

Order Number: AN1809/D
Rev. 0, 3/2000

Semiconductor Products Sector

This document contains information on a new product under development by Motorola.
Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc., 2000. All rights reserved.

Application Note

A Minimal PowerPC

ª

 Boot Sequence for
Executing Compiled C Programs

PowerPC Systems Architecture & Performance
risc10@email.sps.mot.com

This document describes the procedures necessary to successfully initialize a PowerPC processor and begin
executing programs compiled using the PowerPC embedded application interface (EABI). The items
discussed in this document have been tested for MPC603eª, MPC750, and MPC7400 microprocessors.
The methods and source code presented in this document may work unmodiÞed on similar PowerPC
platforms as well.

This document contains the following topics:

¥ Part I, ÒOverview,Ó provides an overview of the conditions and exceptions for the procedures
described in this document.

¥ Part II, ÒPowerPC Processor Initialization,Ó provides information on the general setup of the
processor registers, caches, and MMU.

¥ Part III, ÒPowerPC EABI Compliance,Ó discusses aspects of the EABI that apply directly to
preparing to jump into a compiled C program.

¥ Part IV, ÒSample Boot Sequence,Ó describes the basic operation of the boot sequence and the many
options of conÞguration, explains in detail a sample conÞgurable boot and how the code may be
modiÞed for use in different environments, and discusses the compilation procedure using the
supporting GNU build environment.

¥ Part V, ÒSource Files,Ó contains the complete source code for the Þles ppcinit.S, ppcinit.h,
reg_defs.h, ld.script, and MakeÞle.

2

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Overview

Part I Overview

The procedures discussed in this document perform only the minimum amount of work necessary to execute
a user program. The sample boot sequence is designed to run from system reset. It does not contain
exception handling facilities for other exceptions, although the code is located so that it doesnÕt interfere
with exception space. This allows users who wish to provide exception handling to add exception code
without modifying this source. In addition, this code only handles processor setup. It does not initialize any
peripheral devices because it is designed to be run on instruction set simulators, test cards, or small
evaluation boards. No input/output interface is provided. Results are obtained by looking at data saved in
memory via hardware debuggers or simulator commands.

The sample boot sequence uses the PowerPC memory management unit (MMU) to provide basic access
protection for the ROM and RAM regions of memory via block address translation (BAT). The more
advanced features of the MMU, which provide support for paging and segmentation, are not utilized.

The sample boot sequence provided should be linked with a user program to create a ROM image. This
image is then loaded into a ROM device located at the default system reset vector. The sample boot sequence
handles the task of relocating the code and data from ROM to RAM where necessary and then allows the
user program to execute. Upon completion, the boot sequence saves timing information for the user code
and branches to the invalid opcode exception vector.

Part II PowerPC Processor Initialization

This section describes the state of the PowerPC processor at power-up, the MMU, the caches, and the EABI
register initialization.

2.1 General Initialization

At power-up, the PowerPC processor is in a minimal state, with most features, such as caching and address
translation, disabled. External interrupts, the machine check exception, and ßoating-point exceptions are
also disabled. On most systems, the processor starts up in big-endian mode with the exception preÞx set to
0xFFF0_0000. This means that upon system reset (exception vector 0x0100), the processor executes code
beginning at 0xFFF0_0100.

The code located at the system reset vector must handle system initialization. Exception vectors for the
PowerPC are located at increments of 0x0000_0100 from the vector table start address. Since the
initialization code must Þt between the allocated hard reset exception space between 0xFFF0_0100 and
0xFFF0_01FF, it is customary for the reset code to branch to an address beyond the end of the exception
tableÕs allocated space and execute the instruction sequence located there. Addresses starting at
0xFFF0_0100 and ending at 0xFFF0_3000 are reserved for the exception vector table.

A typical initialization sequence performs the necessary processor setup or hardware-speciÞc initialization,
and then enables exceptions. This includes external interrupts, the machine check exception, and ßoating-
point exceptions. In addition, if the vector table is to be relocated once the hardware setup is complete, the
exception preÞx (IP) bit of the machine state register (MSR) must be changed to reßect the new location of
the vector table (0x0000_0100 to 0x0000_3000).

A Minimal PowerPCª Boot Sequence for

 3

Executing Compiled C Programs

PowerPC Processor Initialization

2.2 Memory Management Unit

A boot program will need to set up the MMU if memory management is required. Using the MMU to
translate memory addresses allows the programmer to specify protections and access controls for individual
regions of memory. For a minimal system with four or fewer memory regions, it is sufÞcient to use block
address translation (BAT) to perform a rudimentary mapping. For more complex systems, the segment
registers and page tables need to be initialized. This document only addresses the minimal conÞguration
using the BAT registers.

The MMU information provided in this document is included for convenience and is not complete. For more
information about using BAT registers and the MMU, refer to the

PowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors

.

When using the MMU to provide address translation via the BAT registers, each region of memory in the
system should have an associated BAT mapping. These mappings allow the programmer to specify options
such as whether the speciÞed address range is valid for supervisor or user mode, the memory/cache access
mode, and the protection bits for the block. There are eight BAT array entries. Four of these map data regions
(DBATs), while the remaining four entries specify instruction regions (IBATs). Each entry consists of two
registers, one used to specify the upper 32 bits of the BAT entry and the other the lower 32 bits. The different
Þelds of these registers are shown in Table 1 and Table 2.

Table 1. Upper BAT Register Format

Bits Name Description

0Ð14 BEPI Block effective page indexÑCompared with high-order bits of the
logical address to determine if there is a hit in that BAT array entry

15Ð18 Ñ Reserved

19Ð29 BL Block lengthÑEncoding of the length of the block, ranging from 128
Kbytes to 256 Mbytes. See Table 3 for details.

30 Vs Supervisor mode valid bitÑAlong with MSR[PR], speciÞes whether
this block is valid in supervisor mode

31 Vp User mode valid bitÑAlong with MSR[PR], speciÞes whether this block
is valid in user mode.

Table 2. Lower BAT Register Format

Bits Name Description

0Ð14 BRPN Used with the BL Þeld to determine the high-order bits of the physical
address of the block.

15Ð24 Ñ Reserved

25-28 WIMG Memory/cache access mode bits.

W = Write-through
I = Cache inhibited
M = Memory coherence
G = Guarded

The W and G bits should not be written to in the IBAT registers: doing
so produces boundedly undeÞned results.

29 Ñ Reserved

30-31 PP Protection bits for blockÑUsed in combination with Vs and Vp in the
upper BAT to determine the protection for the block. See Table 4 for
details.

4

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

PowerPC Processor Initialization

The procedure for initializing a pair of BAT registers is as follows:

1. Disable the MMU.

2. If modifying a data BAT, execute an

 isync

 instruction.

3. Initialize the lower portion of the BAT array entry.

4. Initialize the upper portion of the BAT array entry.

5. Execute an

isync

 instruction.

6. Re-enable the MMU when all setup is complete.

Unused BAT registers must be invalidated by clearing the Vs and Vp bits in the upper BAT register before
enabling and translating.

For each region of memory to be mapped, an appropriate BL and BEPI must be chosen. The BL Þeld is an
encoding of the length of the block to be mapped. The BEPI Þeld corresponds to the upper bits of the logical
address of a region to be mapped onto physical memory. During address translation, addresses are compared
with the BEPI Þeld to determine if a BAT array hit has occurred.

Next, the BRPN must be chosen to indicate the physical memory onto which the logical region speciÞed by
the BEPI is to be mapped. For many minimal systems where the logical and physical addresses are
equivalent, including the sample located at the end of this document, the BEPI and BRPN will be equal.
Note that the values in the BEPI and BRPN Þelds must have at least as many low order zeroes as the BL has
ones. Otherwise, the results are boundedly undeÞned. The possible BL encodings are shown in Table 3.

The Vs and Vp bits in the upper BAT register, along with the PP bits in the lower BATs, specify the access
controls for the memory region. A region may be marked valid for supervisor mode, valid for user mode, or
valid for both modes; Table 4 shows these options.

Table 3. BL Encodings

Block Size BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

8 Mbytes 000 0011 1111

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

A Minimal PowerPCª Boot Sequence for

 5

Executing Compiled C Programs

PowerPC Processor Initialization

In addition, the programmer may specify the memory/cache access modes for the mapped region. These
modes are controlled by the WIMG bits in the lower BAT registers. The WIMG bits are described as follows:

¥ W bitÑSetting the W bit for a memory region causes writes to the region to be written through to
main memory every time a cached copy of the region is modiÞed. If the W bit is set to 0, accesses
are treated as write-back; that is, they are not written into memory until the block is ßushed from
the cache.

¥ I bitÑControls the caching of the region. If the I bit is set to 1, the region becomes cache-inhibited,
and all accesses to the region must take place from main memory. This bit should usually be set for
regions that encompass I/O device memory. Since these devices may dynamically update a memory
location, reading a cached copy can result in accessing old data. Marking the region cache-inhibited
prevents this problem. Memory regions corresponding to devices that do not support burst reads
should also be marked cache-inhibited.

¥ M bitÑSpeciÞes memory coherency. When it is set to 0, the hardware does not enforce data
coherency. Otherwise, accesses to regions with the M bit set cause the hardware to indicate to the
rest of the system that the access occurred. This bit is useful for systems where multiple processors
or other devices can modify the memory. In a minimal single-processor system the M-bit should
usually be set to 0.

