndct t : 2 ;
unsig ned int eotd : 1;
} DMA _NDAR;
/* st ructure for D MA curr ent t r ansact i on inf o * /
10I-120 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

eter
rary
does

f the
wer

irect

o

te
typed ef st ru ct _dm a_curr
{
unsig ned int src_a ddr;
unsig ned int dest_ addr;
unsig ned int byte_ cnt ;
} DMA _CURR;

I.5 Kahlua DMA Driver Library Internals: function
descriptions

The API function DMA_direct_transfer (described above) accepts predefined param
values to initialize a DMA transfer. These parameters are used by the DMA driver lib
functions to set up the Kahlua DMA status and mode registers so that the application
not have to interface to the Kahlua processor on such a low level. A description o
processing performed in the DMA_direct_transfer function and descriptions of the lo
level DMA driver library functions follow.

This is a description of the DMA_direct_transfer processing, which initiates a simple d
transfer:

1. Read the mode register (MR) by calling DMA_Get_Mode

2. Set the values in the mode register as follows:
IRSQ is set from the int_steer parameter
if steering DMA interrupts to PCI, set EIE and EOTIE
the other mode controls are currently hard coded:
PDE cleared
DAHS = 3; however this is ignored because DAHE is cleared
SAHS = 3; however this is ignored because SAHE is cleared
PRC is cleared
DL is cleared
CTM is set (direct mode)
CC is cleared

3. Validate the length of transfer value, report error and return if too large

4. Read the current descriptor address register by calling DMA_Poke_Desp

5. Set the values in the CDAR as follows:
SNEN is set from the snoop parameter
CTT is set from the type parameter

6. Write the CDAR by calling DMA_Bld_Desp, which checks the channel status t
ensure it is free

7. Write the source and destination address registers (SAR and DAR) and the by
count register (BCR) by calling DMA_Bld_Curr, which maps them according to
channel and host and ensure the channel is free

8. Write the mode register by calling DMA_Set_Mode
Appendix I. MPC8240 DMA Memory Controller. 10I-121

MPC8240 DMA Memory Controller.

ee

t return
and

ess

the

ents
9. Begin the DMA transfer by calling DMA_Start, which ensures the channel is fr
and then clears and sets the mode register channel start (CS) bit

10. The proceeding steps 6 through 9 are done in a sequence so that each call mus
a successful status prior to executing the following step. The status is checked
error conditions are reported at this point if all did not execute successfully.

11. If this point is reached, the DMA transfer was initiated successfully, return succ
status

These are descriptions of the DMA library functions reference above in
DMA_direct_transfer processing steps.

DMASt atus DM A_Get_ Mode(L OCATIO N host ,
unsig ned eum bbar,
unsig ned int chann el ,
DMA_M R *mode);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• mode is a pointer to the structure (DMA_MR) to receive the mode register cont

• Return value is DMASUCCESS or DMAINVALID

Description:

Read the DMA mode register.

DMASt atus DM A_Poke _Desp(LOCATI ON host ,
unsig ned eum bbar,
unsig ned int chann el ,
DMA_C DAR *de sp);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CDAR) to receive the CDAR contents

• Return value is DMASUCCESS or DMAINVALID

Description:

Read the current descriptor address register (CDAR) specified by host and channel.

DMASt atus DM A_Bld_ Desp(L OCATIO N host ,
unsig ned eum bbar,
unsig ned int chann el ,
DMA_C DAR *mo de);

• host is LOCAL or REMOTE, only LOCAL is currently tested
10I-122 Dink32 R12 User’s Manual

MPC8240 DMA Memory Controller.

to the

and

count

, then
sfer.
• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CDAR) holding the CDAR control bits

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Set the current descriptor address register (CDAR) specified by host and channel
given values.

DMASt atus DM A_Bld_ Curr(L OCATIO N host ,
unsig ned eum bbar,
unsig ned int chann el ,
DMA_C URR *de sp);

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• desp is a pointer to the structure (DMA_CURR) holding the source, destination
byte count

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Set the source address register (SAR), destination address register (DAR) and byte
register (BCR) specified by host and channel to the given values.

DMASt atus DM A_Star t (LOCA TION h ost ,
unsig ned eum bbar,
unsig ned int chann el) ;

• host is LOCAL or REMOTE, only LOCAL is currently tested

• eumbbar is EUMBBAR for LOCAL or PCSRBAR for REMOTE

• channel is DMA_CHN_0 or DMA_CHN_1

• Return value is DMASUCCESS, DMACHNBUSY or DMAINVALID

Description:

Start the DMA transfer on the specified host and channel. Ensure the channel is free
clear and set the CS bit in the mode register. That 0 to 1 transition triggers the DMA tran
Appendix I. MPC8240 DMA Memory Controller. 10I-123

MPC8240 I2C Driver Library.

PI)

bus
tation
his
I2C

tions

r

Appendix J MPC8240 I2C Driver Library.
This section provides information about the generic Application Program Interface (A
to the I2C Driver Library as well as information about the implementation of the
Kahlua-specific I2C Driver Library Internals (DLI).

J.1 Background
The intended audience for this document is assumed to be familiar with the I2C
protocol. It is a companion document to the Kahlua specification and other documen
which collectively give details of the I2C protocol and the Kahlua implementation. T
document provides information about the software written to access the Kahlua
interface. This software is intended to assist in the development of higher level applica
software that uses the I2C interface.

Note: The I2C driver software is currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

J.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, generic,
application level programmatic interface to the I2C driver library that hides all
details of the Kahlua-specific implementation of the I2C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

• I2C API functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition

— possible return values

— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• An I2C Driver Library Internals (DLI) which provides information about the lowe
level software that is accessing the Kahlua-specific implementation of the I2C
interface.

— I2C DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition
10J-124 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

meter

nly

g the
nding

dard
ore)
s to
the
, in
— possible return values

— brief description of what the function does

J.3 I2C Application Program Interface (API)

J.3.1 API functions description
The I2C API function prototypes, defined return values, and enumerated input para
values are declared in drivers/i2c/i2c_export.h.

The functions are defined in the source file drivers/i2c/i2c1.c.

I2C_S tatus I 2C_Ini t ia l ize (unsi gned ch ar add r,
I2C_I NTERRUP T_MODE en_int ,
in t (*app_pr int_fu nct ion) (char * , . . .)) ;

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

• app_print_function is the address of the optional application's print function,
otherwise NULL if not available

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Configure the I2C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the I2C library currently o
supports polling mode.

The slave address can be set to the I2C listening address of the device runnin
application program, but the DLI does not yet support the application's device respo
as an I2C slave to another I2C master device.

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the I2C library function
report error and status condition information. If no print function is supplied by
application, the call to I2C_Initialize must provide a NULL value for this parameter
which case the I2C library will not attempt to access a print function.

I2C_S tatus I 2C_do_ transac t ion(I2C_INT ERRUPT _MODE e n_int ,
I2C_T RANSACT ION_MO DE act ,
unsig ned cha r i2c_ addr,
unsig ned cha r data _addr,
in t l en,
char *buf fer ,
I2C_S TOP_MOD E stop ,
Appendix J. MPC8240 I2C Driver Library. 10J-125

MPC8240 I2C Driver Library.

E

data

TOP

lave

eive
ween

ted
ly to

50 on
rite

ce, not
ta (if
t the

ime
ration

tive
in t r et ry ,
I2C_R ESTART_ MODE r sta) ;

• en_int controls the I2C interrupt enable status (currently use I2C_INT_DISABL
only, polling mode)

• act is the type of transaction: I2C_MASTER_RCV or I2C_MASTER_XMIT

• i2c_addr is the I2C address of the slave device

• data_addr is the address of the data on the slave device

• len is the length in bytes of the data

• buffer is a pointer to the buffer that contains the data (xmit mode) or receives the
(rcv mode)

• stop controls sending an I2C STOP signal after completion (curently use I2C_S
only)

• retry is the timeout retry value (currently ignored)
rsta controls I2C restart (currently use I2C_NO_RESTART only)

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Act as the I2C master to transmit (or receive) a buffer of data to (or from) an I2C s
device.

This function currently only implements a simple master-transmit or a master-rec
transaction. It does not yet support the application retaining I2C bus ownership bet
transactions, operating in interrupt mode, or acting as an I2C slave device.

J.3.2 API Example Usage
The ROM monitor program DINK32 uses the I2C API in both currently implemen
modes: master-transmit and master-receive. The DINK32 program runs interactive
allow the user to transmit or receive a buffer of data from an I2C device at address 0x
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/w
mode, I2C device address for the data (this is the address of the data on the I2C devi
the I2C bus address of the device itself, which is hard-coded in DINK32), the raw da
in write mode), and the length of the data to transfer to or from the device. Note tha
initialization call to configure the I2C interface is actually made only once, the first t
the user requests an I2C transmit or receive operation. Each transmit or receive ope
is performed by a single call to an I2C API function. The DINK32 program is an interac
application, so it gives the I2C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.
10J-126 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

ode:

trate
2. Call I2C_do_transaction to transmit the buffer of data.

These are the steps DINK32 takes to perform a master-receive transaction in polling m

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.

2. Call I2C_do_transaction to receive the buffer of data.

The following code samples have been excerpted from the DINK32 application to illus
the use of the I2C API:

#def i ne PRIN T dink _pr int f
in t d ink_pr i nt f (u nsigned char * fmt , . . .)
{
/ * bo dy of a ppl ica t ion pr int ou tput fu nct ion , see A ppendi x ??? * /
}
/ * In th e funct i on par_d evtest , f or test i ng the I2 C device i nter fa ce
*/
{
/ * in i t ia l iz e the I2C han dler t o I2C a ddress 48, i f neede d */
i f (I2CIn i t ed == 0)
{
I2C_S tatus s tatus;
i f ((s ta tus = I 2C_Ini t ia l ize (4 8, en_int , P RINT)) ! = I 2C_SUC CESS)
{
PRINT ("devt est I2 C: erro r in i n i t ia t i on\n") ;
retur n ERROR ;
} e ls e {
I2CIn i ted = 1;
}
}
retur n test_ i2c(a ct ion, en_int) ;
}
s tat i c unsig ned ch ar rcv_ buf fer [BUFFER _LENGT H] = { 0 } ;
s tat i c unsig ned ch ar xmit _buf fe r [BUFFE R_LENG TH] = { 0 } ;
/ **** ******* ****** ******* ****** ******* ****** ******* *****
* fun ct ion: test_ i 2c
*
* des cr ipt io n: run i2c te st by pol l ing the d evice
*
* not e:
* Tes t i2c d evice on PMC card, 0x50 se r ia l E PROM.
* The device test data is curre nt ly on ly pr i ntable charac ters.
*
* This funct ion get s some data fr om the command l ine, val ida tes i t ,
* and cal ls the I2 C l ibra ry fun ct ion t o per f orm the task.
***** ******* ****** ******* ****** ******* ****** ******* *** /
s tat i c STATU S test _ i2c(i n t act , in t e n_int)
{
in t r et ry = 800, l en = 0, rsta = 0, ad dr = 0 ;
unsig ned cha r epro m_addr = 0x50 ;
/* re ad tran sact io n addre ss */
. . . a ddr . . .
/ * re ad # of bytes to t ra nsfer * /
Appendix J. MPC8240 I2C Driver Library. 10J-127

MPC8240 I2C Driver Library.

ble
ention
evice

ahlua
. . . l en . . .