¥ G bitÑMarks a memory region as guarded when set to 1. The guarded attribute protects an area of
memory from read accesses that are not directly speciÞed by the program. It is especially useful for
memory regions that have holes. Whenever the processor tries to speculatively load a block of data,
it may attempt to access memory that does not exist. This can cause a machine check exception.
Marking the region as guarded prevents this from occurring. In addition, the guarded attribute can
be used to prevent speculative load operations to device memory, which can cause unpredictable
behavior.

In a complete operating system, MMU setup continues with invalidating TLB entries, initializing the
segment registers, and setting up the page table. Even if only BAT mappings are used for translation, it is
possible that a user program may generate accesses to addresses that are invalid or not mapped by the BAT
registers. In this case, the hardware attempts to look at the page table to resolve the reference. If the page
table pointer and entries have not been initialized, it is possible that they may contain random data and cause
unintended memory accesses. This document does not describe how to perform these actions. Refer to the

PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors

 or the
speciÞc reference manual for a particular processor for more information.

Table 4. Block Access Protection Control

Vs Vp PP Block Type

0 0 xx No BAT match

0 1 00 UserÑno access

1 0 00 SupervisorÑno access

0 1 x1 UserÑread only

1 0 x1 SupervisorÑread only

0 1 10 UserÑread/write

1 0 10 SupervisorÑread/write

1 1 00 BothÑno access

1 1 x1 BothÑread only

1 1 10 BothÑread/write

6

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

PowerPC Processor Initialization

When the MMU setup completes, the MMU may be enabled by setting MSR bits 26 and 27, Instruction
Address Translation (IR) and Data Address Translation (DR). At this point, address translation is active.

2.3 Caches

At power-up, the L2 cache (if available) and L1 instruction and data caches are disabled. These should be
turned on to boost program performance. For the MPC603e, MPC750, and MPC7400, turning on the L1
caches requires setting bit 16, instruction cache enable (ICE), and bit 17, data cache enable (DCE) in
hardware implementation register 0 (HID0). An

isync

 instruction should be issued before setting the ICE
bit to ensure that the cache is not enabled or disabled during an instruction fetch. Similarly, a

sync

instruction should be executed before setting the DCE bit.

The MPC750 and the MPC7400 processors have an L2 cache in addition to the L1 cache. The operation of
this cache is controlled by the L2 cache control register, L2CR. Before enabling the L2 cache, L2CR must
be programmed with the correct L2 size, L2 RAM type, clock ratio, and output hold time, at a minimum. In
addition, the L2 DLL must be allowed to achieve phase lock before the L2 cache is enabled, and the L2 tags
should be invalidated. Both of these tasks can be accomplished by performing a global L2 invalidate, since
the L2 invalidate is guaranteed to take longer than the time required to achieve phase lock. After the L2CR
has been set up, the cache has been invalidated, and the DLL has achieved phase lock, the L2 cache can be
enabled by setting the L2E bit in L2CR.

Caution should be exercised when enabling the caches for certain hardware conÞgurations. If there are
devices on the board that do not support burst reads, then the caches should not be enabled until the MMU
has been set up and enabled to mark these regions as cache-inhibited. Otherwise, the processor will attempt
to burst read from these devices to Þll the cache and possibly cause system errors. For these cases, the caches
should be disabled whenever the MMU is disabled.

Note that simply enabling the caches is not sufÞcient to ensure that the caches will be used if the MMU is
enabled. Memory regions where the user data resides should be mapped as non-cache-inhibited in order to
make use of the cache. See Section 2.2, ÒMemory Management Unit,Ó for more information on mapping
memory regions.

2.4 EABI Register Initialization

In order for user applications to run correctly, registers speciÞed by the Embedded Application Binary
Interface (EABI) must be set up. This is handled by the __eabi() startup code and the code that executes
prior to entry into main(). The sample boot sequence provides a simple __eabi() that initializes registers
GPR2 and GPR13. GPR1 is initialized prior to the call to main() by the init sequence. Part III, ÒPowerPC
EABI Compliance,Ó describes these registers and the other EABI register conventions in more detail.

A Minimal PowerPCª Boot Sequence for

 7

Executing Compiled C Programs

PowerPC EABI Compliance

Part III PowerPC EABI Compliance

The PowerPC EABI speciÞes the system interface for compiled programs. The EABI is based on the

System
V Application Binary Interface

 and the

PowerPC Processor Supplement

. For general ABI documentation,
refer to these documents, as well as the

PowerPC Embedded Application Binary Interface

. This document
only includes aspects of the EABI that apply directly to preparing to jump into a compiled C program.

For running compiled programs, the EABI-speciÞed register conventions must be followed. The EABI
deÞnes how the processorÕs registers are to be used by a conforming application. Table 5 lists the register
conventions for the PowerPC EABI.

The symbols _SDA_BASE and _SDA2_BASE are deÞned during linking. They specify the locations of the
small data areas. A program must load these values into GPR13 and GPR2, respectively, before accessing
program data.

The small data areas contain part of the data of the executable. They hold a number of variables that can be
accessed within a 16-bit signed offset of _SDA_BASE or _SDA2_BASE. References to these variables are
performed through references to GPR13 and GPR2 by the user program. Typically, the small data areas
contain program variables that are less than or equal to 8 bytes in size, although this differs by compiler. The
variables in SDA2 are read-only.

Before executing user code, the startup code must also set up the stack pointer in GPR1. This pointer must
be 8-byte aligned for the EABI (as opposed to 16-byte aligned for the PowerPC ABI) and should point to
the lowest allocated valid stack frame. The stack grows toward lower addresses, so its location should be
selected so that it does not grow into data or bss areas.

Table 5. PowerPC EABI Registers

Register Contents

GPR1 Stack Frame Pointer

GPR2 _SDA2_BASE

GPR13 _SDA_BASE

GPR31 Local variables or environment pointer

GPR0 VolatileÑmay be modiÞed during linkage

GPR3, GPR4 VolatileÑused for parameter passing and return values

GPR5ÐGPR10 Used for parameter passing

GPR11ÐGPR12 VolatileÑmay be modiÞed during linkage

GPR14ÐGPR30 Used for local variables

FPR0 Volatile register

FPR1 VolatileÑused for parameter passing and return values

FPR2ÐFPR8 VolatileÑused for parameter passing

FPR9ÐFPR13 Volatile registers

FPR14ÐFPR31 Used for local variables

8

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

Much of the required EABI register setup is accomplished through a call to __eabi(). The user does not call
this function directly. Instead, the compiler inserts the call to __eabi() at the beginning of main() in the user
program. Most compile environments provide an __eabi() function that is automatically linked with user
programs. Unfortunately, this standard __eabi() is often designed to work with a particular operating system
or environment.. Because the processor is using the source in this application note, a minimal __eabi()
function is supplied to handle these speciÞc requirements.

The remainder of the registers are listed for completeness and are not modiÞed by the minimal boot code.
They may be modiÞed by the user program.

Part IV Sample Boot Sequence

The sample boot sequence in this section completes minimal processor setup and executes a user program.
It performs only processor setup (no peripheral devices), and leaves external interrupts disabled. It is
designed for use with test cards, evaluation boards, or processor simulators where the developer can directly
view the contents of memory to verify correct program execution. This code sequence is designed to take
the place of the traditional crt0 module, as well as to provide hardware initialization normally performed by
the operating system.

The basic operation of the boot sequence is as follows:

1. Invalidate the BAT entries.

2. If the processor has an L2, program L2CR and perform a global L2 invalidate.

3. Set up the BAT registers to provide address translation and protection.

4. Invalidate all TLB entries.

5. Turn on address translation.

6. Relocate the text, data, and bss sections from ROM to RAM.

7. Enable the L1 and L2 caches, if present.

8. Place the user code main entry address in SRR0.

9. Put the MSR value for the user program into SRR1.

10. Save the return address in the link register.

11. Initialize the time base register to 0.

12. Set up a stack pointer in GPR1 for the user program.

13. Execute

rÞ. This executes the user program by jumping to the address stored in SRR0. Before
running the user code, a compiler-inserted call to __eabi() sets up EABI registers GPR2 and GPR13.

14. Save the time base register values into memory (useful for timing benchmarks).

15. Branch to invalid op vector at 0xFFF0_0700 to indicate completion.

This procedure may be modiÞed or conÞgured to match the desired conÞguration.

A Minimal PowerPCª Boot Sequence for

 9

Executing Compiled C Programs

Sample Boot Sequence

4.1 ConÞgurable Options

The design of the sample boot sequence allows it to be easily conÞgurable. The many options deÞned in the
header Þles allow the user to choose how the code should execute. These options are summarized in Table 6.

Table 6. User-Configurable Program Options

Option
DeÞnition
Location

DeÞnition Default Value

USER_ENTRY ppcinit.h SpeciÞes the name of the entry point in the user
C program. Corresponds to main() but isnÕt
named main() due to possible compiler
problems.

test_main

ICACHE_ON ppcinit.h SpeciÞes whether to turn on the Instruction
cache.

1 = icache on

0 = icache off

1

DCACHE_ON ppcinit.h SpeciÞes whether to turn on the data cache

1 = dcache on

0 = dcache off

1

L2CACHE_ENABLE ppcinit.h Specify whether to use the L2 cache.

1 = L2 cache on

0 = L2 cache off

This should be set to 0 for processors that donÕt
have an L2 cache, such as 603e

603e: 0

750: 1

7400: 1

L2_INIT ppcinit.h L2CR conÞguration values with the L2E (L2
Enable) bit turned off. SpeciÞes the appropriate
L2 size, clock ratio, RAM type, and hold time.
For the userÕs convenience, #deÞnes of the
various options are provided in the Þle
reg_defs.h. The default is set for a 0.5 MB burst
RAM L2 cache with a clock divisor of 2 and a
hold time of 0.5 nS.

(L2CR_L2SIZ_HM |
L2CR_L2CLK_2 |
L2CR_L2RAM_BU
RST |
L2CR_L2OH_5)

L2_ENABLE ppcinit.h L2CR register value with L2 conÞguration values
set and the L2 cache enabled (L2E set).

(L2_INIT |
L2CR_L2E)

VMX_AVAIL ppcinit.h SpeciÞes whether an AltiVec unit is available on
the processor and that it should be used.

1 = AltiVec unit available

0 = No Altivec unit available, or do not use it

This should be set to 0 for processors without an
AltiVec unit such as 603e and 750.

603e: 0

750: 0

7400: 1

STACK_LOC ppcinit.h 32 bits specifying the stack address for the user
program

0x0007_0000

MMU_ON ppcinit.h SpeciÞes whether or not to use the MMU.

1 = MMU on

0 = MMU off

1

PROM_BASE ppcinit.h The start address of the address range
corresponding to the physical address of the
ROM.

0xFFC0_0000

10

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

PRAM_BASE ppcinit.h The start address of the address range
corresponding to the physical address of the
RAM.

0x0000_0000

VROM_BASE ppcinit.h The start address of the address range
corresponding to the virtual address of the
ROM.

PROM_BASE

VRAM_BASE ppcinit.h The start address of the address range
corresponding to the virtual address of the
RAM.

PRAM_BASE

IBATxL_VAL ppcinit.h SpeciÞes the 32-bit value for the lower BAT
register for instruction BAT array entry x [x = 0 to
x = 3]

See Table 7

IBATxU_VAL ppcinit.h SpeciÞes the 32-bit value for the upper BAT
register for instruction BAT array entry x [x = 0 to
x = 3]

See Table 7

DBATxL_VAL ppcinit.h SpeciÞes the 32-bit value for the lower BAT
register for data BAT array entry x [x = 0 to x = 3]

See Table 7

DBATxU_VAL ppcinit.h SpeciÞes the 32-bit value for the upper BAT
register for data BAT array entry x [x = 0 to x = 3]

See Table 7

text, data, bss locations ld.script The locations of the text, data, and bss sections
may be speciÞed by the user in ld.script. These
addresses control the location of the various
sections in the compiled program image both
before and after relocation of the image. The
user can use these address to control whether
or not the sections are relocated by specifying
an image address that is equivalent to the post-
relocation address.

See ÒGCC
Compilation and
Linking.Ó

Table 6. User-Configurable Program Options (Continued)

Option
DeÞnition
Location

DeÞnition Default Value

A Minimal PowerPCª Boot Sequence for

 11

Executing Compiled C Programs

Sample Boot Sequence

Table 7 shows the default BAT register values.

Table 7. Default BAT Register Values

Register Value Description Region

IBAT0L 0xFFC0_0022 BRPN = 1111 1111 1100 000

WIMG = 0100

PP = 10 (read/write)

ROM

IBAT0U 0xFFC0_007F BEPI = 1111 1111 1100 000

BL = 0000 0011 111 (4 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

ROM

IBAT1L 0x0000_0002 BRPN = 0000 0000 0000 000

WIMG = 0000

PP = 10 (read/write)

RAM

IBAT1U 0x0000_03FF BEPI = 0000 0000 0000 000

BL = 0001 1111 111 (32 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

RAM

IBAT2L 0x0000_0000 BAT_NO_ACCESS NONE

IBAT2U 0x0000_0000 BAT_INVALID NONE

IBAT3L 0x0000_0000 BAT_NO_ACCESS NONE

IBAT3U 0x0000_0000 BAT_INVALID NONE

DBAT0L 0xFFC0_0022 BRPN = 1111 1111 1100 000

WIMG = 0100

PP = 10 (read/write)

ROM

DBAT0U 0xFFC0_007F BEPI = 1111 1111 1100 000

BL = 0000 0011 111 (4 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

ROM

DBAT1L 0x0000_0002 BRPN = 0000 0000 0000 000

WIMG = 0000

PP = 10 (read/write)

RAM

DBAT1U 0x0000_03FF BEPI = 0000 0000 0000 000

BL = 0001 1111 111 (32 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

RAM

DBAT2L 0x0000_0000 BAT_NO_ACCESS NONE

DBAT2U 0x0000_0000 BAT_INVALID NONE

DBAT3L 0x0000_0000 BAT_NO_ACCESS NONE

DBAT3U 0x0000_0000 BAT_INVALID NONE

12

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

Each of these options can be conÞgured in order to customize the boot sequence for a particular application.
The conÞgurable boot sequence contains #deÞne statements that can be combined to easily create BAT entry
values. For example, the default entry for the upper instruction BAT 1 speciÞes a 32-Mbyte block size, valid
user mode, valid supervisor mode, with a BEPI of 0x0000_0000. This entry can be formed using the header
Þle deÞne statements as follows: IBAT1U_VAL = (VRAM_BASE | BAT_VALID_USER |
BAT_VALID_SUPERVISOR | BAT_BL_32M). Refer to the source Þle for ppcinit.h at the end of this
document for details.

4.2 General Initialization

Processor initialization in the sample boot sequence follows the steps outlined in Part II, ÒPowerPC
Processor Initialization.Ó One of the most important tasks of the boot code is to set the value of the MSR for
the user program. SpeciÞcally, the MSR is set to enable ßoating-point and machine check exceptions. If the
text section relocates from its load location to an address below 0xFFC0_0000, the exception preÞx is
changed to 0x0000_0000 by setting the MSR[IP] to 0. In addition, data and instruction address translation
must be enabled if the MMU is used. The new MSR value is loaded into machine status save/restore register
1 (SRR1). Upon

rÞ

, this value will be copied from SRR1 into the MSR.

The timebase register is initialized to 0x0000_0000 in order to place it in a known state. Also, the machine
status save/restore register 0 (SRR0) is modiÞed to contain the address of the user entry point,
USER_ENTRY, after the relocation. The address in SRR0 is the address of the instruction to be executed
upon an

rÞ

 instruction.

Additionally, the link register is loaded with an address where execution will resume when the user program
completes. In order to provide timing results for benchmarking, the user program returns to the label
save_timebase when complete. The value of the upper and lower time base registers is stored in memory for
later access. After this operation completes, the code sequence will branch to the invalid op vector at
0xFFF0_0700 to indicate completion. The user should set a breakpoint at this address to determine when
the user program has Þnished.

The caches are invalidated and disabled during the majority of the init sequence. This prevents program data
from being preloaded into the caches, which could unfairly speed up a benchmark. Before branching into
the user program, the boot code enables the L1 caches if ICACHE_ON and DCACHE_ON are set to 1 in
ppcinit.h. If L2CACHE_Enable is set, the L2 cache is enabled as well. Finally, if MMU_ON is set to 1, the
boot sequence initializes the BAT registers and enables address translation.

4.3 EABI Register initialization

In order for a C program compiled with an EABI-compliant compiler to execute properly, registers GPR1,
GPR2, and GPR13 must be initialized as described in Part III, ÒPowerPC EABI Compliance.Ó GPR1 should
be loaded with STACK_LOC, the location of the stack reserved for the user program deÞned in ppcinit.h.
Care should be taken to ensure that the stack size is sufÞcient and that it does not grow down into the text,
data, or bss sections of the program during execution.

In the EABI, GPR2 is used to hold the base of the read-only small data area. It is loaded with the value
_SDA2_BASE generated during linking. Similarly, GPR13 holds the small data area base and is loaded with
the symbol _SDA_BASE, also generated by the linker.

The EABI registers GPR2 and GPR13 are initialized by a function called __eabi(). The call to __eabi() is
automatically inserted at the beginning of main() by the compiler. It should not be called directly by the user
program unless the user does not have a main() function. Programs that lack a main() should call __eabi()
before executing any user code. GPR1 is set up by the boot sequence before entry into main().

A Minimal PowerPCª Boot Sequence for

 13

Executing Compiled C Programs

Sample Boot Sequence

4.4 Code Relocation

The code relocation depends on variables that are allocated in the Þle ld.script. The text, data, and bss
sections of the program may be relocated from ROM to RAM using these variables.

The Þrst relocation that takes place is the text relocation. The relocation code looks at the ld.script variables
_img_text_start and _Þnal_text_start to determine if the text must be relocated. If the two variables are
equal, then no text relocation occurs. This typically speeds up execution in a simulated environment, and
when the user program to be run is fairly simple. If the user program is large or performs large numbers of
iterations, execution may be speeded by moving the text from ROM to RAM if ROM accesses are slow.