/ * va l idate the da ta addr ess, l ength, etc. * /
. . .
/ * I f t ransm it t ing , get t he raw data i nto th e trans mit bu f fer * /
. . . x mi t_buf fer [] . . .
/ * re ad bui l t - in I 2C devi ce on Kahlua PMC ca rd */
i f (act == DISPLA Y_TAG)
{
i f (I 2C_do_t ransac t ion (e n_int , I2C _MASTE R_RCV, epr om_addr , ad dr ,
len, r cv_buf fer , I2 C_STOP, ret ry , I2C_N O_RESTA RT) != I2C_SU CCESS)
{
PRINT ("dev I2C: e rror in maste r recei ve tes t \n") ;
retur n ERROR ;
} e ls e {
rcv_b uf fer [l en] = 0; /* e nsure NULL te rminat ed str i ng */
PRINT ("%s", rcv_bu f fer) ; / * exp ect ing only p r intabl e data * /
PRINT (" \n") ;
}
}
/ * wr i te to bui l t - in I2C device on Kah lua PM C card */
i f (act == MODIFY _TAG)
{
i f (I2C _do_tra nsact i on (en_in t , I2C_M ASTER_ XMIT, ep rom_add r, addr ,
len, xm i t_buf f er , I2C_ STOP, ret ry , I2C_ NO_REST ART) != I2C _SUCCE SS)
{
PRINT ("dev I2C: e rror in maste r t rans mit te st \n") ;
retur n ERROR ;
}
}
retur n SUCCE SS;
}

J.4 I2C Driver Library Internals (DLI)
This information is provided to assist in further development of the I2C library to ena
the application to operate as an I2C slave device, interrupt enabled mode, bus ret
between consecutive transactions, correct handling of device time out, no slave d
response, no acknowledgment, I2C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2c1.c.

J.4.1 Common Data Structures and Values
These data structures and status values are defined (see drivers/i2c/i2c.h) for the K
I2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the I2C registers.

#def i ne I2CA DR 0x0 0003000
#def i ne I2CF DR 0x0 0003004
#def i ne I2CC R 0x00 003008
10J-128 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.
#def i ne I2CS R 0x00 00300C
#def i ne I2CD R 0x00 003010
typed ef enum _i2cs tatus
{
I2CSU CCESS = 0x300 0,
I2CAD DRESS,
I2CER ROR,
I2CBU FFFULL,
I2CBU FFEMPTY ,
I2CXM ITERROR ,
I2CRC VERROR,
I2CBU SBUSY,
I2CAL OSS,
I2CNO EVENT,
} I2C Status;

These structures reflect the bit assignments of the I2C registers.

typed ef st ru ct _ i2 c_ctr l
{
unsig ned int reser ved0 : 24;
unsig ned int men : 1;
unsig ned int mien : 1;
unsig ned int msta : 1;
unsig ned int mtx : 1;
unsig ned int txak : 1;
unsig ned int rs ta : 1;
unsig ned int reser ved1 : 2;
} I2C _CTRL;
typed ef st ru ct _ i2 c_stat
{
unsig ned int rsrv0 : 24;
unsig ned int mcf : 1;
unsig ned int maas : 1;
unsig ned int mbb : 1;
unsig ned int mal : 1;
unsig ned int rsrv1 : 1;
unsig ned int srw : 1;
unsig ned int mi f : 1 ;
unsig ned int rxak : 1;
} I2C _STAT;
Value s to in dicate receiv e or t ransmit mode.
typed ef enum _i2c_ mode
{
RCV = 0,
XMIT = 1,
} I2C _MODE;

J.5 Kahlua I2C Driver Library Internals: function
descriptions

I2CSt atus I2 C_Ini t (unsig ned in t eumbb ar,
unsig ned cha r fdr ,
unsig ned cha r addr ,
Appendix J. MPC8240 I2C Driver Library. 10J-129

MPC8240 I2C Driver Library.

rupt
unsig ned int en_in t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• fdr is the frequency divider value used to set the I2C clock rate

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: 1 = enable, 0 = disable

• Return: I2CStatus return value is always I2CSUCCESS.

Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and inter
enable mode (I2CCR:MIEN).

I2C_C TRL I2C _Get_C tr l (un signed int eu mbbar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Return: I2C_CTRL is the contents of the I2C control register (I2CCR)

Description:

Read the I2C control register.

void I2C_Set _Ctr l (unsign ed int eumbba r, I2C _CTRL c tr l) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• ctrl is the contents of the I2C control register (I2CCR)

• Return: none

Description:

Set the I2C control register.

I2CSt atus I2 C_put(unsign ed int eumbba r,
unsig ned cha r rcv_ addr,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• rcv_addr is the receiver's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator
10J-130 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

hole
OP in

ed at
r slave

en the
is the
rate a
Description:

Set up to send a buffer of data to the intended rcv_addr. If stop_flag is set, after the w
buffer is sent, generate a STOP signal provided that the receiver doesn't signal the ST
the middle. Caller is the master performing transmitting. If no STOP signal is generat
the end of current transaction, the master can generate a START signal to anothe
address.

The function does not actually perform the data buffer transmit,
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CSt atus I2 C_get(unsign ed int eumbba r,
unsig ned cha r send er_addr ,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• sender_addr is the sender's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, wh
buffer is full and the sender does not signal STOP, generate a STOP signal. Caller
master performing receiving. If no STOP signal is generated, the master can gene
START signal to another slave address.

The function does not actually perform the data buffer receive,
Appendix J. MPC8240 I2C Driver Library. 10J-131

MPC8240 I2C Driver Library.

set

iven

ddr is
r 1

by
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CSt atus I2C _Timer _Event(unsign ed int eu mbbar, I 2CStat us
(*han dler) (unsign ed int)) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• handler is a pointer to the function to call to handle any existing status event,

• Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is not
results from call to the handler function if there was a pending event completed

Description:

In polling mode, I2C_Timer_Event can be called to check the I2C status and call the g
(or the default: I2C_ISR) handler function if the I2CSR MIF bit is set.

I2CSt atus I2 C_Star t (unsi gned i nt eumb bar,
unsig ned cha r s lav e_addr,
I2C_M ODE mod e,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• slave_addr is the I2C address of the receiver

• mode: XMIT(1) - put (write)

• RCV(0) - get (read)

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Generate a START signal in the desired mode. Caller is the master. The slave_a
written to bits 7:1 of the I2CDR and bit 0 of the I2CDR is set to 0 for mode = XMIT o
for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (used
I2C_ISR function).

I2CSt atus I2 C_Stop (unsig ned in t eumbb ar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:
10J-132 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

mit,
, to

lled
=

bles
byte

the
1

Xmit,
tion
F =
Generate a STOP signal to terminate the master transaction.

I2CSt atus I2 C_Mast er_Xmit (unsi gned in t eumb bar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master sends one byte of data to slave receiver. The DLI global variables ByteToX
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STOP
transmit. If a data byte is sent, it is written to the I2CDR. This function may only be ca
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXAK
0 I2CCR.MSTA = 1 I2CCR.MTX = 1

I2CSt atus I2 C_Mast er_Rcv(unsig ned int eumbb ar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master receives one byte of data from slave transmitter. The DLI global varia
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data
or sending of a STOP if the buffer is full. This function may only be called when
following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =
I2CCR.MTX = 0

I2CSt atus I2 C_Slav e_Xmit (unsig ned int eumbb ar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte sent
I2CBUFFEMPTY if no data in sending buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteTo
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This func
may only be called when the following conditions are met: I2CSR.MIF = 1 I2CSR.MC
1 I2CSR.RXAK = 0 I2CCR.MSTA = 0 I2CCR.MTX = 1

I2CSt atus I2 C_Slav e_Rcv(u nsigne d int e umbbar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte received
I2CBUFFFULL if buffer is full or no more data expected

Description:
Appendix J. MPC8240 I2C Driver Library. 10J-133

MPC8240 I2C Driver Library.

bles
byte
een
et:

when

)

)

d this
ction
It is
sted

when
Slave receives one byte of data from master transmitter. The DLI global varia
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data
or setting the acknowledge bit (I2CCR.TXAK) if the expected number of bytes have b
received. This function may only be called when the following conditions are m
I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA = 0 I2CCR.MTX = 0

I2CSt atus I2 C_Slav e_Addr(unsig ned int eumbb ar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CADDRESS if asked to receive data
results from call to I2C_Slave_Xmit if asked to transmit data

Description:

Process slave address phase. Called from I2C_ISR. This function may only be called
the following conditions are met: I2CSR.MIF = 1 I2CSR.MAAS = 1

I2CSt atus I2 C_ISR(unsigne d int eumbbar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns:

— I2CADDRESS if address phase for master receive

— results from call to I2C_Slave_Addr if being addressed as slave (untested

— results from call to I2C_Master_Xmit if master transmit data mode

— results from call to I2C_Master_Rcv if master receive data mode

— results from call to I2C_Slave_Xmit if slave transmit data mode (untested)

— results from call to I2C_Slave_Rcv if slave receive data mode (untested)

— I2CSUCCESS if slave has not acknowledged, generated STOP (untested

— I2CSUCCESS if master has not acknowledged, wait for STOP (untested)

— I2CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which cause
function to be called. Handle condition, see above in possible return values. This fun
is called in polling mode as the handler function when an I2C event has occurred.
intended to be a model for an interrupt service routine for polling mode, but this is unte
and the design has not been reviewed or confirmed. This function may only be called
the following condition is met: I2CSR.MIF = 1

This function is tested only for the master-transmit and
master-receive in polling mode. I don't think it is tested even in
those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc.
10J-134 Dink32 R12 User’s Manual

MPC8240 I2C Driver Library.

fer is
STOP

s full
orming

for
This
J.5.1 DLI Functions Written but not Used and not Tested:
I2CSt atus I2 C_wr i t e(unsi gned i nt eumb bar,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Send a buffer of data to the requiring master. If stop_flag is set, after the whole buf
sent, generate a STOP signal provided that the requiring receiver doesn't signal the
in the middle. Caller is the slave performing transmitting.

I2CSt atus I2 C_read (unsig ned in t eumbb ar,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Receive a buffer of data from the sending master. If stop_flag is set, when the buffer i
and the sender does not signal STOP, generate a STOP signal. Caller is the slave perf
receiving.

J.6 I2C support functions
unsig ned int get_e umbbar() ;

• Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary
information about the Embedded Utilities Memory Block Base Address Register.
function is defined in kahlua.s.
Appendix J. MPC8240 I2C Driver Library. 10J-135

MPC8240 I2C Driver Library.

in

2.s
unsig ned int load_ runt ime _reg(unsigne d int eumbbar ,
& nbs p; unsi gned i nt reg) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• reg specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• Returns: register content

Description:

The content of the specified register is returned. This function is defined
drivers/i2c/i2c2.s.

unsig ned int store _runt im e_reg(unsign ed int eumbba r,
& nbs p; unsi gned i nt reg,
& nbs p; unsi gned i nt val) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• offset specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• val is the value to be written to the register

• Return: No return value used, it should be declared void.

Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2c
10J-136 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

isters
tation
ssage

ister
ister
t use

control
agent

ch as
isters,
via one
the
nd a
d to
ethods

ic, but
chip
fsets
the

host
gent’s
own
nd

n the
Appendix K MPC8240 I2O Doorbell
Driver

K.1 I2O Description of Doorbell Communication
between Agent and Host

The sequence of events that transpire during communication via the I2O doorbell reg
between host and agent applications running on Kahlua are described. This implemen
enables basic doorbell communication. It can be expanded to include other Kahlua me
unit activity via the message registers and the I2O message queue.