The start address of the section to be copied is stored in the symbol _img_text_start deÞned in ld.script. The
length of the copy is determined using the symbol _img_text_end also deÞned in ld.script. The program
starts copying at _img_text_start and copies data to _Þnal_text_start until it reaches the address
_img_text_end.

Next, the data and bss sections may be relocated. For standard systems where the boot program exists in a
read-only ROM, these sections must be moved so they can be modiÞed by the user program. If the code is
not initially located in a ROM, or if the ROM is writeable, then these sections do not need to be relocated.
The ROM image location of the data section is stored in the symbol _img_data_start, deÞned in ld.script. It
will be relocated to the address deÞned in _Þnal_data_start. If _img_data_start and _Þnal_data_start are not
equal, the relocation program starts copying from _img_data_start to _Þnal_data_start. When the copy-to
address is equal to _Þnal_data_end, deÞned in ld.script, the copy is complete. If _img_data_start and
_Þnal_data_start are equal, the program skips the data copy.

The bss section is not actually copied since it only holds uninitialized data. Instead, the region starting at
_bss_start and ending at _bss_end, both deÞned in ld.script, is initialized to all zeroes. This code may be
commented out for programs which do not depend on zero-Þlled bss.

The user may control the ROM image and relocation addresses of the different sections by modifying the
Þle ld.script, as speciÞed in Section 4.5, ÒGCC Compilation and Linking.Ó

4.5 GCC Compilation and Linking

The compilation and linking procedure for a standalone bootable program is fairly complex. The compiled
program should not include standard libraries or startup code, and needs to be in a format that can be copied
into a simulated or real ROM device or memory component. Most importantly, the code needs to be located
at a speciÞc absolute start point so that it begins execution on system reset. In addition, the executable needs
to be built so that references to symbols and variables refer to the location of variables after the relocation
to RAM (if any) has occurred. Most of this work is accomplished through the use of a linker script.

Note that this document refers to the target of the build as a ÒROM image.Ó Whether this image is actually
loaded into a ROM component or some other simulated or real memory device is implementation
dependent.

The compilation procedure described in this application note uses the GNU cross-compiler version 2.8.1 (ld
version 2.9.1) which is free and publicly available from many different sources on the internet. The GNU
make utility and the GNU assembler and linker are also used. Other versions of the GNU tools may work
as well.

14

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

The transition from .S and .c Þles to .o Þles is accomplished using gcc -c :

ppcinit.o: ppcinit.h ppcinit.S
 $(CC) -c ppcinit.S

test.o: test.c
 $(CC) -c test.c

$(CC) must be deÞned as the path to the cross-compiler. (See Part V, ÒSource Files,Ó Section 5.5,
ÒMakeÞle.Ó) Note that the assembly source Þle is named

ppcinit.S as opposed to ppcinit.s. This causes the
preprocessor

to run and strip out the C++ style comments. In the makeÞle, all references to test should be
changed to match the name of the user program to be linked with the boot program. The build command for
test should be changed to specify the appropriate dependencies and build options.

Once all source Þles have been compiled, the resultant object Þles must be linked together into an
executable. For this purpose, the GNU linker should be invoked with a custom linker control script. This
linker script speciÞes the starting address for the program, as well as the post-relocation addresses of the
text, data, and bss sections. In addition, it deÞnes symbols that are used by the relocation portion of the boot
sequence to determine the locations and lengths of the various sections as described in Table 8.

The linker script provides default values for IMAGE_TEXT_START (0xFFF0_0000),
TEXT_START(0x0000_0000), IMAGE_DATA_START, and DATA_START. The data section is located at
the Þrst appropriately aligned address following the text section. To change these defaults, the user may add
deÞnitions for these variables to the makeÞle, which passes these options to the linker when it is invoked.

Table 8. ld.Script Variables

Variable DeÞnition Value

_img_text_start The location of the start of the text section in the compiled
imageÑThis value is derived from the LOADADDR or the text
section.

IMAGE_TEXT_START

_img_text_end The location of the end of the text section in the ROM imageÑ
Derived from the LOADADDR of the text section and the size of
the text section.

_img_text_start +
SIZEOF(.text)

_Þnal_text_start The address of the start of the text section after relocationÑ
Derived from the ADDR speciÞed for the text section.

TEXT_START

_img_data_start The location of the start of the data section in the compiled
imageÑ This value is usually equal to the image address of the
start of the text section plus the size of the text section.

IMAGE_DATA_START, if
deÞned in MakeÞle;
(LOADADDR(.text) +
SIZEOF(.text)) by default

_Þnal_data_start The location of the start of the data section after relocationÑ
This value is usually equal to the post-relocation address of the
start of the text section plus the size of the text section.

DATA_START, if deÞned
in MakeÞle;

(ADDR(.text) +
SIZEOF(.text)) by default

_Þnal_data_end The location of the end of the data section after relocationÑThis
value is equal to the start of the data section plus the size of the
data section.

_Þnal_data_start +
SIZEOF(.data)

_bss_start The destination start address for the bss sectionÑTypically set
equal to the relocation address for the data section plus the
length of the data section.

ADDR(.data) +
SIZEOF(.data)

_bss_end The destination end address for the bss section. _bss_start +
SIZEOF(.bss)

A Minimal PowerPCª Boot Sequence for

 15

Executing Compiled C Programs

Sample Boot Sequence

The example .text section is located at 0xFFF0_0000 in the compiled image and at 0x0000_0000 after the
relocation. The sample boot code places its Þrst executable instruction at an offset of 0x0100 from the start
address using the .space assembler directive. This means that this Þrst instruction will be located at the
PowerPC system reset vector, 0xFFF0_0100, and it is executed when system reset occurs.

The text section is composed of the text, read-only data, and global offset table portions from the different
.o Þles. The symbols _img_text_start and _img_text_end are deÞned for use by the relocation code and refer
to the beginning and end addresses of the text section in the compiled image. The address of the text section
after the relocation is saved in _Þnal_text_start:

TEXT_START = DEFINED(TEXT_START)? TEXT_START: 0x00000000;

IMAGE_TEXT_START = DEFINED(IMAGE_TEXT_START)? IMAGE_TEXT_START:
0xFFF00000;

.text TEXT_START: AT (IMAGE_TEXT_START)
{
*(.text)
*(.rodata)
*(.rodata1)
*(.got1);
}

_img_text_start = LOADADDR(.text);
_img_text_end = (LOADADDR(.text) + SIZEOF(.text));

_final_text_start = ADDR(.text);

Note the use of the LOADADDR(), ADDR(), and SIZEOF() functions. These functions are built in to the
linker and are used to obtain information about the sections:

¥ LOADADDR() returns the absolute load address of the speciÞed section. This address corresponds
to the location of the section in the compiled image.

¥ The ADDR() function returns the location of the named section after relocation.

¥ SIZEOF() is used to determine the length of a section, in bytes.

In the sample shown above for the .text section, LOADADDR(.text) returns 0xFFF0_0000 and ADDR(.text)
returns 0x0000_0000 for the default case.

The data section of the linker script is a bit more complex since the location of the data section is dependent
upon the location and length of the text section. It contains all initialized, modiÞable data, including the
small data sections. If the data is relocated during the initialization sequence, its new location must speciÞed
so that references to variables refer to the relocated copy.

In this example, the data section is located immediately following the text section data, both in the compiled
image and after relocation:

DATA_START = DEFINED(DATA_START)? DATA_START: (((ADDR(.text) +
SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

IMAGE_DATA_START = DEFINED(IMAGE_DATA_START)? IMAGE_DATA_START:
(((LOADADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

.data DATA_START: AT (IMAGE_DATA_START)
{
_final_data_start = .;
*(.data)
*(.data1)
*(.sdata)
*(.sdata2)
*(.got.plt)
*(.got)

16

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

*(.dynamic);
_final_data_end = .;
}

/* Now save off the start of the data in the image */
_img_data_start = LOADADDR(.data);

The _Þnal_data_start and _Þnal_data_end symbols indicate the post-relocation start and end addresses of
the data section. In addition, the symbol _img_data_start holds the start address of the data section in the
ROM image. This information will be used during the relocation of the data.

The linker script treats the bss section much like the data section. The only difference is that it is not
necessary to know the location of the bss section in the ROM image. The relocation program only needs to
know how big the bss is so it can zero out an appropriate section of memory in RAM for uninitialized data.
For the sample boot program, the bss section is located directly after the data section, and the symbols
_bss_start and _bss_end are used to determine the length of the bss section:

.bss (ADDR(.data) + SIZEOF(.data)) :
{
_bss_start = .;
*(.sbss)
*(.scommon)
*(.dynbss)
*(.bss)
*(COMMON);
_bss_end = .;
}

In some cases, it is possible that the address range located at 0xFFF0_0000 is writeable. In this instance, the
user may not wish to relocate the sections from the load address. The easiest way to do this is to specify
equivalent relocation and load addresses for the text section. The sample boot program checks for this before
performing a copy. Because all other section addresses are based on the location of the text, this is the only
change needed in order to leave the entire image in ROM space. This change is accomplished by deÞning
identical IMAGE_TEXT_START and TEXT_START variables in the makeÞle.

Finally, some users may wish to relocate only those sections (data and bss) that are modiÞed during program
execution. The easiest way to do this is to specify an absolute relocation address for the data section, and
allow the bss to be located immediately following the data. The locations of the sections in the compiled
image remains the same. To accomplish this, deÞne IMAGE_TEXT_START and TEXT_START to be
identical in the makeÞle. Then deÞne a DATA_START that speciÞes the desired location of the data section
during execution. Using this method, the data section will still follow the text section in the load image but
it is moved to DATA_START before the user program begins execution. The text section remains at its load
location, reducing the time required for the copy.

The linking phase of the build for the ppcinit program produces a .elf Þle organized as speciÞed in ld.script.
In addition, the -fnobuiltin option has been speciÞed to prevent linking with standard libraries. This .elf Þle
can be loaded and executed. For environments that do not have elf loading capability, the executable may
be translated into Motorola S-Record format using the GNU objcopy utility, specifying the output Þle
format as S-record as follows:

go.srec: go.elf
$(PREFIX)/bin/$(TARGET)Ðobjcopy -O srec go.elf go.srec

This S-record may be loaded into ROM and executed.

A Minimal PowerPCª Boot Sequence for

 17

Executing Compiled C Programs

Sample Boot Sequence

4.6 Using the Sample Boot Sequence

Using the sample boot sequence requires setting up the conÞgurable parameters to describe a particular
hardware conÞguration. The process is described as follows:

In ppcinit.h:

1. #deÞne either MPC603e, MPC750, or MPC7400 to match the processor type. One of these must be
deÞned for the code to work properly.

2. To use the instruction cache, #deÞne ICACHE_ON to 1. To disable the instruction cache, deÞne it
to 0.

3. To use the data cache, #deÞne DCACHE_ON to 1. To disable the data cache, deÞne it to 0.

4. To use the L2 cache (MPC750/7400 only), #deÞne L2CACHE_ENABLE to 1. DeÞne L2_INIT and
L2_ENABLE to set the appropriate L2CR values for setting up the cache and enabling it.

5. For the MPC7400, #deÞne VMX_AVAIL to 1 to enable the AltiVec unit. To disable it, or for
processors with no AltiVec, set it to 0.

6. #deÞne STACK_LOC to the desired location of the stack for the user program.

7. To use the MMU, #deÞne MMU_ON to 1.

8. If MMU_ON is deÞned, the BAT setup macros must be deÞned in order to provide basic address
translation and protection. Fill in all sixteen [ID]BATx[UL]_VAL macros with the values for the
associated BAT array entry. Typically, #deÞne a base physical address (like (PROM_BASE and
PRAM_BASE in the sample Þle) and a base virtual address (like VROM_BASE and VRAM_BASE
in the sample Þle) for each memory region. Use these addresses, along with the provided BAT
macros, to form an entry. As an example, to deÞne a data region representing a ROM starting at the
physical address 0xFFF0_0000 that is cache inhibited and has read/write access, #deÞne
PROM_BASE to 0xFFF0_0000. Then #deÞne DBAT0L_VAL to be PROM_BASE |
BAT_CACHE_INHIBITED | BAT_READ_WRITE. Refer to the ppcinit.h source Þle for a list of
available macros.

9. Repeat step 8 until instruction and data BAT entries have been created for all memory regions to be
used by the user program.

10. Fill in entries for the remaining unused BATs with BAT_NO_ACCESS for theappropriate lower
BAT register, and BAT_INVALID for the appropriate upper BAT register.

11. #deÞne USER_ENTRY to the name of the entry function for the user program. The entry function
should typically be called main() so that the EABI initialization code is called. If the entry function
is not called main(), then a call to __eabi() must be inserted at the beginning of the entry function
before any other executable statements.

In MakeÞle:

1. To locate the loadable text section at an address other than 0xFFF0_0000, deÞne
IMAGE_TEXT_START to the desired value.

2. To deÞne the execution address of the text section, change the deÞnition for TEXT_START to
match the desired address. This defaults to 0x0000_0000.

3. By default, the data section is located immediately following the text section in both the load image
and during execution. To change this, deÞne DATA_START and IMAGE_DATA_START to the
appropriate values.

4. List the C source Þles for the user program in the deÞnition for C_SRC.

The code may now be built and executed for the target platform.

18

A Minimal PowerPCª Boot Sequence for
Executing Compiled C Program

s

Sample Boot Sequence

4.7 Limitations of the Sample Boot Sequence

The sample boot sequence is intended to be used in a controlled environment and is designed to be as
minimal as possible. As a result, there are some limitations to its design and use as follows:

1. The image should be built to be initially located at either 0xFFF0_0000 or 0x0000_0000.

2. Memory is mapped via the BAT registers. The segment registers and page tables are not used.

3. The segment registers, page table pointer, and page tables are not initialized. Care should be taken
to ensure that programs do not generate references to addresses in ranges not mapped by a BAT
register. Doing so causes the processor to attempt to search the page table (whose location has not
been deÞned and could point anywhere) for a translation. This could possibly result in reading/
writing to random locations in memory.

4. No exception handling code is provided. With the exception of system reset, the exception vector
locations contain the illegal opcode for PowerPC (0x0000_0000).

5. The code only initializes the processor; it does not initialize any peripheral devices and is not
designed to be run in a system with a memory controller such as an MPC106. Additional code must
be added to handle these situations.

6. Programs should avoid making stdio calls such as printf since there is no mechanism for handling
these calls. The standard libraries are not linked with the user code since many of the functions in
these libraries require speciÞc platform support and therefore will not work when there is no OS
running.

7. The sample sequence only performs setup necessary for standard C compiles. C++ programs and
programs written in other languages may require additional support.

8. The sample boot sequence is designed to be minimal and to give the programmer as much control
as possible. It does not use the standard __eabi() provided with the compiler. The standard __eabi()
references symbols are not deÞned by the linking phase of the minimal boot and therefore will not
link correctly.

9. The sample boot sequence has been tested with GNU compiler version 2.8.1 and the gnu linker
version 2.9.1. It is possible and even likely that other versions will work as well.

10. The MPC7400 version of this code was designed to run on a model or chip revision at or greater
than 2.9. Most production processors and models should be at or above this revision level. Previous
chip revisions may require HID0, IABR, MSSCR0, and MSSCR1 to have special settings in order
for some programs to run correctly. This application note does not provide source code to support
these settings.

A Minimal PowerPCª Boot Sequence for

 19

Executing Compiled C Programs

Source Files

Part V Source Files
The following sections contain the complete source code for the Þles ppcinit.S, ppcinit.h, ld.script, and
makeÞle.

5.1 ppcinit.S
/*
// This file contains generic boot init code designed to be run on
// PowerPC processor simulations that just need minimal setup.
//
// This code has also successfully been used to run processor-intensive
// benchmarks (written in C) from power-up on minimal hardware boards such as
// Excimer.
//
// This code is designed to be run from Power-up or hard reset; running from
// soft reset may require additional operations such as cache invalidation,
// that are not supplied here.
//
// Once the hw init is complete, this code branches into the
// USER_ENTRY defined in the user code
//
// This code has been tested on the mpc603e, mpc750 and mpc7400/
// Architectural differences between processors with respect to cache
// types and sizes, cache management instructions, number of TLB
// entries, etc, may require changes to be made to this code before it may
// be used successfully on other processors.
//
// WARNING: If this code is run on a MAX! (MPC7400) processor
// earlier than rev 2.9, certain bits in HID0, IABR, MSSCR0, and
// MSSCR1 have to be set. Please refer to the processor errata if
// problems are encountered with this part.
*/

// NOTE: If you need to define variables, put them at the end! The _start
// symbol needs to be at hreset in order for this code to run automatically
// on hard reset.

#include "ppcinit.h"

.text

.global __eabi

.global _start

.space (0x0100) // locate at hreset vector

// this should now be located at the reset vector
_start:

b system_reset

.space (0x3000) // space past exception space

20 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

// hereÕs the real startup code, located outside the exception vector space
system_reset:

addis r0,0,0x0000

// from reset, the BATs are in an unknown state on most PPCs.
// Invalidate them all to avoid error states
mtspr ibat0u,r0
mtspr ibat1u,r0
mtspr ibat2u,r0
mtspr ibat3u,r0
isync
mtspr dbat0u,r0
mtspr dbat1u,r0
mtspr dbat2u,r0
mtspr dbat3u,r0
isync

// If thereÕs L2 cache we enable later, set it up and invalidate it.
// DonÕt turn it on until after the ROM-RAM copy of the image so
// we donÕt preload the caches (in case weÕre going to run a benchmark).

#if L2CACHE_ENABLE == 1
addis r3,r0,L2_INIT@h
ori r3,r3,L2_INIT@l
mtspr l2cr,r3

// This invalidate serves two purposes.
// First, it invalidates the L2 cache.
// Second, it ensures that when this section of code has completed
// execution, the L2 DLL will have stablilzed.

L2_invalidate:
#if defined(MPC7400) && defined(VMX_AVAIL)

.long 0x7e00066c // dssall instruction, not all compilers
// understand it yet. Actually, as
// long as this code is run from hard
// reset, before any data stream touch
// instructions, this instruction isnÕt needed.
// IÕm putting in for correctness in case
// someone cut-and-pastes this code into
// another application.