K.1.1 System startup and memory map initialization
An understanding of the agent’s Embedded Utilities Memory Block Base Address Reg
(EUMBBAR) and Peripheral Control and Status Registers Base Address Reg
(PCSRBAR) is important for I2O doorbell communication because both host and agen
the agent’s inbound and outbound doorbell registers and message unit status and
registers. The host accesses the agent’s registers via the agent’s PCSR and the
accesses its own registers via its own EUMB. It is worth noting that some registers, su
the doorbell registers, can be accessed via either the PCSR or the EUMB. Other reg
such as the message unit’s status and interrupt mask registers, can only be accessed
or the other of the PCSR or EUMB, but not both. The I2O library functions require
caller to provide the base address (which will be either the PCSR or the EUMB) a
parameter indicating which is used. In the DINK32 environment, functions are provide
obtain both of these base addresses: get_kahlua_pcsrbar() and get_eumbbar(). The m
of setting and obtaining the PCSR and EUMB base addresses are application-specif
the register offsets and bit definitions of the registers are specified for the Kahlua
memory map B and will be the same for all applications. Details about the register of
within the EUMB and PCSR as well as bit definitions within registers are found in
Kahlua or Kahlua User’s Manual.

When the Kahlua host and agent come up running the DINK32 application, the
application assigns the agent’s PCI address for the PCSR and writes it in the a
PCSRBAR by calling config_kahlua_agent(). The agent application initializes its
EUMBBAR [this actually happens in the KahluaInit() function, defined in .../kahlua.s] a
inbound and outbound address translation windows. This is done during initialization i
main() function, main.c.

/ *
** Try to enable a Kahlua slave de vice. Th is is on ly

enabl ed for Map B.
* /
i f (ad dress_m ap[0] == 'B ')
Appendix K. MPC8240 I2O Doorbell Driver 10K-137

MPC8240 I2O Doorbell Driver

and
ts, but
ed to
ck for
age

e, the
t. The
R) to
occur
guish

rbell

the
ask

() is
, the
gister
i f (targe t_mode == 0)

/* p robe P CI to s ee i f we have a kah lua */
i f (pc iK ahluaPr obe(KAHL UA_ID_ LO, VENDO R_ID_H I,

&targ et_add
r)==1)

P RINT(" Host \n") ;
c onf ig_ kahlua_ agent() ;
}

}
e lse i f (ta rget_ty pe == ((KAHLUA _ID_LO << 16) |

VENDO R_ID_HI))
PRINT ("Agent \ n") ;

/ * Inbo und add ress t ranslat ion */
s ysEUMB BARWri t e(L_AT U_ITWR, A TU_BAS E|ATU_I W_64K) ;

pc iRegSe t(PCI_R EG_BAS E, PCI_LM BAR_RE G,
PCI_M EM_ADR) ;

/ * Outb ound ad dress transla t ion * /
s ysEUMB BARWri t e(L_AT U_OTWR, 0 x10000 0|ATU_I W_64K) ;

s ysEUMB BARWri t e(L_AT U_OMBAR , 0x81 000000) ;
}

}

K.1.2 Interrupt Service Routines: I2O_ISR_host() and
I2O_ISR_agent()

There is a fundamental difference in the interrupt service routine (ISR) for the host
agent: the I2O_ISR_agent function only has to handle inbound message unit interrup
the I2O_ISR_host must handle any possible interrupt from a Kahlua agent, not limit
the agent’s outbound message unit. The ISRs implemented at present just che
doorbell activity. If a doorbell event occurred, the ISR prints out a simple mess
including the doorbell register content and the doorbell register is cleared. Otherwis
ISR prints a message that it was unable to determine the cause of the interrup
I2O_ISR_agent function checks the Inbound Message Interrupt Status Register (IMIS
determine the cause of the message unit interrupt. The Message Unit interrupt can
because of doorbell, message register, or message queue activity. The ISR will distin
and handle the interrupt accordingly; but at first stage implementation, only doo
interrupts will be handled.

The I2O library function I2OInMsgStatGet() is used to read the IMISR. It returns
content of the IMISR after applying the mask value in the Inbound Message Interrupt M
Register (IMIMR) and clears the status register. The I2O library function I2ODBGet
used to read the IDBR. It returns the content and clears the register. Similarly
I2O_ISR_host function checks the agent’s Outbound Message Interrupt Status Re
10K-138 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

und
r any
rary

f the
ister

d to

file
are
ually,
ctive
w to
ll to
y be

ation
etails.
rupt
ments
found

I2O
sk
t
s is

und
ich
age

SR
ent’s

essible
clear
in

ple. It
ssage

or
riate

to the
occur
(OMISR) to determine if the cause of the interrupt was due to the agent’s outbo
doorbell. It is important to note that the I2O_ISR_host must be expanded to check fo
kind of expected interrupt from the agent, not just message unit interrupts. The I2O lib
function I2OOutMsgStatGet() is used to read the OMISR. It returns the content o
OMISR after applying the mask value in the Outbound Message Interrupt Mask Reg
(OMIMR) and clears the status register. The I2O library function I2ODBGet() is use
read the ODBR. It returns the content and clears the register.

The two functions I2O_ISR_host() and I2O_ISR_agent() are defined in the source
.../drivers/i2o/i2o1.c and are linked into the libdriver.a library. For testing, they
currently manually called when requested by the user in the function test_i2o(). Event
the host and agent will register an interrupt service routine (ISR) with their respe
Embedded Programmable Interrupt Controller (EPIC) systems. Details about ho
register the ISRs with EPIC are not yet specified. It may take the form of a function ca
an EPIC-provided function that accepts a pointer to the ISR function. Alternately, it ma
integrated by the linker by placing a reference to the ISR functions in some configur
table. When the integration takes place, this document will be updated to reflect the d
The code for the entire I2O_ISR_host function follows. Note that the only type of inter
that is currently handled is doorbell interrupt from the message unit, but there are com
in the code indicating where to check for other causes of interrupts. The code can be
in i2o1.c.

K.1.3 Enable Doorbell Interrupts:
Since the agent is servicing the inbound doorbell, the agent enables it by calling the
library function I2ODBEnable(), which clears the Inbound Doorbell Interrupt Ma
(IDIM) bit in the Inbound Doorbell Interrupt Mask Register (IMIMR). The IMIMR is a
offset 0x104 in the agent’s Embedded Utilities Memory Block (EUMB), whose addres
in the agent’s EUMBBAR. Similarly, since the host is servicing the agent’s outbo
doorbell, the host enables it by calling the I2O library function I2ODBDisable(), wh
clears the Outbound Doorbell Interrupt Mask (ODIM) bit in the agent’s Outbound Mess
Interrupt Mask Register (OMIMR). The OMIMR is at offset 0x34 in the agent’s PC
block, whose address is in the agent’s PCSRBAR at offset 0x14 in the ag
Configuration Registers.

The address of the agent’s Configuration Registers are known by the host and are acc
from the PCI bus. At present, the user interface in DINK32 allows the user to set or
the ODIM or IDIM bit. The functions I2ODBEnable() and I2ODBDisable() are defined
.../drivers/i2o/i2o1.c to perform this task. See the code in test_i2o() for a usage exam
is interesting to note that the observed behavior of the Kahlua chip with regard to me
unit registers is not dependant on the ODIM and IDIM bit settings Even if the ODIM
IDIM mask bits are set, writes to the affected doorbell are not blocked and the approp
bit is set in the message unit’s status register. It is up to software to apply the mask
status register to determine whether or not to take any action. The interrupt should not
Appendix K. MPC8240 I2O Doorbell Driver 10K-139

MPC8240 I2O Doorbell Driver

te a
isters.
ers via
ia the

to
this

nit will
terrupt
ated;
IDBR

n to
, this
host

be
ut the
R by

i2o()
y an
dy set
ll bit

ith
if the mask bit is set, but this has not yet been tested.

K.1.4 Writing and Reading Doorbell Registers:
The functions I2ODBPost() and I2ODBGet() are defined in .../drivers/i2o/i2o1.c to wri
bit pattern to or return the contents of the agent’s inbound and outbound doorbell reg
Note that the agent application accesses both inbound and outbound doorbell regist
its own EUMB and the host application accesses these same doorbell registers v
agent’s PCSR. See the code in test_i2o() for usage examples.

K.1.4.1 Host Rings an Agent via Agent’s Inbound Doorbell

The host application calls the I2O library function I2ODBPost() to write the bit pattern
the agent’s Inbound Door Bell Register (IDBR). If the inbound doorbell is enabled,
generates a Message Unit interrupt to the agent processor and the agent’s EPIC u
execute the I2O_ISR_agent function to determine the cause of the message unit in
and handle it appropriately. If the inbound doorbell is not enabled, no interrupt is gener
but the doorbell and the status register bit are still set. The agent application reads the
by calling the I2O library function I2ODBGet(). This clears the IDBR.

K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell

The agent application calls the I2O library function I2ODBPost() to write the bit patter
the agent’s Outbound Door Bell Register (ODBR). If the outbound doorbell is enabled
causes the outbound interrupt signal INTA_ to go active which interrupts the
processor. After the ISR is integrated into the EPIC unit, this mechanism will
documented here. If the outbound doorbell is not enabled, no interrupt is generated; b
doorbell and the status register bit are still set. The host application reads the ODB
calling the I2O library function I2ODBGet(). This clears the ODBR.

Sample application code. Here is some sample code from the DINK32 function test_
in device.c that provides examples of how the I2O library functions can be used b
application. When this section of code is entered, the DINK32 user interface has alrea
the local variables “mode” and “bit”. Mode reflects the user request. Bit is the doorbe
number to set. Mode = 4 to manually run the ISR’s for testing prior to integration w
EPIC.

/ * d i f ferent depen ding on i f DI NK = is runni ng on h ost or agent * /
i f (targe t_mode 0)

{
/ * runn ing on host * /

unsigne d int kahlua_ pcsrba r get_ kahlua _pcsrba r() ;
/ * PRINT ("kahl ua 's pc srbar 0x%x\ n" ,kah lua_pcs rbar) ; * /
s wi tch (mode)
{

case 0 :
/* rea d agen t 's ou tbound DB reg ister and pr i nt i t out * /
db_reg _conte nt I2O DBGet(REMOTE, kahlua _pcsrba r) ;
10K-140 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver
PRINT("Agent ' s o utbound door bel l r egis te r :
0x%x\ n" ,db_r eg_con tent) ;

break;

case = 1:
/* set agen t 's inb ound d oorbel l regis ter * /
db_reg _conte nt 1 < < bi t ;
I2ODBP ost(RE MOTE,ka hlua_p csrbar , db_reg _conten t) ;
break;

case = 2:
/* ena ble a gent 's outbou nd DB r egiste r in ter rupts * /
i f (I2 ODBEna ble(REM OTE,ka hlua_pc srbar , 0) ! = I2OSUC CESS)

PRINT ("Canno t enab le agen t 's ou tbound doorbe l l in te rrupt . \n") ;
e lse

PRI NT("En abled a gent 's outbou nd doo rbel l i n terru pt . \n") ;
break ;

case = 3:
/* d i sable agent 's outbo und DB regist er in te rrupts * /
i f (I2 ODBDis able(RE MOTE,k ahlua_p csrbar ,0) ! = I2OSU CCESS)

PRI NT("Can not d is able ag ent 's ou tbound doorbe l l
in ter rupt . \n ") ;

e lse
P RINT("D isable d ag ent 's outb ound doorb el l in ter rupt . \n ") ;

break ;

i fdef DBG_I 2O
case 4 :
I2O_IS R_host () ;
break;
#endi f

}
}
e ls e
{

/* ru nning o n agen t * /
/ * PRIN T("kah lua 's e umbbar 0x%x\ n" ,eum bbar) ; * /
s wi tch (mode)
{

case 0 :
/* rea d agen t 's inb ound DB regi ster a nd pr in t i t o ut * /
db_reg _conte nt I2O DBGet(LOCAL,e umbbar) ;