#endif
sync
oris r3, r3, 0x0020

 mtspr l2cr, r3
sync

invalidate:
 mfspr r3, l2cr
 andi. r3, r3, 0x1
 bne invalidate

A Minimal PowerPCª Boot Sequence for 21
Executing Compiled C Programs

Source Files

// turn off the L2I global invalidate bit
mfspr r3, l2cr
rlwinm r3,r3,0,11,9
mtspr l2cr, r3

#endif // L2CACHE_ENABLE

// Note MSR state at power-up:
// all exceptions disabled, address translation off,
// Exception prefix at 0xfff00000, FP disabled

#if MMU_ON == 1
// If the code specifies that weÕre going to use the MMU, branch to
// to the setup function that handles setting up the BATs and
// invalidating TLB entries.
//
// NOTE: WeÕve done nothing with the segment registers, so we need to
// be sure that all memory accessed by this code and by the user
// program is represented in the BATs. Otherwise, we might get
// some spurious translations.

bl setup_bats
sync
bl address_translation_on
sync

#endif

// relocate the text, data, and bss segments
bl relocate_image

// Note: This code is run from reset, so we assume that there is no
// data that needs to be flushed from the cache. This code only
// invalidates and enables the caches, it does not flush!
//
// Note: The caches are enabled *after* the relocation in order
// to help avoid cache preloading.

#if DCACHE_ON == 1
 bl invalidate_and_enable_L1_dcache
#endif

#if ICACHE_ON == 1
bl invalidate_and_enable_L1_icache

#endif

#if L2CACHE_ENABLE == 1
addis r3,r0,L2_ENABLE@h
ori r3,r3,L2_ENABLE@l
mtspr l2cr,r3

#endif

22 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

// get the start address of the main routine of the code we want to run.
addis r3,r0,USER_ENTRY@h
ori r3,r3,USER_ENTRY@l
mtspr srr0,r3

// Set the MSR.
// we just move the value into srr1 - it will get copied into
// the msr upon the rfi.

#if VMX_AVAIL == 1
addis r4,0,0x0200

#else
addis r4,0,0x0000

#endif
ori r4,r4,0x3900 // turn on fp,

// enable fp & machine check exceptions
#if MMU_ON == 1

ori r4,r4,0x0030 // turn on I and D translation
#endif

// See if we relocated the code to an address above 0xffc00000.
// If so, put the exception prefix at 0xfff00000. Otherwise,
// make it at 0.
addis r5,0,0xffc0
ori r5,r5,0x0000
cmp 0,0,r5,r3
blt set_state

ori r4,r4,0x0040 // put exception prefix at 0xfff00000
// in our new msr

set_state:
// Put r4 into srr1 so it gets copied into the msr on rfi
mtspr srr1,r4

// letÕs put something in the link register - when the user program
// starts, itÕs going to save the link register, do itÕs thing, then
// restore the link register and blr.
// weÕll put in the address following the rfi so we can save
// off the time base once the user code is complete
addis r3,0,save_timebase@h
ori r3,r3,save_timebase@l
mtlr r3

// set up the time base register
addis r4,r0,0x0000
mtspr 285,r4
mtspr 284,r4

// Set up stack pointer for the user application

A Minimal PowerPCª Boot Sequence for 23
Executing Compiled C Programs

Source Files

addis r1,r0,STACK_LOC@h // STACK_LOC defined in ppcinit.h
ori r1,r1,STACK_LOC@l

// make sure the word the stack pointer points to is NULL
addis r14,r0,0x0000
stw r14,0(r1)

// go to the C code
rfi

save_timebase:
// read time base, checking for rollover
mfspr r3,269
mfspr r4,268
mfspr r5,269
cmpw r5,r3
bne save_timebase

// save vals off
addis r5,0,TBUSAVE@h
ori r5,r5,TBUSAVE@l
stw r3,0(r5)
addis r5,0,TBLSAVE@h
ori r5,r5,TBLSAVE@l
stw r4,0(r5)

// done, go to an arbitrary address
done:

addis r3,0,0xfff0
ori r3,r3,0x0700
mtlr r3
blr

//
// Label: __eabi()
//
// Replaces standard __eabi(). This is a minimal __eabi, because we donÕt
// require anything to happen here other than setting up the SDA pointers.
//

__eabi:
// Get small data area locations as per PPC EABI
// See http://www.solutions.motorola.com/lit/manuals/eabispec.html
// for more information.
addis r13,r0,_SDA_BASE_@h
ori r13,r13,_SDA_BASE_@l
addis r2,r0,_SDA2_BASE_@h
ori r2,r2,_SDA2_BASE_@l

blr

24 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

//---
// Label: relocate_image
//
// copy this image and the user code into RAM space.
// Note that the starting locations of text, data, and bss are
// defined in the ld.script. Make sure these definitions,
// as well as the definition for STACK_LOC in ppcinit.h, give
// ample room for your image.
//---

relocate_image:
addis r3,0,_img_text_start@h
ori r3,r3,_img_text_start@l
addis r4,0,_final_text_start@h
ori r4,r4,_final_text_start@l

// are they the same? No need to relocate if so
cmp 0,0,r3,r4
beq relocate_data

addis r7,0,_img_text_end@h
ori r7,r7,_img_text_end@l

cont:
lwzx r5,0,r3
stwx r5,0,r4
lwzx r8,0,r4
cmp 0,0,r8,r5
bne error

addi r4,r4,4
addi r3,r3,4

cmp 0,0,r3,r7
ble cont

relocate_data:
addis r3,0,_final_data_start@h
ori r3,r3,_final_data_start@l
addis r7,0,_final_data_end@h
ori r7,r7,_final_data_end@l

addis r4,0,_img_data_start@h
ori r4,r4,_img_data_start@l

cmp 0,0,r3,r4 // is the data not relocated?
beq clear_bss // if not, go do the bss

A Minimal PowerPCª Boot Sequence for 25
Executing Compiled C Programs

Source Files

cont1:
lwzx r5,0,r4
stwx r5,0,r3
lwzx r8,0,r3
cmp 0,0,r8,r5
bne error

addi r4,r4,4
addi r3,r3,4

cmp 0,0,r3,r7
ble cont1

// This clear_bss code can be removed if youÕre sure you never
// depend on unitialized data being 0.
clear_bss:

addis r4,0,_bss_start@h
ori r4,r4,_bss_start@l
addis r7,0,_bss_end@h
ori r7,r7,_bss_end@l

addis r5,0,0x0000
cont2:

stwx r5,0,r4
addi r4,r4,4

cmp 0,0,r4,r7
ble cont2

sync

// return from relocate_image
blr

//---
// Function: setup_bats
//
// Here is the code that handles setting up the BAT registers.
// IBAT0L and such must be defined in the header file
//
// The MMU should be turned off before this code is run and
// re-enabled afterward
//---

26 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

setup_bats:

addis r0,r0,0x0000

addis r4,r0,IBAT0L_VAL@h
ori r4,r4,IBAT0L_VAL@l

 addis r3,r0,IBAT0U_VAL@h
ori r3,r3,IBAT0U_VAL@l
mtspr ibat0l,r4
mtspr ibat0u,r3
isync

addis r4,r0,DBAT0L_VAL@h
ori r4,r4,DBAT0L_VAL@l

 addis r3,r0,DBAT0U_VAL@h
ori r3,r3,DBAT0U_VAL@l
mtspr dbat0l,r4
mtspr dbat0u,r3
isync

addis r4,r0,IBAT1L_VAL@h
ori r4,r4,IBAT1L_VAL@l

 addis r3,r0,IBAT1U_VAL@h
ori r3,r3,IBAT1U_VAL@l
mtspr ibat1l,r4
mtspr ibat1u,r3
isync

addis r4,r0,DBAT1L_VAL@h
ori r4,r4,DBAT1L_VAL@l

 addis r3,r0,DBAT1U_VAL@h
ori r3,r3,DBAT1U_VAL@l
mtspr dbat1l,r4
mtspr dbat1u,r3
isync

addis r4,r0,IBAT2L_VAL@h
ori r4,r4,IBAT2L_VAL@l

 addis r3,r0,IBAT2U_VAL@h
ori r3,r3,IBAT2U_VAL@l
mtspr ibat2l,r4
mtspr ibat2u,r3
isync

addis r4,r0,DBAT2L_VAL@h
ori r4,r4,DBAT2L_VAL@l

 addis r3,r0,DBAT2U_VAL@h
ori r3,r3,DBAT2U_VAL@l
mtspr dbat2l,r4
mtspr dbat2u,r3
isync

A Minimal PowerPCª Boot Sequence for 27
Executing Compiled C Programs

Source Files

addis r4,r0,IBAT3L_VAL@h
ori r4,r4,IBAT3L_VAL@l

 addis r3,r0,IBAT3U_VAL@h
ori r3,r3,IBAT3U_VAL@l
mtspr ibat3l,r4
mtspr ibat3u,r3
isync

addis r4,r0,DBAT3L_VAL@h
ori r4,r4,DBAT3L_VAL@l

 addis r3,r0,DBAT3U_VAL@h
ori r3,r3,DBAT3U_VAL@l
mtspr dbat3l,r4
mtspr dbat3u,r3
isync

// BATs are now set up, now invalidate tlb entries
addis r3,0,0x0000

#ifdef MPC603e
addis r5,0,0x2 // set up high bound of 0x00020000 for 603e

#endif
#if defined(MPC750) || defined(MPC7400)

addis r5,0,0x4 // 750/MAX have 2x as many tlbs as 603e
#endif

isync

// Recall that in order to invalidate TLB entries, the value issued to
// tlbie must increase the value in bits 14:19 (750, MAX) or 15:19(603e)
// by one each iteration.

tlblp:
tlbie r3
sync
addi r3,r3,0x1000
cmp 0,0,r3,r5 // check if all TLBs invalidated yet
blt tlblp

blr

//---
// Function: invalidate_and_enable_L1_dcache
//
// Flash invalidate and enable the L1 dcache
//---
invalidate_and_enable_L1_dcache:

mfspr r5,hid0
ori r5,r5,0x4400
sync
mtspr hid0,r5

28 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

#ifdef MPC603e
rlwinm r6,r5,0,22,20
mtspr hid0,r6

#endif
blr

//---
// Function: invalidate_and_enable_L1_icache
//
// Flash invalidate and enable the L1 icache
//---

invalidate_and_enable_L1_icache:
mfspr r5,hid0
ori r5,r5,0x8800
isync
mtspr hid0,r5

#ifdef MPC603e
rlwinm r6,r5,0,21,19
mtspr hid0,r6

#endif
blr

//---
// Function: address_translation_on
//
// Enable address translation using the MMU
//---

address_translation_on:
mfmsr r5
ori r5,r5,0x0030
mtmsr r5
isync
blr

//---
// Function: error
//
// If an error occurs while weÕre copying from ROM to RAM, we have nowhere
// to go because thereÕs no OS support. Hang.
//---

error:
b error

A Minimal PowerPCª Boot Sequence for 29
Executing Compiled C Programs

Source Files

//---
//
// Define space for data items needed by this code
//
//---

.data
/* save time base to use for benchmarking numbers */
TBUSAVE:
 .double 0
TBLSAVE:

.double 0

5.2 ppcinit.h
#include "reg_defs.h" /* contains bit defines and register names */

/*
 Set the entry point into the user code. Normally, this should be
 defined as main.

 If a function other than main is used, the user MUST insert a
 call to __eabi() in the function before any other executable code.
*/
#define USER_ENTRY main

/* define ONE appropriate processor type for your system */
//#define MPC603e
//#define MPC750
#define MPC7400

/* Max has VMX; other processors donÕt yet. Define as necessary.
 May be set to zero also to disallow use of vmx on Max.*/
#ifdef MPC7400
#define VMX_AVAIL 1 /* 1 = vma avail, 0 = no vmx */
#else
#define VMX_AVAIL 0
#endif

/* L2 cache enablement */
#ifdef MPC603e
#define L2CACHE_ENABLE 0 /* just note that thereÕs no L2 on 603e */
#else /* 750 or 7400 */
#define L2CACHE_ENABLE 1 /* default - L2 on for Max and Arthur */

/*
 * L2_INIT is used to set up the L2 cache as follows:
 * size = .5 MB
 * clock ratio = div 2

30 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

 * RAM type = burst SRAM
 * Output Hold = 0.5ns
 *
 * These may need to be changed for your board. Refer to your board specs and your
 * processor manual for more information on setting up the L2 cache
 */
#define L2_INIT (L2CR_L2SIZ_HM|L2CR_L2CLK_2|L2CR_L2RAM_BURST| L2CR_L2OH_5)
#define L2_ENABLE (L2_INIT | L2CR_L2E)
#endif

/* L1 Instruction and data caches on or off? */
#define ICACHE_ON 1
#define DCACHE_ON 1

/* Where should I put the stack? Upper and lower address bits
 This number should be 16-byte aligned (PPC ABI) or 8-byte aligned (PPC EABI)
*/
#define STACK_LOC 0x00070000

/* Do we want to use the MMUÕs address translation ability? */
#define MMU_ON 1

/*
If weÕre using the MMU we need to set up the BAT registers.
Since we donÕt have a nice operating system handling page
table entries and the like for us, the BATs provide the
easiest translation mechanism.

The User must define the bat mappings here. For unused BATs, specify the
BAT as INVALID and having NO_ACCESS as shown for bats 2 and 3 below.

This code maps everything, including the ROM and instruction space as
read-write because weÕre in a simulator and might want to do something
that you wouldnÕt be able to do on real HW. In a real system, ROM and
instruction space is typically mapped Read-only.

The defines used here are found in reg_defs.h.
*/

/*
first, set address ranges for the devices IÕm mapping with the BATs.
The memory model for my board has ROM at fffc00000 and RAM at 0x00000000.
*/
#define PROM_BASE 0xffc00000
#define PRAM_BASE 0x00000000
#define VROM_BASE PROM_BASE
#define VRAM_BASE PRAM_BASE

#define IBAT0L_VAL (PROM_BASE | BAT_CACHE_INHIBITED | BAT_READ_WRITE)
#define IBAT0U_VAL (VROM_BASE|BAT_VALID_SUPERVISOR|BAT_VALID_USER|BAT_BL_4M)

A Minimal PowerPCª Boot Sequence for 31
Executing Compiled C Programs

Source Files

#define DBAT0L_VALIBAT0L_VAL
#define DBAT0U_VALIBAT0U_VAL

#define IBAT1L_VAL (PRAM_BASE | BAT_READ_WRITE)
#define IBAT1U_VAL (VRAM_BASE|BAT_BL_32M|BAT_VALID_SUPERVISOR| BAT_VALID_USER)
#define DBAT1L_VAL IBAT1L_VAL
#define DBAT1U_VAL IBAT1U_VAL

#define IBAT2L_VAL (BAT_NO_ACCESS)
#define IBAT2U_VAL (BAT_INVALID)
#define DBAT2L_VAL (BAT_NO_ACCESS)
#define DBAT2U_VAL (BAT_INVALID)

#define IBAT3L_VAL (BAT_NO_ACCESS)
#define IBAT3U_VAL (BAT_INVALID)
#define DBAT3L_VAL (BAT_NO_ACCESS)
#define DBAT3U_VAL (BAT_INVALID)

5.3 reg_defs.h
/* define names to make the asm easier to read - some compilers donÕt
 have this built in */

#define r0 0
#define r1 1
#define r2 2
#define r3 3
#define r4 4
#define r5 5
#define r6 6
#define r7 7
#define r8 8
#define r9 9
#define r13 13

#define r14 14

#define hid0 1008
#define srr1 27
#define srr0 26
#define ibat0u 528
#define ibat0l 529
#define ibat1u 530
#define ibat1l 531
#define ibat2u 532
#define ibat2l 533
#define ibat3u 534
#define ibat3l 535
#define dbat0u 536
#define dbat0l 537
#define dbat1u 538
#define dbat1l 539
#define dbat2u 540
#define dbat2l 541

32 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

#define dbat3u 542
#define dbat3l 543
#define pvr 287

#define l2cr 1017

/* general BAT defines for bit settings to compose BAT regs */
/* represent all the different block lengths */
/* The BL field is part of the Upper Bat Register */

#define BAT_BL_128K 0x00000000
#define BAT_BL_256K 0x00000004
#define BAT_BL_512K 0x0000000C
#define BAT_BL_1M 0x0000001C
#define BAT_BL_2M 0x0000003C
#define BAT_BL_4M 0x0000007C
#define BAT_BL_8M 0x000000FC
#define BAT_BL_16M 0x000001FC
#define BAT_BL_32M 0x000003FC
#define BAT_BL_64M 0x000007FC
#define BAT_BL_128M 0x00000FFC
#define BAT_BL_256M 0x00001FFC

/* supervisor/user valid mode definitions - Upper BAT*/
#define BAT_VALID_SUPERVISOR 0x00000002
#define BAT_VALID_USER 0x00000001
#define BAT_INVALID 0x00000000

/* WIMG bit settings - Lower BAT */
#define BAT_WRITE_THROUGH 0x00000040
#define BAT_CACHE_INHIBITED 0x00000020
#define BAT_COHERENT 0x00000010
#define BAT_GUARDED 0x00000008

/* Protection bits - Lower BAT */
#define BAT_NO_ACCESS 0x00000000
#define BAT_READ_ONLY 0x00000001
#define BAT_READ_WRITE 0x00000002

/* Bit defines for the L2CR register */
#define L2CR_L2E 0x80000000 /* bit 0 - enable */
#define L2CR_L2PE 0x40000000 /* bit 1 - data parity */
#define L2CR_L2SIZ_2M 0x00000000 /* bits 2-3 2 MB; MPC7400 ONLY! */
#define L2CR_L2SIZ_1M 0x30000000 /* bits 2-3 1MB */
#define L2CR_L2SIZ_HM 0x20000000 /* bits 2-3 512K */
#define L2CR_L2SIZ_QM 0x10000000 /* bits 2-3 256K; MPC750 ONLY */
#define L2CR_L2CLK_1 0x02000000 /* bits 4-6 Clock Ratio div 1 */
#define L2CR_L2CLK_1_5 0x04000000 /* bits 4-6 Clock Ratio div 1.5 */
#define L2CR_L2CLK_2 0x08000000 /* bits 4-6 Clock Ratio div 2 */
#define L2CR_L2CLK_2_5 0x0a000000 /* bits 4-6 Clock Ratio div 2.5 */
#define L2CR_L2CLK_3 0x0c000000 /* bits 4-6 Clock Ratio div 3 */
#define L2CR_L2RAM_BURST 0x01000000 /* bits 7-8 burst SRAM */
#define L2CR_DO 0x00400000 /* bit 9 Enable caching of instr. in L2 */