PRI NT("Age nt 's inboun d door bel l r egis te r :
0x%x\ n" ,db_r eg_con tent) ;

break;

case = 1:
/* set agen t 's out bound doorbel l regi s ter * /
db_reg _conte nt 1 << bi t ;
I2ODBP ost(LO CAL,eum bbar,d b_reg_c ontent) ;

break ;

case = 2:
Appendix K. MPC8240 I2O Doorbell Driver 10K-141

MPC8240 I2O Doorbell Driver

or

ask

or
/ * ena ble a gent 's inboun d DB re gister in terr upts * /
i f (I 2ODBEn able(LO CAL,eu mbbar,3) ! I2 OSUCCES S)
PRINT ("Canno t enable a gent 's i nbound d oorbel l i n terru pt . \n") ;
e lse

PRINT ("Enabl ed age nt 's in bound doorbel l in te rrupt . \ n") ;
break ;

case = 3:
/* d i sable agent 's inbou nd DB r egiste r in ter rupts * /
i f (I 2ODBDi sable(L OCAL,e umbbar, 3) ! I 2OSUCCE SS)

PRI NT("Can not d isa ble agent 's inboun d doorbe l l
in ter rupt . \n ") ;

e lse
PRIN T("Dis abled a gent 's inboun d door bel l in terrup t . \n") ;

break ;

i fdef DBG_I 2O
case 4 :
I2O_IS R_agen t() ;
break;
#endi f

}
}

K.1.4.3 Descriptions of the I2O library functions
I2OST ATUS I2ODB Enable (LOC ATION loc, unsign ed int base,u nsigne d i nt
in_db)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE if called
from host. This controls the use of the base parameter as PCSR (ifREMOTE)
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) mask registers.

• base is the base address of PCSR or EUMB.

• in_db is used for LOCAL to control enabling of doorbell and/or machine check

• Returns: I2OSUCCESS

Description:

Enable the specified doorbell interrupt by clearing the appropriate mask bits.

I2OST ATUS I2ODB Disable (L OCATION lo c,unsig ned int base, unsigne d i nt
in_db)

• Same as I2ODBEnable, but it disables the specified interrupts bysetting the m
bits.

unsig ned int I2ODB Get(LO CATION loc,un signed int ba se)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE)
EUMB (ifLOCAL) and selection of outbound (if REMOTE) or inbound(if LOCAL)
doorbell registers.

• base is the base address of PCSR or EUMB.
10K-142 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

or

sked
dress

by the
dress

API)
the
• Returns:Contents of agent's inbound (if loc = LOCAL) or outbound (if loc
REMOTE) doorbell register.

Description:

Returns content of specified doorbell register and clears the doorbell register.

void I2ODBPo st(LO CATION loc,un signed int ba se,unsi gned i nt msg)

• loc = LOCAL or REMOTE: Use LOCAL if called from agent, REMOTE ifcalled
from host. This controls the use of the base parameter as PCSR (ifREMOTE)
EUMB (if LOCAL) and selection of outbound (if REMOTE) or inbound(if
LOCAL) doorbell registers.

• base is the base address of PCSR or EUMB

• msg is the 32 bit value written to the specified doorbell register

Description:

The 32 bit value is written to the specified doorbell register.

I2OST ATUS I2 OInMsg StatGet (unsig ned int eumbb arI2OIM STAT * val)

• eumbbar is the base address of the agent's EUMB

• *val receives the agent's inbound message interrupt statusregister

• Returns: I2OSUCCESS

Description:

The agent's Inbound Message Interrupt Status Register (IMISR)content is ma
by the agent's Inbound Message Interrupt Mask Register(IMIMR) and placed in the ad
given in the val parameter. The IMISRregister is cleared.

I2OST ATUS I2 OOutMs gStatGe t(unsi gned in t pcsr bar , I2O OMSTAT *val)

• pcsrbar is the base address of the agent's PCSR

• *val receives the agent's outbound message interrupt statusregister

• Returns: I2OSUCCESS

Description:
The agent's Outbound Message Interrupt Status Register (OMISR)content is masked
agent's Outbound Message Interrupt Mask Register(OMIMR) and placed in the ad
given in the val parameter. The OMISRregister is cleared.

K.2 I2C Driver Library
This section provides information about the generic Application Program Interface (
to the I2C Driver Library as well as information about the implementation of
Kahlua-specific I2C Driver Library Internals (DLI).
Appendix K. MPC8240 I2O Doorbell Driver 10K-143

MPC8240 I2O Doorbell Driver

bus
tation
his
I2C

tions

r

meter
K.2.1 Background
The intended audience for this document is assumed to be familiar with the I2C
protocol. It is a companion document to the Kahlua specification and other documen
which collectively give details of the I2C protocol and the Kahlua implementation. T
document provides information about the software written to access the Kahlua
interface. This software is intended to assist in the development of higher level applica
software that uses the I2C interface.

Note: The I2C driver software is currently under development.
The only modes that are functional are the master-transmit and
master-receive in polling mode.

K.2.2 Overview
This document consists of these parts:

• An Application Program Interface (API) which provides a very simple, generic,
application level programmatic interface to the I2C driver library that hides all
details of the Kahlua-specific implementation of the I2C interface (i.e., control
register, status register, embedded utilities memory block, etc.).

• I2C API functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition possible

— return values

— brief description of what the function does

— an explanation of how the functions are used by an application program
(DINK32 usage employed as examples)

• An I2C Driver Library Internals (DLI) which provides information about the lowe
level software that is accessing the Kahlua-specific implementation of the I2C
interface.

• I2C DLI functions showing the following:

— how the function is called (i.e., function prototype)

— parameter definition

— possible return values

— brief description of what the function does

K.2.3 I2C Application Program Interface (API)

K.2.3.1 API functions description

The I2C API function prototypes, defined return values, and enumerated input para
10K-144 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

e file

nly

g the
nding

dard
ore)
s to
the
, in

E

values are declared in drivers/i2c/i2c_export.h. The functions are defined in the sourc
drivers/i2c/i2c1.c.

I2C_S tatus I 2C_Ini t ia l ize (unsi gned c har add r, I2C _INTERR UPT_MO DE
en_in t , in t (*app_ pr int_f unct io n)(char * , . . .)) ;

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: I2C_INT_ENABLE = enable,
I2C_INT_DISABLE = disable

• app_print_function is the address of the optional application's print function,
otherwise NULL if not available

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Configure the I2C library prior to use, as follows:

The interrupt enable should be set to I2C_INT_DISABLE, the I2C library currently o
supports polling mode.

The slave address can be set to the I2C listening address of the device runnin
application program, but the DLI does not yet support the application's device respo
as an I2C slave to another I2C master device.

The optional print function, if supplied by the application, must be similar to the C stan
library printf library function: accepts a format string and a variable number (zero or m
of additional arguments. This optional function may be used by the I2C library function
report error and status condition information. If no print function is supplied by
application, the call to I2C_Initialize must provide a NULL value for this parameter
which case the I2C library will not attempt to access a print function.

I2C_S tatus I 2C_do_ transac t ion(I2C_INT ERRUPT _MODE e n_int ,
I2C_T RANSACT ION_MO DE act ,
unsig ned cha r i2c_ addr,
unsig ned cha r data _addr,
in t l en,
char *buf fer ,
I2C_S TOP_MOD E stop ,
in t r et ry ,
I2C_R ESTART_ MODE r sta) ;
Where :

• en_int controls the I2C interrupt enable status (currently use I2C_INT_DISABL
only, polling mode)

• act is the type of transaction: I2C_MASTER_RCV or I2C_MASTER_XMIT

• i2c_addr is the I2C address of the slave device

• data_addr is the address of the data on the slave device
Appendix K. MPC8240 I2O Doorbell Driver 10K-145

MPC8240 I2O Doorbell Driver

data

TOP

lave

eive
ween

ted
ly to

50 on
rite

ce, not
ta (if
t the

ime
ration

tive

ode:

trate
• len is the length in bytes of the data

• buffer is a pointer to the buffer that contains the data (xmit mode) or receives the
(rcv mode)

• stop controls sending an I2C STOP signal after completion (curently use I2C_S
only)

• retry is the timeout retry value (currently ignored)

• rsta controls I2C restart (currently use I2C_NO_RESTART only)

• Return: I2C_Status return value is either I2C_SUCCESS or I2C_ERROR.

Description:

Act as the I2C master to transmit (or receive) a buffer of data to (or from) an I2C s
device.

This function currently only implements a simple master-transmit or a master-rec
transaction. It does not yet support the application retaining I2C bus ownership bet
transactions, operating in interrupt mode, or acting as an I2C slave device.

K.2.3.2 API Example Usage

The ROM monitor program DINK32 uses the I2C API in both currently implemen
modes: master-transmit and master-receive. The DINK32 program runs interactive
allow the user to transmit or receive a buffer of data from an I2C device at address 0x
the Kahlua PMC card. DINK32 obtains information from the user as follows: read/w
mode, I2C device address for the data (this is the address of the data on the I2C devi
the I2C bus address of the device itself, which is hard-coded in DINK32), the raw da
in write mode), and the length of the data to transfer to or from the device. Note tha
initialization call to configure the I2C interface is actually made only once, the first t
the user requests an I2C transmit or receive operation. Each transmit or receive ope
is performed by a single call to an I2C API function. The DINK32 program is an interac
application, so it gives the I2C library access to its own print output function.

These are the steps DINK32 takes to perform a master-transmit transaction:

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.

2. Call I2C_do_transaction to transmit the buffer of data.

These are the steps DINK32 takes to perform a master-receive transaction in polling m

1. Call I2C_Initialize (if needed) to set the Kahlua I2C address, polling mode, and
identify the optional print function.

2. Call I2C_do_transaction to receive the buffer of data.

The following code samples have been excerpted from the DINK32 application to illus
10K-146 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver
the use of the I2C API from par_devtest in device.c:

#def i ne PRIN T dink _pr int f
in t d ink_pr i nt f (u nsigned char * fmt , . . .)
{
/ * bo dy of a ppl ica t ion pr int ou tput fu nct ion , * /
}
/ * In th e funct i on par_d evtest , f or test i ng the I2 C device i nter fa ce
*/
{
/ * in i t ia l iz e the I2C han dler t o I2C a ddress 48, i f neede d */
i f (I2CIn i t ed == 0)
{
I2C_S tatus s tatus;
i f ((s ta tus = I 2C_Ini t ia l ize (4 8, en_int , P RINT)) ! = I 2C_SUC CESS)
{
PRINT ("devt est I2 C: erro r in i n i t ia t i on\n") ;
retur n ERROR ;
} e ls e {
I2CIn i ted = 1;
}
}
retur n test_ i2c(a ct ion, en_int) ;
}
s tat i c unsig ned ch ar rcv_ buf fer [BUFFER _LENGT H] = { 0 } ;
s tat i c unsig ned ch ar xmit _buf fe r [BUFFE R_LENG TH] = { 0 } ;
/ **** ******* ****** ******* ****** ******* ****** ******* *****
* fun ct ion: test_ i 2c
*
* des cr ipt io n: run i2c te st by pol l ing the d evice
*
* not e:
* Tes t i2c d evice on PMC card, 0x50 se r ia l E PROM.
* The device test data is curre nt ly on ly pr i ntable charac ters.
*
* This funct ion get s some data fr om the command l ine, val ida tes i t ,
* and cal ls the I2 C l ibra ry fun ct ion t o per f orm the task.
***** ******* ****** ******* ****** ******* ****** ******* *** /
s tat i c STATU S test _ i2c(i n t act , in t e n_int)
{
in t r et ry = 800, l en = 0, rsta = 0, ad dr = 0 ;
unsig ned cha r epro m_addr = 0x50 ;
/* re ad tran sact io n addre ss */
. . . a ddr . . .
/ * re ad # of bytes to t ra nsfer * /
. . . l en . . .

/ * va l idate the da ta addr ess, l ength, etc. * /
. . .
/ * I f t ransm it t ing , get t he raw data i nto th e trans mit bu f fer * /
. . . x mi t_buf fer [] . . .
/ * re ad bui l t - in I 2C devi ce on Kahlua PMC ca rd */
i f (act == DISPLA Y_TAG)
{

Appendix K. MPC8240 I2O Doorbell Driver 10K-147

MPC8240 I2O Doorbell Driver

ble
ention
evice

ahlua
i f (I 2C_do_t ransac t ion (e n_int , I2C _MASTE R_RCV, epr om_addr , ad dr ,
len, r cv_buf fer , I2 C_STOP, ret ry , I2C_N O_RESTA RT) != I2C_SU CCESS)
{
PRINT ("dev I2C: e rror in maste r recei ve tes t \n") ;
retur n ERROR ;
} e ls e {
rcv_b uf fer [l en] = 0; /* e nsure NULL te rminat ed str i ng */
PRINT ("%s", rcv_bu f fer) ; / * exp ect ing only p r intabl e data * /
PRINT (" \n") ;
}
}
/ * wr i te to bui l t - in I2C device on Kah lua PM C card */
i f (act == MODIFY _TAG)
{
i f (I2C _do_tra nsact i on (en_in t , I2C_M ASTER_ XMIT, ep rom_add r, addr ,
len, xm i t_buf f er , I2C_ STOP, ret ry , I2C_ NO_REST ART) != I2C _SUCCE SS)
{
PRINT ("dev I2C: e rror in maste r t rans mit te st \n") ;
retur n ERROR ;
}
}
retur n SUCCE SS;
}

K.2.4 I2C Driver Library Internals (DLI)
This information is provided to assist in further development of the I2C library to ena
the application to operate as an I2C slave device, interrupt enabled mode, bus ret
between consecutive transactions, correct handling of device time out, no slave d
response, no acknowledgment, I2C bus arbitration loss, etc.

All of these functions are defined as static in the source file drivers/i2c/i2c1.c.

K.2.4.1 Common Data Structures and Values

These data structures and status values are defined (see drivers/i2c/i2c.h) for the K
I2C driver library functions:

These are the offsets in the Embedded Utilities Memory Block for the I2C registers.

#def i ne I2CA DR 0x0 0003000
#def i ne I2CF DR 0x0 0003004
#def i ne I2CC R 0x00 003008
#def i ne I2CS R 0x00 00300C
#def i ne I2CD R 0x00 003010
typed ef enum _i2cs tatus
{
I2CSU CCESS = 0x300 0,
I2CAD DRESS,
I2CER ROR,
I2CBU FFFULL,
I2CBU FFEMPTY ,
I2CXM ITERROR ,
10K-148 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

rupt
I2CRC VERROR,
I2CBU SBUSY,
I2CAL OSS,
I2CNO EVENT,
} I2C Status;
These stru ctures ref l ect t he bi t ass ignmen ts of the I2C regist ers.
typed ef st ru ct _ i2 c_ctr l
{
unsig ned int reser ved0 : 24;
unsig ned int men : 1;
unsig ned int mien : 1;
unsig ned int msta : 1;
unsig ned int mtx : 1;
unsig ned int txak : 1;
unsig ned int rs ta : 1;
unsig ned int reser ved1 : 2;
} I2C _CTRL;
typed ef st ru ct _ i2 c_stat
{
unsig ned int rsrv0 : 24;
unsig ned int mcf : 1;
unsig ned int maas : 1;
unsig ned int mbb : 1;
unsig ned int mal : 1;
unsig ned int rsrv1 : 1;
unsig ned int srw : 1;
unsig ned int mi f : 1 ;
unsig ned int rxak : 1;
} I2C _STAT;
Value s to in dicate receiv e or t ransmit mode.
typed ef enum _i2c_ mode
{
RCV = 0,
XMIT = 1,
} I2C _MODE;

K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions
I2CSt atus I2 C_Ini t (unsig ned in t eumbb ar,
unsig ned cha r fdr ,
unsig ned cha r addr ,
unsig ned int en_in t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• fdr is the frequency divider value used to set the I2C clock rate

• addr is the Kahlua chip's I2C slave device address

• en_int controls the I2C interrupt enable status: 1 = enable, 0 = disable

• Return: I2CStatus return value is always I2CSUCCESS.

Description:

Set the frequency divider (I2CFDR:FDR), listening address (I2CADR:[7:1]), and inter
Appendix K. MPC8240 I2O Doorbell Driver 10K-149

MPC8240 I2O Doorbell Driver

hole
OP in

ed at
r slave
enable mode (I2CCR:MIEN).

I2C_C TRL I2C _Get_C tr l (un signed int eu mbbar) ;

: eumbbar is the address of the Embedded Utilities Memory Block

• Return: I2C_CTRL is the contents of the I2C control register (I2CCR)

Description:

Read the I2C control register.

void I2C_Set _Ctr l (unsign ed int eumbba r, I2C _CTRL c tr l) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• ctrl is the contents of the I2C control register (I2CCR)

• Return: none

Description:

Set the I2C control register.

I2CSt atus I2 C_put(unsign ed int eumbba r,
unsig ned cha r rcv_ addr,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block
rcv_addr is the receiver's I2C device address

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to send a buffer of data to the intended rcv_addr. If stop_flag is set, after the w
buffer is sent, generate a STOP signal provided that the receiver doesn't signal the ST
the middle. Caller is the master performing transmitting. If no STOP signal is generat
the end of current transaction, the master can generate a START signal to anothe
address.

The function does not actually perform the data buffer transmit,
10K-150 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

en the
is the
rate a
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in transmit mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CSt atus I2 C_get(unsign ed int eumbba r,
unsig ned cha r send er_addr ,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• sender_addr is the sender's I2C device address
buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Set up to receive a buffer of data from the desired sender_addr. If stop_flag is set, wh
buffer is full and the sender does not signal STOP, generate a STOP signal. Caller
master performing receiving. If no STOP signal is generated, the master can gene
START signal to another slave address.

The function does not actually perform the data buffer receive,
it just sets up the DLI global variables to control the transaction
and calls I2C_Start to send the slave address out on the I2C bus
in receive mode. The application must check the return status
to find out if the bus was obtained, then enter a loop of calling
I2C_Timer_Event to poll the I2C handler to actually perform
the transaction one byte at a time, while checking the return
status to determine if there were any errors and if the
transaction has completed.

I2CSt atus I2C _Timer _Event(unsign ed int eu mbbar, I 2CStat us
(*han dler) (unsign ed int)) ;

• eumbbar is the address of the Embedded Utilities Memory Block
Appendix K. MPC8240 I2O Doorbell Driver 10K-151

MPC8240 I2O Doorbell Driver

set

iven

ddr is
r 1

by

mit,
, to

lled
=

• handler is a pointer to the function to call to handle any existing status event,

• Returns: I2CNOEVENT if there is no completed event, the I2CSR MIF bit is not
results from call to the handler function if there was a pending event completed

Description:

In polling mode, I2C_Timer_Event can be called to check the I2C status and call the g
(or the default: I2C_ISR) handler function if the I2CSR MIF bit is set.

I2CSt atus I2 C_Star t (unsi gned i nt eumb bar,
unsig ned cha r s lav e_addr,
I2C_M ODE mod e,
unsig ned int is_cn t) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• slave_addr is the I2C address of the receiver

• mode: XMIT(1) - put (write)

• RCV(0) - get (read)

• is_cnt: 1 - this is a restart, don't check MBB

• 0 - this is a not restart, check MBB

• Returns: Any defined status indicator

Description:

Generate a START signal in the desired mode. Caller is the master. The slave_a
written to bits 7:1 of the I2CDR and bit 0 of the I2CDR is set to 0 for mode = XMIT o
for mode = RCV. A DLI-global variable MasterRcvAddress is set if mode = RCV (used
I2C_ISR function).

I2CSt atus I2 C_Stop (unsig ned in t eumbb ar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Generate a STOP signal to terminate the master transaction.

I2CSt atus I2 C_Mast er_Xmit (unsi gned in t eumb bar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master sends one byte of data to slave receiver. The DLI global variables ByteToX
XmitByte, and XmitBufEmptyStop are used to determine which data byte, or STOP
transmit. If a data byte is sent, it is written to the I2CDR. This function may only be ca
when the following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CSR.RXAK
10K-152 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

bles
byte

the
1

g

Xmit,
tion
F =

o

bles
byte
een
et:
0 I2CCR.MSTA = 1 I2CCR.MTX = 1

I2CSt atus I2 C_Mast er_Rcv(unsig ned int eumbb ar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: Any defined status indicator

Description:

Master receives one byte of data from slave transmitter. The DLI global varia
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data
or sending of a STOP if the buffer is full. This function may only be called when
following conditions are met: I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA =
I2CCR.MTX = 0

I2CSt atus I2 C_Slav e_Xmit (unsig ned int eumbb ar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte sent I2CBUFFEMPTY if no data in sendin
buffer

Description:

Slave sends one byte of data to requesting master. The DLI global variables ByteTo
XmitByte, and XmitBuf are used to determine which byte, if any, to send. This func
may only be called when the following conditions are met: I2CSR.MIF = 1 I2CSR.MC
1 I2CSR.RXAK = 0 I2CCR.MSTA = 0 I2CCR.MTX = 1

I2CSt atus I2 C_Slav e_Rcv(u nsigne d int e umbbar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns: I2CSUCCESS if data byte received I2CBUFFFULL if buffer is full or n
more data expected

Description:

Slave receives one byte of data from master transmitter. The DLI global varia
ByteToRcv, RcvByte, and RcvBufFulStop are used to control the accepting of the data
or setting the acknowledge bit (I2CCR.TXAK) if the expected number of bytes have b
received. This function may only be called when the following conditions are m
I2CSR.MIF = 1 I2CSR.MCF = 1 I2CCR.MSTA = 0 I2CCR.MTX = 0

I2CSt atus I2 C_Slav e_Addr(unsig ned int eumbb ar) ;

[NOTE untested]

• eumbbar is the address of the Embedded Utilities Memory Block
Appendix K. MPC8240 I2O Doorbell Driver 10K-153

MPC8240 I2O Doorbell Driver

when

)

d this
ction
It is
sted

when
• Returns: I2CADDRESS if asked to receive data
results from call to I2C_Slave_Xmit if asked to transmit data

Description:

Process slave address phase. Called from I2C_ISR. This function may only be called
the following conditions are met: I2CSR.MIF = 1 I2CSR.MAAS = 1

I2CSt atus I2 C_ISR(unsigne d int eumbbar) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• Returns:

— I2CADDRESS if address phase for master receive results from call to
I2C_Slave_Addr if being addressed as slave (untested)

— results from call to I2C_Master_Xmit if master transmit data mode

— results from call to I2C_Master_Rcv if master receive data mode

— results from call to I2C_Slave_Xmit if slave transmit data mode (untested)

— results from call to I2C_Slave_Rcv if slave receive data mode (untested)

— I2CSUCCESS if slave has not acknowledged, generated STOP (untested

— I2CSUCCESS if master has not acknowledged, wait for STOP (untested)

— I2CSUCCESS if bus arbitration lost (untested)

Description:

Read the I2CCR and I2CSR to determine why the I2CSR.MIF bit was set which cause
function to be called. Handle condition, see above in possible return values. This fun
is called in polling mode as the handler function when an I2C event has occurred.
intended to be a model for an interrupt service routine for polling mode, but this is unte
and the design has not been reviewed or confirmed. This function may only be called
the following condition is met: I2CSR.MIF = 1

[NOTE: This function is tested only for the master-transmit
and master-receive in polling mode. I don't think it is tested
even in those modes for situations when the slave does not
acknowledge or bus arbitration is lost or buffers overflow, etc.]