A Minimal PowerPCª Boot Sequence for 33
Executing Compiled C Programs

Source Files

#define L2CR_L2I 0x00200000 /* bit 10 Global invalidate bit */
#define L2CR_TS 0x00040000 /* bit 13 Test support on */
#define L2CR_TS_OFF ~L2CR_TS /* bit 13 Test support off */
#define L2CR_L2OH_5 0x00000000 /* bits 14-15 Output Hold time = 0.5ns*/
#define L2CR_L2OH_1 0x00010000 /* bits 14-15 Output Hold time = 1.0ns*/
#define L2CR_L2OH_INV 0x00020000 /* bits 14-15 Output Hold time = 1.0ns*/

5.4 ld.script
SECTIONS
{
 /*
 * check to see if we defined section starts in the makefile - if not,
 * define them here.
 *
 * Align everything to a 16-byte boundary if youÕre specifying the
 * addresses here.
 */
TEXT_START = DEFINED(TEXT_START) ? TEXT_START : 0x00000000;
IMAGE_TEXT_START = DEFINED(IMAGE_TEXT_START) ? IMAGE_TEXT_START : 0xFFF00000;

.text TEXT_START : AT (IMAGE_TEXT_START)
 {
 /*
 WeÕre building a s-record with the .text section located
 at TEXT_START that weÕre going to load into memory at
 IMAGE_TEXT_START. _img_text_start and _img_text_end

indicate the locations of the start and end of the text
segment at the loaded location.

 These values are used by the routine that relocates the text.
 */
 *(.text)
 *(.rodata)
 *(.rodata1)
 *(.got1);
 }

 /* Save text location in image and the final location to be used
 in ppcinit.S */

_img_text_start = LOADADDR(.text);
_img_text_end = (LOADADDR(.text) + SIZEOF(.text));

 _final_text_start = ADDR(.text);

 /*
 * Put the data section right after the text in the load image
 * as well as after the relocation unless else specified
 * If the user specified an address, assume itÕs aligned to a
 * 32-byte boundary (typical cache block size). If weÕre
 * calculating the address, align it to cache block size ourself.
 */

34 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

DATA_START = DEFINED(DATA_START) ? DATA_START :
(((ADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

IMAGE_DATA_START = DEFINED(IMAGE_DATA_START) ? IMAGE_DATA_START :
(((LOADADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

 .data DATA_START : AT (IMAGE_DATA_START)
 {
 _final_data_start = .;
 *(.data)
 *(.data1)
 *(.sdata)
 *(.sdata2)
 *(.got.plt)
 *(.got)
 *(.dynamic)
 *(.fixup);
_final_data_end = .;
 }

 /* Now save off the start of the data in the image */
 _img_data_start = LOADADDR(.data);

 /*
 * Place bss right after the data section.
 *
 * We only define one set of location variables for the BSS because
 * it doesnÕt actually exist in the image. All we do is go to the
 * final location and zero out an appropriate chunk of memory.
 */
 .bss (ADDR(.data) + SIZEOF(.data)) :
 {
 _bss_start = .;
 *(.sbss)
 *(.scommon)
 *(.dynbss)
 *(.bss)
 *(COMMON) ;
 _bss_end = . ;
 }

_end = .;

/*
These debug sections are here for information only - theyÕre not going to be
included in the ROM-RAM copy because it only copies .text, .data, and .bss.
*/
.stab 0 : { *(.stab) }
 .stabstr 0 : { *(.stabstr) }
 /* DWARF debug sections */

.debug 0 : {*(.debug)}
 .debug_srcinfo 0 : {*(.debug_srcinfo)}
 .debug_aranges 0 : {*(.debug_aranges)}

A Minimal PowerPCª Boot Sequence for 35
Executing Compiled C Programs

Source Files

 .debug_pubnames 0 : {*(.debug_pubnames)}
 .debug_sfnames 0 : {*(.debug_sfnames)}
 .line 0 : {*(.line)}

}

5.5 MakeÞle
PREFIX = /path/to/your/cross-compiler/gnu-solaris
TARGET = powerpc-eabi

CC = $(PREFIX)/bin/$(TARGET)-gcc
LD = $(PREFIX)/bin/$(TARGET)-gcc
OBJCOPY = $(PREFIX)/bin/$(TARGET)-objcopy
OBJDUMP = $(PREFIX)/bin/$(TARGET)-objdump

#
Define locations for the text and data code sections. The bss
gets tacked on to the end of the data by the linker script,
don't worry about it.
#

define this to move from the default of 0xFFF00000
#IMAGE_TEXT_START = 0xFFC00000

where do you want the text to execute? Define this to move
from 0x00000000
#TEXT_START = 0x00000000

the data section location defaults to the end of the text section,
so define these only if you want it in a specific place
ex. If you're using a real ROM, you need to specify a DATA_START
that is in RAM so you can actually write to the data space.
#
IMAGE_DATA_START = 0xFFF40000
DATA_START = 0x00050000

define options for compilation
add -gdwarf for debug
CFLAGS = -gdwarf

define options for linkage. Prevent the inclusion of standard start
code and libraries.
LDFLAGS = -fno-builtin -nostartfiles -nodefaultlibs -T ld.script

ifdef IMAGE_TEXT_START
LDFLAGS += -Wl,--defsym,TEXT_START=$(TEXT_START) \

-Wl,--defsym,IMAGE_TEXT_START=$(IMAGE_TEXT_START)
endif

ifdef IMAGE_DATA_START

36 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

LDFLAGS += -Wl,--defsym,DATA_START=$(DATA_START) \
-Wl,--defsym,IMAGE_DATA_START=$(IMAGE_DATA_START)

endif

define options for the objdump
DUMPFLAGS = --syms --disassemble-all

list C modules to link with the init code here
C_SRC = test.c
C_OBJS = $(C_SRC:.c=.o)

use variables to refer to init code in case it changes
PPCINIT = ppcinit.o
PPCINIT_DEP = reg_defs.h ppcinit.h ppcinit.S

#
define build targets
#
all: go.srec

clean:
rm *.o *.elf *.srec *.dump *.i

build s-record with init code and c files linked together
go.srec: $(C_OBJS) $(PPCINIT)

$(LD) $(LDFLAGS) -o go.elf $(PPCINIT) $(C_OBJS)
$(OBJDUMP) $(DUMPFLAGS) go.elf > go.dump
$(OBJCOPY) -O srec -R .comment go.elf go.srec

compile init code
$(PPCINIT): $(PPCINIT_DEP)

$(CC) $(CFLAGS) -c -x assembler-with-cpp $*.S

handle compilation of C files
%.o:%.c

$(CC) $(CFLAGS) -c $<

A Minimal PowerPCª Boot Sequence for 37
Executing Compiled C Programs

Source Files

38 A Minimal PowerPCª Boot Sequence for
Executing Compiled C Programs

Source Files

A Minimal PowerPCª Boot Sequence for 39
Executing Compiled C Programs

Source Files

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express
or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in
this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including "Typicals" must be validated for each customer application by customerÕs technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application
in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/
Affirmative Action Employer.

How to reach us:
USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

852-26668334

Customer Focus Center: 1-800-521-6274
Mfaxª: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609
Motorola Fax Back System - US & Canada ONLY http://sps.motorola.com/mfax

HOME PAGE: http://motorola.com/semiconductors

Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering
World Wide Web Addresses: http://www.motorola.com/PowerPC

http://www.motorola.com/netcomm
http://www.motorola.com/Coldfire

AN1809/D

DigitalDNA and Mfax are trademarks of Motorola, Inc.
The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation used by Motorola
under license from International Business Machines Corporation.

	Part I Overview
	Part II PowerPC Processor Initialization
	2.1 General Initialization
	2.2 Memory Management Unit
	Table�1. Upper BAT Register Format
	Table�2. Lower BAT Register Format �
	Table�3. BL Encodings �
	Table�4. Block Access Protection Control �

	2.3 Caches
	2.4 EABI Register Initialization

	Part III PowerPC EABI Compliance
	Table�5. PowerPC EABI Registers�

	Part IV Sample Boot Sequence
	4.1 Configurable Options
	Table�6. User-Configurable Program Options�
	Table�7. Default BAT Register Values �

	4.2 General Initialization
	4.3 EABI Register initialization
	4.4 Code Relocation
	4.5 GCC Compilation and Linking
	Table�8. ld.Script Variables�

	4.6 Using the Sample Boot Sequence
	4.7 Limitations of the Sample Boot Sequence

	Part V Source Files
	5.1 ppcinit.S
	5.2 ppcinit.h
	5.3 reg_defs.h
	5.4 ld.script
	5.5 Makefile