K.2.4.3 The following DLI functions were written but not used and not
tested:
I2CSt atus I2 C_wr i t e(unsi gned i nt eumb bar,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer
10K-154 Dink32 R12 User’s Manual

MPC8240 I2O Doorbell Driver

fer is
STOP

s full
orming

for
This
• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Send a buffer of data to the requiring master. If stop_flag is set, after the whole buf
sent, generate a STOP signal provided that the requiring receiver doesn't signal the
in the middle. Caller is the slave performing transmitting.

I2CSt atus I2 C_read (unsig ned in t eumbb ar,
unsig ned cha r *buf fer_ptr ,
unsig ned int lengt h,
unsig ned int stop_ f lag) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• buffer_ptr is pointer to the data buffer to transmit

• length is the number of bytes in the buffer

• stop_flag: 1 - signal STOP when buffer is empty

• 0 - don't signal STOP when buffer is empty

• Returns: Any defined status indicator

Description:

Receive a buffer of data from the sending master. If stop_flag is set, when the buffer i
and the sender does not signal STOP, generate a STOP signal. Caller is the slave perf
receiving.

K.2.4.4 I2C support functions
unsig ned int get_e umbbar() ;

• Returns: base address of the Embedded Utilities Memory Block

Description:

See Embedded Utilities Memory Block and Configuration Register Summary
information about the Embedded Utilities Memory Block Base Address Register.
function is defined in kahlua.s.

[NOTE: I don't understand the initialization sequences for
establishing the config_addr and config_data well enough at
this point to be able to explain them; however, I think it is
essential to offer the user a complete explanation of the
initialization process.]

unsig ned int load_ runt ime _reg(unsigne d int eumbbar ,
unsig ned int reg) ;

• eumbbar is the address of the Embedded Utilities Memory Block
Appendix K. MPC8240 I2O Doorbell Driver 10K-155

MPC8240 I2O Doorbell Driver

in

2.s
• reg specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• Returns: register content

Description:

The content of the specified register is returned. This function is defined
drivers/i2c/i2c2.s.

unsig ned int store _runt im e_reg(unsign ed int eumbba r,
unsig ned int reg,
unsig ned int val) ;

• eumbbar is the address of the Embedded Utilities Memory Block

• offset specifies the register: I2CDR, I2CFDR, I2CADR, I2CSR, I2CCR

• val is the value to be written to the register

• Return: No return value used, it should be declared void.

Description:

The value is written to the specified register. This function is defined in drivers/i2c/i2c
10K-156 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

K32

d on
able

and
one
pts
ase
PIC

annot
from the
ed

tatus
the

ress
by
Appendix L MPC8240 EPIC Interrupt
Driver
This appendix describes the sample EPIC driver source code provided in this DIN
release and its usage on the Sandpoint Reference Platform running DINK32.

L.1 General Description
EPIC is the embedded programmable interrupt controller feature implemente
Motorola's MPC8240 integrated processor. It is derived from the Open Programm
Interrupt Controller (PIC) Register Interface Specification R1.2 developed by AMD
Cyrix. EPIC on the MPC8240 provides support for up to five external interrupts or
serial-style interrupt line (supporting 16 interrupts), four internal logic-driven interru
(DMA0, DMA1, I 2C, I2O), four global timers, and it supports a pass through mode. Ple
refer to Chapter 12 of the MPC8240 User's Manual for a more in depth description of E
on the MPC8240.

L.2 EPIC Specifics
Unlike other embedded features of the MPC8240 such as DMA and I2O, the EPIC unit is
accessible from the local processor only. The control and status registers of this unit c
be accessed by external PCI devices. The EPIC registers are accessed as an offset
Embedded Utilities Memory Block (EUMB). The EPIC unit supports two modes: Mix
and Pass-through.

The DINK32 EPIC driver sample code demonstrates EPIC in
direct mode and also error checks for Pass-through mode, but
Serial mode is not implemented due to the current inability to
test this mode on the Sandpoint reference platform.

The EPIC registers are in little-endian format. If the system is
in big-endian mode, the bytes must be appropriately swapped
by software. DINK32 is written for big-endian mode and the
sample code referred to in this appendix performs the
appropriate byte swapping.

L.2.1 Embedded Utilities Memory Block (EUMB)
The EUMB is a block of local and PCI memory space allocated to the control and s
registers of the embedded utilities. The embedded utilities of the MPC8240 are
Messaging Unit (I2O), DMA controller, EPIC, I2C, and ATU. The local memory map
location of the EUMB is controlled by the embedded utilities memory block base add
register (EUMBBAR). The PCI bus memory map location of the EUMB is controlled
Appendix L. MPC8240 EPIC Interrupt Driver 10L-157

MPC8240 EPIC Interrupt Driver

PIC is
ix.

s are
d into
mory

gister

8259

(up to

s.
the peripheral control and status registers base address register (PCSRBAR). Since E
only accessible from local memory, only the EUMBBAR is of concern for this append

Please refer to the following sections in the MPC8420 User's Manual:
Section 4.4 Embedded Utilities Memory Block
Section 5.5 Embedded Utilities Memory Block Base Address Register
Section 5.1 Configuration Register Access

L.2.2 EPIC Register Summary
The EPIC register map occupies a 256 Kilobyte range of the EUMB. All EPIC register
32 bits wide and reside on 128 bit address boundaries. The EPIC registers are divide
four distinct areas whose address offsets are based on the EUMB location in local me
controlled by the value in the EUMBBAR configuration register.

The EPIC address offset map areas:

• 0x4_1000 - 0x4_10F0: Global EPIC register map

• 0x4_1100 - 0x4_FFF0: Global timer register map

• 0x5_0000 - 0x5_FFF0: Interrupt source configuration register map

• 0x6_0000 - 0x6_0FF0: Processor-related register map

Please refer to Section 12.2 in the MPC8420 User's Manual for the complete EPIC re
address map table and Section 12.9 for all register definitions.

L.2.3 EPIC Modes
• Pass-through Mode

This mode provides a mechanism to support alternate interrupt controllers such as the
interrupt controller architecture. Pass-through is the default mode of the EPIC unit.

• Mixed Mode

This mode supports two subsequent interrupt modes, either a serial interrupt mode
16 serial interrupt sources) or a direct interrupt mode (up to 5 interrupt sources).

Refer to Sections 12.4 -12.6 in the MPC8240 User's Manual for more on EPIC mode

L.3 Directory Structure
DINK32/drivers/epic

• epic.h: contains all EPIC register address macros and all function declarations

• epic1.c: contains all C language routines
10L-158 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

B

ry

ctor
rrupt

rupt
• epic2.s: contains all Assembly language routines

• epicUtil.s: contains assembly routines to load and store to registers in the EUM

• makefile: used by the DINK32 makefile to build this directory into a driver libra

• Readme.txt: a text version of this appendix

L.4 EPIC Cross-Reference Table Structure
The following table is defined in epic1.c in order to cross reference interrupt ve
numbers with the corresponding interrupt vector/priority register address and inte
service routine address:

/ * Registe r Ad dress Offs et / V ector Desc r ipt ion / IS R Ad dr
cross -refere nce ta ble * /
s t ruc t SrcVe cTable SrcVec Table[MAXVEC] =
{

{ E PIC_EX_ INT0_V EC_REG, "Exte rnal Di rect /S er ia l S ource 0", 0x0},
{ E PIC_EX_ INT1_V EC_REG, "Exte rnal Di rect /S er ia l S ource 1", 0x0},
{ E PIC_EX_ INT2_V EC_REG, Exter nal Dir ect /Se r ia l So urce 2 ", 0x0} ,
{ E PIC_EX_ INT3_V EC_REG, "Exte rnal Di rect /S er ia l S ource 3", 0x0},
{ E PIC_EX_ INT4_V EC_REG, "Exte rnal Di rect /S er ia l S ource 4", 0x0},
{ E PIC_SR_ INT5_V EC_REG, "Ext ernal S er ia l Source 5", 0x0} ,
{ E PIC_SR_ INT6_V EC_REG, "Ext ernal S er ia l Source 6", 0x0} ,
{ E PIC_SR_ INT7_V EC_REG, "Ext ernal S er ia l Source 7", 0x0} ,
{ E PIC_SR_ INT8_V EC_REG, "Ext ernal S er ia l Source 8", 0x0} ,
{ E PIC_SR_ INT9_V EC_REG, "Ext ernal S er ia l Source 9", 0x0} ,
{ E PIC_SR_ INT10_ VEC_REG , "Ext ernal S er ia l Source 10", 0x0} ,
{ E PIC_SR_ INT11_ VEC_REG , "Ext ernal S er ia l Source 11", 0x0} ,
{ E PIC_SR_ INT12_ VEC_REG , "Ext ernal S er ia l Source 12", 0x0} ,
{ E PIC_SR_ INT13_ VEC_REG , "Ext ernal S er ia l Source 13", 0x0} ,
{ E PIC_SR_ INT14_ VEC_REG , "Ext ernal S er ia l Source 14", 0x0} ,
{ E PIC_SR_ INT15_ VEC_REG , "Ext ernal S er ia l Source 15", 0x0} ,
{ E PIC_TM0 _VEC_R EG, "Gl obal Ti mer So urce 0" , 0x0} ,
{ E PIC_TM1 _VEC_R EG, "Gl obal Ti mer So urce 1" , 0x0} ,
{ E PIC_TM2 _VEC_R EG, "Gl obal Ti mer So urce 2" , 0x0} ,
{ E PIC_TM3 _VEC_R EG, "Gl obal Ti mer So urce 3" , 0x0} ,
{ E PIC_I2C _INT_V EC_REG, " Int ernal I 2C Sou rce", 0x0} ,
{ E PIC_DMA 0_INT_ VEC_REG , " Int ernal D MA0 So urce", 0x0} ,
{ E PIC_DMA 1_INT_ VEC_REG , " Int ernal D MA1 So urce", 0x0} ,
{ E PIC_MSG _INT_V EC_REG, " Int ernal M essage Source " , 0x0}

} ;

Each of the 24 ent r ies co nforms to the fo l lo wing:

{ "vecto r /pr ior i ty re gis ter addres s of fse t" ,
" text descr i pt ion" ,
" Inte rrupt S erv ice Rout in e addr ess" } .

The first column of the structure contains the macro for each of the 24 inter
Appendix L. MPC8240 EPIC Interrupt Driver 10L-159

MPC8240 EPIC Interrupt Driver

ption
ervice
each
l ISR"
d with

ISR
cation
ority
ctor
8-bit

uage
utines,
an be
nds in

it
vector/priority register address offsets in EPIC. The middle column is the text descri
of the interrupt vector, and the last column is the address of the registered interrupt s
routine (ISR) for each interrupt vector. Currently the structure is initialized such that
vector ISR address is 0x0. This can be modified such that each defaults to a "catch al
address instead of 0x0. As each interrupt vector is set up, an ISR must be registere
EPIC via the epicISRConnect() routine in the epic1.c source file. This routine takes the
function name and stores the address of that function in the ISR Address structure lo
corresponding to the interrupt vector number. Although each interrupt's vector/pri
register allows the vector number to range from 0-255, this structure limits the ve
number range from 0-23. So as each interrupt's vector/priority register is set up, the
vector field value must match the vector number location in the structure.

L.5 EPIC Sample Routines
The EPIC sample routines are contained in the epic1.c and epic2.s files. All C lang
routines are in epic1.c and all assembly language routines are in epic2.s. These ro
along with the structure described in L.4, “EPIC Cross-Reference Table Structure", c
used as sample code for systems using the MPC8240 EPIC Unit. L.6, “EPIC Comma
DINK32" describes how these routines are used by DINK32.

L.5.1 Low Level Routines
The following routines are in the epic2.s source file:

• External Interrupt Control Routines:

— CoreExtIntEnable(): enables external interrupts by setting the MSR[EE] bit

— CoreExtIntDisable(): disables external interrupts by clearing the MSR[EE] b

• Low Level Exception Handler:

— epic_exception():
Save the current (interrupted) programming model/state
Calls epicISR() to service the interrupt
Restore the programming model/state and
RFI back to interrupted process

L.5.2 High Level Routines
The following routines are in the epic1.c source file:

L.5.2.1 EPIC Initialization Routines:

epicInit(): initialize the EPIC Unit by:

• Setting the reset bit in the Global Configuration Register which will:

— Disables all interrupts
10L-160 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

xF)

tible

r

— Clears all pending and in-service interrupts

— Sets EPIC timers to base count

— Sets the value of the Processor Current Task Priority to the highest priority (0
thus disabling interrupt delivery to the processor

— Reset spurious vector to 0xFF

— Default to pass-through mode

• Sets the EPIC operation mode to Mixed Mode (vs. Pass Through or 8259 compa
mode)

— If IRQType (input) is Direct IRQs:

— IRQType is written to the SIE bit of the EPIC Interrupt Configuration Registe
(ICR)

— clkRatio is ignored

— If IRQType is Serial IRQs: (Note: not supported in DINK32)

— both IRQType and clkRatio will be written to the ICR register

epicCurTaskPrioSet(): Change the current task priority value

epicIntISRConnect(): Register an ISR with the EPIC unit cross-reference table

L.5.2.2 High Level Exception Handler:

epicISR(): this routine is a catch all for all EPIC related interrupts:

• perform IACK (interrupt acknowledge) to get the vector number

• check if the vector number is a spurious vector

• cross-reference vector ISR (interrupt service routine) from table

• call the vector ISR

• perform EOI (end of interrupt) for the interrupt vector

L.5.2.3 Direct/Serial Register Control Routines:

epicIntEnable(): enable an interrupt source

epicIntDisable(): disable and interrupt source

epicIntSourceConfig(): configure and interrupt source

L.5.2.4 Global Timer Register Control Routines:

epicTmBaseSet(): set the base count value for a timer

epicTmBaseGet(): get the base count value for a timer

epicTmCountGet(): get the current counter value for a timer
Appendix L. MPC8240 EPIC Interrupt Driver 10L-161

MPC8240 EPIC Interrupt Driver

PIC

riority

that
epicTmInhibit(): inhibit counting for a timer

epicTmEnable(): enable counting for a timer

L.6 EPIC Commands in DINK32
The following commands are typed from the DINK32 command line to control the E
unit.

• help dev epic - Display usage of EPIC commands

• dev epic - Display content and addresses of EPIC registers, and current task p

• dev epic in - Initialize the EPIC unit (this calls the epicInit() routine)

• dev epic ta [Number]- Change the Processor Task priority register

• dev epic en [Vector(0-23)] - Enable a particular interrupt vector

• dev epic dis [Vector(0-23)] - Disable a particular interrupt vector

• dev epic con [Vector(0-23)] - Print content of a Source Vector/Priority register

• dev epic con [Vector(0-23) Polarity(0|1) Sense(0|1) Priority (0-15)]

— Program the Source Vector/Priority register

Example:

dev epic in - Initialize EPIC unit

dev epic en 1 - Enable interrupt vector 1

dev epic ta 10 - Set the Processor Task priority register to 10

dev epic dis 5 - Disable interrupt vector 5

dev epic con 2- Print the configuration of Interrupt vector 2

dev epic con 7 1 0 5- Configure the source Vector/Priority

register of vector 7 to have the following properties:

Polarity = 1

Sense = 0

Priority = 5

L.7 EPIC Unit Startup
When the MPC8240 comes up running DINK32, the EUMBBAR is configured such
10L-162 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

it is
of

t state
calls

rupt
nner
eption
e

and
ion

nd
n the

hrough

ed to
pting
upted
d to

led to
upt is
the EUMB is located at an offset of 0xFC00_0000 from local memory. The EPIC un
untouched by the DINK32 initialization routines and is left in its default state
Pass-Through mode. External interrupts are also left untouched and left in the defaul
of disabled. The following list shows the necessary initialization steps and routine
needed to utilize the EPIC unit:

• epicInit()

• For each interrupt vector to be used:

— epicSourceConfig()

— epicISRConnect()

• For each interrupt vector to be used:

— epicIntEnable()

• epicCurTaskPrioSet()

• CoreExtIntEnable()

L.8 External Interrupt Exception Path in DINK32
The path of an external interrupt exception in DINK32 begins at the 0x500 inter
exception vector. All DINK32 exception vector locations are set up in the same ma
which is to save the exception type and pass the exception handling to a catch all exc
handler. This handler is calledhandle_ex and is located in the except2.s DINK32 sourc
file.

In thehandle_ex handler a check is performed to see if the exception was a 0x500
if DINK32 is running on an MPC8240. If the two conditions are true, the except
handling is passed to the EPIC low level interrupt handler,epic_exception located in
the epic2.s source file.Epic_exception: handles any necessary context switching a
saving of state before calling the EPIC high level interrupt handler, epicISR() located i
epic1.c source file.

Note: Currently,epic_exception first checks the mode of the EPIC unit. If in
pass-through mode, an error message is printed stating that the EPIC unit is in pass-t
mode and must be initialized.

EpicISR() acknowledges the interrupt by calling theepicIACK() which returns the
vector number of the interrupting vector source. This vector number is then compar
the spurious vector value located in the EPIC Spurious Vector Register. If the interru
vector is a spurious vector the interrupt is ignored and state is restored to the interr
process. If the interrupting vector is a valid interrupt, then the vector number is use
reference the vector ISR from the cross-reference table. The vector ISR is then cal
service the particular interrupt. Once the ISR completes and returns, an end-of-interr
issued by callingepicEOI() . Control then returns toepic_exception .
Appendix L. MPC8240 EPIC Interrupt Driver 10L-163

MPC8240 EPIC Interrupt Driver

m

led by
ry.

ative
s also

upts

o slide
an be
. The

PMC

the
5V

rrupt

is

he
Epic_exception finishes by restoring state and performs an RFI (return fro
interrupt) back to the interrupted process.

L.9 Example Usage on Sandpoint Reference Platform
The EPIC driver source code currently defaults to a debug state. This state is control
the -DEPICDBG compiler directive in the makefile located in the EPIC source directo
The compiler directive allows the driver code to be much more verbose and inform
when exercising the EPIC units features in the debug state. Demonstration code i
inserted in this debug state. The demo code is inserted into theepicInit() routine and
allows for an interactive demonstration of external interrupts. The external interr
demonstrated are IRQ lines 1 and 2, and Global Timers 0 and 1.

L.9.1 L.9.1 Sandpoint Reference Platform
The Sandpoint Reference Platform provides a means to test external interrupts via tw
switches (S5 and S6) located on the mother board. Although these switches c
manipulated to demo the EPIC unit, this is not the intended function of the switches
intended usage of these switches is described in the document titled, " Sandpoint P
Processor PCI Mezzanine Card Host Board Technical Summary".

Switch S5 manipulates a 5V signal that originates from the interrupt output line of
Winbond southbridge chip in the center of mother board. With S5 slid to the left, a
signal is passed on, with S5 slid right, a 0V signal is passed on. The EPIC IRQ0-4 inte
lines can be configured to be active-low or active-high triggered.

Switch S6 specifies to which IRQ line (IRQ1 or IRQ 2) the interrupt signal from S5
passed. With the S6 slid right, IRQ1 is selected. With S6 slid left, IRQ2 is selected.

L.9.2 Demo Code Snippet
The following code is included in the epicInit() routine when compiled with t
-DEPICDBGcompiler directive.

/ * EP IC test code */
i fde f EPICD BG

/* The fo l low ing test code enab les is speci f i c f or t he S andpoi nt
Syste m.
Steps :
Conf i gure in terrup ts for IRQ1 a nd IRQ2 .
Set base co unts for t i mer0 and t im er1. Time r0 wi l l in te rrupt twi ce
for e very on e t ime r1 inte rrupt .
Enabl e inter rupts for t im er0 an d t imer 1.
Enabl e inter rupts for IRQ 1 and IRQ2.
Lower the cu rrent task pr ior i ty .
Enabl es exte rnal i n terrup ts. * /
10L-164 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

h an
by
es
ulate

while
cept
/ * se t in t 1 to ac t ive lo w, edg e-sensi t ive, pr ior i t y 10 * /
pr in t f ("Conf i gure I nt 1\n") ;
tmp = epicInt Source Conf ig(1,0,0, 10) ;
epic IS RConnec t(1, IR Q1ISR);

/* se t in t 2 to ac t ive lo w, edg e-sensi t ive, pr ior i t y 10 * /
pr in t f ("Conf i gure I nt 2\n") ;
tmp = epicInt Source Conf ig(2,0,0, 10) ;
epic IS RConnec t(2, IR Q2ISR);

/* se t t imer 0 */
pr in t f ("set t i ng t im er 0 ba se cou nt to 0 x10000 00\n") ;
sysEUM BBARWri te(EPI C_TM0_B ASE_CO UNT_REG , 0x01 000000) ;
epic IS RConnec t(16,T imer0IS R);

/* se t t imer 1 */
pr in t f ("set t i ng t im er 1 ba se cou nt to 0 x20000 00\n") ;
sysEUM BBARWri te(EPI C_TM1_B ASE_CO UNT_REG , 0x02 000000) ;
epic IS RConnec t(17,T imer1IS R);

/* se t pr ior i ty an d vecto r# and clear mask f or t ime r 0 */
pr in t f ("conf i gur ing t imer 0\n") ;
sysEUM BBARWri te(EPI C_TM0_V EC_REG , 0x000 a0010) ;

/ * se t pr ior i ty an d vecto r# and clear mask f or t ime r 1 */
pr in t f ("conf i gur ing t imer 1\n") ;
sysEUM BBARWri te(EPI C_TM1_V EC_REG , 0x000 a0011) ;

/ * en able in terrup t vecto r 1 * /
pr in t f ("Enabl e Int 1\n") ;
epic In tEnable (1) ;

/ * en able in terrup t vecto r 2 * /
pr in t f ("Enabl e Int 2\n") ;
epic In tEnable (2) ;

/ * lo wer cur rent t ask pr i or i ty * /
pr in t f ("Lower Curre nt Task Pr ior i ty \n") ;
epicCu rTaskPr ioSet(5) ;

/ * en able ex ternal in terr upts * /
pr in t f ("Enabl e Exte rnal In terrup ts in M SR\n") ;
CoreEx t IntEna ble() ;

#endi f / * EP ICDBG */

L.9.3 Running the Interactive Demo
The interactive demo requires that DINK32 is running on a Sandpoint system wit
MPC8240 PMC module. From the DINK32 command line, initialize the EPIC unit
typing the EPIC initialization command. DINK32 will respond with initialization messag
and then immediately start taking the timer interrupts. The user may now also manip
the S5 and S6 switches to trigger interrupts on the IRQ1 and IRQ2 lines. Of course
all these external interrupts are being handled, DINK32 continues to run and will ac
user input at the command line, while simultaneously writing status to the terminal.

DINK3 2_KAHLU A >>de v epic in
In i t i a l ize e pic
Conf i gure In t 1
In ep icISRCo nnect() : Vect or : 1 -> ISRA ddr: 3 2d54
Conf i gure In t 2
Appendix L. MPC8240 EPIC Interrupt Driver 10L-165

MPC8240 EPIC Interrupt Driver

g the
local
In ep icISRCo nnect() : Vect or : 2 -> ISRA ddr: 3 2d94
set t i ng t ime r 0 ba se coun t to 0 x100000 0
In ep icISRCo nnect() : Vect or : 16 -> ISR Addr: 32dd4
set t i ng t ime r 1 ba se coun t to 0 x200000 0
In ep icISRCo nnect() : Vect or : 17 -> ISR Addr: 32e14
conf i gur ing t imer 0
conf i gur ing t imer 1
Enabl e Int 1
Enabl e Int 2
Lower Curren t Task Pr ior i ty
Enabl e Exter nal In terrupt s in M SR
DINK3 2_KAHLU A >>In epicIS R() fo r vecto r#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 17
Inter rupt Se rv ice Rout ine for T imer 1
In ep icISR() for v ector#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 17
Inter rupt Se rv ice Rout ine for T imer 1
In ep icISR() for v ector#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 16
In ep icISR() for v ector#: 1
Inter rupt Se rv ice Rout ine for i n terrup t 1
In ep icISR() for v ector#: 1
Inter rupt Se rv ice Rout ine for i n terrup t 1
In ep icISR() for v ector#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 17
Inter rupt Se rv ice Rout ine for T imer 1
In ep icISR() for v ector#: 1
In ep icISR() for v ector#: 2
Inter rupt Se rv ice Rout ine for i n terrup t 2
In ep icISR() for v ector#: 2
Inter rupt Se rv ice Rout ine for i n terrup t 2
In ep icISR() for v ector#: 16
Inter rupt Se rv ice Rout ine for T imer 0
In ep icISR() for v ector#: 16

The user can show that DINK32 can still respond to user is input by manually disablin
timer interrupts. To disable the timers, access their vector/priority registers located in
memory by typing the following:

/*this modifies the memory location oftimer0 vector/priority register */

mm ff c041120 <ente r>

/*this sets the interrupt mask bit */

00000 080 <en ter>
10L-166 Dink32 R12 User’s Manual

MPC8240 EPIC Interrupt Driver

ould
ted to

this
/*this modifies the memory location of timer1 vector/priority register */

mm ff c041160 <ente r>

/*this sets the interrupt mask bit */

00000 080 <en ter>

Once the two registers are modified, neither timers should interrupt again. DINK32 sh
still be accepting user commands, and switches S5 and S6 can still be manipula
generated interrupts.

L.10 Code and Documentation Updates
For the most up-to-date versions of the EPIC sample driver code and
appendix/document please visit the following URL:

http://www.mot.com/SPS/PowerPC/teksupport/faqsolutions/code/index.html
Appendix L. MPC8240 EPIC Interrupt Driver 10L-167

	Chapter�1 DINK32 User’s Guide Index
	Chapter�2 Introduction
	Chapter�3 MDINK32/DINK32 Features
	3.1 MDINK32 Overview
	3.2 New features for MDINK32 V12.0
	3.3 MDINK32 Design Methodology
	3.4 Hardware Configuration Requirements
	3.5 MDINK32 Software Build Process
	3.6 MDINK32 Memory Model
	3.7 New features for DINK32 V12.0
	3.8 DINK32 Design Methodology
	3.9 DINK Software Build Process
	3.10 DINK32 Memory Model

	Chapter�4 MDINK32/DINK32 Commands
	4.1 Commands
	4.1.1 .(period) .
	4.1.2 about about
	4.1.3 assemble as
	4.1.4 bkpt bp
	4.1.5 defalias da
	4.1.6 devdisp dd
	4.1.7 devmod dm
	4.1.8 devtest dev
	4.1.9 disassem ds
	4.1.10 download dl
	4.1.11 env env
	4.1.12 flash fl
	4.1.13 fupdate fu
	4.1.14 fw fw -e
	4.1.15 go go
	4.1.16 help he
	4.1.17 log log
	4.1.18 memdisp md
	4.1.19 memfill mf
	4.1.20 meminfo mi
	4.1.21 memod mm
	4.1.22 memove mv
	4.1.23 memsrch ms
	4.1.24 memtest mt
	4.1.25 menu me
	4.1.26 pciconf pcf
	4.1.27 pcidisp pd
	4.1.28 pcimod pm
	4.1.29 pciprobe ppr
	4.1.30 regdisp rd
	4.1.31 regmod rm
	4.1.32 rtc rtc
	4.1.33 runalias ra
	4.1.34 setbaud sb
	4.1.34.1 Host versus Keyboard.

	4.1.35 symtab st
	4.1.36 tau tau
	4.1.37 transpar tm
	4.1.38 trace tr

	Chapter�5 DINK32 Command Form Summary
	Chapter�6 Utilities
	6.1 S-Record Compression/Decompression
	6.1.1 Overview
	6.1.2 Building
	6.1.2.1 Files
	6.1.2.2 Modification of header file
	6.1.2.3 Build command

	6.1.3 Command syntax

	6.2 bat_decode
	6.2.1 Overview
	6.2.2 Building
	6.2.3 Command syntax

	6.3 Memory Test

	Chapter�7 User Program Execution
	7.1 Execution Steps

	Chapter�8 Errors and Exceptions
	8.1 Error Codes
	8.1.1 Parser Errors
	8.1.2 Errors from Error Checking Toolbox
	8.1.3 addresses
	8.1.4 Get Argument Errors
	8.1.5 Tokenizer Toolbox Errors
	8.1.6 Screen Toolbox Errors
	8.1.7 Breakpoint Errors
	8.1.8 Download Errors
	8.1.9 Compression and Decompression Errors
	8.1.10 DUART Handling Errors
	8.1.11 Register Errors
	8.1.12 Flash Errors

	8.2 Exceptions

	Chapter�9 Restrictions
	9.1 Special Purpose Registers

	Chapter�10 Known Bugs
	10.1 Known Bugs

	Appendix�A Adding Commands and Arguments
	A.1 Help
	A.1.1 Help Menus

	A.2 Input Arguments
	A.2.1 Input Token Facility

	Appendix�B Adding ERROR Groups to MDINK/DINK32
	B.1 Error Group Files
	B.1.1 err_tb.h
	B.1.2 errors.h

	Appendix�C History of MDINK32/DINK32 changes
	C.1 Version 12.0 November 30, 1999.
	C.2 Version 11.0.2 June 1, 1999
	C.3 Version 11.0.1 May 1, 1999 Not Released
	C.4 Version 11.0 March 29, 1999
	C.5 Version 10.7 February 25, 1999
	C.6 Version 10.6 January 25, 1999
	C.7 Version 10.5 November 24, 1998
	C.8 Version 10.4 November 11, 1998
	C.9 Version 10.3 no date
	C.10 Version 10.2 September 11, 1998
	C.11 Version 10.1 September 10, 1999
	C.12 Version 9.5 August 5, 1998
	C.13 Version 9.4 May 22, 1998
	C.14 Prior to Version 9.4 Approximately October 10, 1997

	Appendix�D S-Record Format Description
	D.1 General Format
	D.2 Specific Formats
	D.3 Examples
	D.4 Summary of Formats

	Appendix�E Example Code
	E.1 General Information
	E.2 Demo
	E.2.1 Building
	E.2.2 Function Addresses

	E.3 Dhrystone
	E.3.1 Building
	E.3.2 Function Addresses

	E.4 L2test
	E.4.1 Building
	E.4.2 Function Addresses

	E.5 printtest
	E.5.1 Building
	E.5.2 Function Addresses

	Appendix�F Updating DINK32 from the Web
	F.1 General Information
	F.1.1 For YellowKnife and Sandpoint:
	F.1.2 For Excimer and Maximer:

	F.2 Makeing a DINK32 or MDINK32 from the Release

	Appendix�G Dynamic functions such as printf
	G.1 General Information
	G.2 Methodology and implementation.
	G.3 Setting up the static locations.
	G.4 Using the Dynamic Functions.
	G.5 Error Conditions.
	G.6 Alternative method for Metaware only.

	Appendix�H MPC8240 (Kahlua) Drivers
	H.1 Drivers directory.

	Appendix�I MPC8240 DMA Memory Controller.
	I.1 Background
	I.2 Overview
	I.3 DMA Application Program Interface (API)
	I.3.1 API Example Usage

	I.4 DMA Driver Library Internals (DLI)
	I.4.1 Common Data Structures and Values

	I.5 Kahlua DMA Driver Library Internals: function descriptions

	Appendix�J MPC8240 I2C Driver Library.
	J.1 Background
	J.2 Overview
	J.3 I2C Application Program Interface (API)
	J.3.1 API functions description
	J.3.2 API Example Usage

	J.4 I2C Driver Library Internals (DLI)
	J.4.1 Common Data Structures and Values

	J.5 Kahlua I2C Driver Library Internals: function descriptions
	J.5.1 DLI Functions Written but not Used and not Tested:

	J.6 I2C support functions

	Appendix�K MPC8240 I2O Doorbell Driver
	K.1 I2O Description of Doorbell Communication between Agent and Host
	K.1.1 System startup and memory map initialization
	K.1.2 Interrupt Service Routines: I2O_ISR_host() and I2O_ISR_agent()
	K.1.3 Enable Doorbell Interrupts:
	K.1.4 Writing and Reading Doorbell Registers:
	K.1.4.1 Host Rings an Agent via Agent’s Inbound Doorbell
	K.1.4.2 Agent Rings a Host via Agent’s Outbound Doorbell
	K.1.4.3 Descriptions of the I2O library functions

	K.2 I2C Driver Library
	K.2.1 Background
	K.2.2 Overview
	K.2.3 I2C Application Program Interface (API)
	K.2.3.1 API functions description
	K.2.3.2 API Example Usage

	K.2.4 I2C Driver Library Internals (DLI)
	K.2.4.1 Common Data Structures and Values
	K.2.4.2 Kahlua I2C Driver Library Internals: function descriptions
	K.2.4.3 The following DLI functions were written but not used and not tested:
	K.2.4.4 I2C support functions

	Appendix�L MPC8240 EPIC Interrupt Driver
	L.1 General Description
	L.2 EPIC Specifics
	L.2.1 Embedded Utilities Memory Block (EUMB)
	L.2.2 EPIC Register Summary
	L.2.3 EPIC Modes

	L.3 Directory Structure
	L.4 EPIC Cross-Reference Table Structure
	L.5 EPIC Sample Routines
	L.5.1 Low Level Routines
	L.5.2 High Level Routines
	L.5.2.1 EPIC Initialization Routines:
	L.5.2.2 High Level Exception Handler:
	L.5.2.3 Direct/Serial Register Control Routines:
	L.5.2.4 Global Timer Register Control Routines:

	L.6 EPIC Commands in DINK32
	L.7 EPIC Unit Startup
	L.8 External Interrupt Exception Path in DINK32
	L.9 Example Usage on Sandpoint Reference Platform
	L.9.1 L.9.1 Sandpoint Reference Platform
	L.9.2 Demo Code Snippet
	L.9.3 Running the Interactive Demo

	L.10 Code and Documentation Updates

