
PCI BIOS SPECIFICATION

Revision 2.1

August 26, 1994

ii PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

REVISION REVISION HISTORY DATE

1.0 Original issue distributed by Intel 9/28/92

2.0 Updated to be in synch with PCI Bus Specification Rev
2.0

7/20/93

2.1 Added functions for PCI IRQ routing; Clarifications. 8/26/94

The PCI Special Interest Group disclaims all warranties and liability for the use of this
document and the information contained herein and assumes no responsibility for any
errors that may appear in this document, nor does the PCI Special Interest Group make a
commitment to update the information contained herein.

Contact the PCI Special Interest Group office to obtain the latest revision of the
specification.

Questions regarding the PCI BIOS specification or membership in the PCI Special
Interest Group may be forwarded to:

PCI Special Interest Group
2575 NE Kathryn St #17

Hillsboro, OR 97124
(800) 433-5177 - Domestic

(503) 693-6232 - International
(503) 693-8344 - Fax
techsupp@pcisig.com

Revision 2.1 PCI BIOS Specification iii

Copyright  PCI Special Interest Group

TABLE OF CONTENTS

1. Introduction ... 1
1.1. Purpose ... 1
1.2. Scope .. 1
1.3. Related Documents... 1
1.4. Terms and Abbreviations ... 1

2. Functional Description .. 2

3. Assumptions and Constraints .. 3
3.1. ROM BIOS Location.. 3
3.2. Calling Conventions ... 3
3.3. BIOS32 Service Directory.. 4

3.3.1. Determining the existence of BIOS32 Service Directory............ 4
3.3.2. Calling Interface for BIOS32 Service Directory 5

3.4. PCI BIOS 32-bit service... 6

4. Host Interface .. 7
4.1. Identifying PCI Resources.. 7

4.1.1. PCI BIOS Present .. 7
4.1.2. Find PCI Device .. 9
4.1.3. Find PCI Class Code ... 10

4.2. PCI Support Functions ... 11
4.2.1. Generate Special Cycle.. 11
4.2.2. Get PCI Interrupt Routing Options.. 12
4.2.3. Set PCI Hardware Interrupt ... 15

4.3. Accessing Configuration Space.. 17
4.3.1. Read Configuration Byte... 17
4.3.2. Read Configuration Word ... 18
4.3.3. Read Configuration Dword ... 19
4.3.4. Write Configuration Byte .. 20
4.3.5. Write Configuration Word .. 21
4.3.6. Write Configuration Dword .. 22

APPENDIX A: Function List ... 23

APPENDIX B: Return Code List ... 24

Revision 2.1 PCI BIOS Specification 1

Copyright  PCI Special Interest Group

1. Introduction

1.1. Purpose

This document describes the software interface presented by the PCI BIOS functions.
This interface provides a hardware independent method of managing PCI devices in a
host computer.

1.2. Scope

This document is intended to provide enough information to software developers to
utilize PCI devices in a host computer without any knowledge of how the actual hardware
performs the desired functions. It is also intended to provide enough information for an
implementor to create these BIOS functions for a particular system design.

1.3. Related Documents

PCI Local Bus Specification, Revision 2.0 April 30, 1993

Standard BIOS 32-bit Service Directory Proposal, Revision 0.4 May 24, 1993
(available from Phoenix Technologies Ltd., Norwood, MA)

1.4. Terms and Abbreviations

Bus Number A number in the range 0 .. 255 that uniquely selects a PCI
bus.

Configuration Space A separate address space on PCI buses. Used for device
identification and configuring devices into Memory and IO
spaces.

Device ID A predefined field in configuration space that (along with
Vendor ID) uniquely identifies the device.

Device Number A number in the range 0..31 that uniquely selects a device
on a PCI bus.

Function Number A number in the range 0..7 that uniquely selects a function
within a multi-function PCI device.

Multi-function PCI
device

A PCI device that contains multiple functions. For instance,
a single device that provides both LAN and SCSI functions,
and has a separate configuration space for each function is a
multi-function device.

PCI Acronym for Peripheral Component Interconnect bus.

Special Cycle A specific PCI bus command used for broadcasting to all
PCI devices on a bus.

Vendor ID A predefined field in configuration space that (along with
Device ID) uniquely identifies the device.

2 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

2. Functional Description

PCI BIOS functions provide a software interface to the hardware used to implement a PCI
based system. Its primary usage is for generating operations in PCI specific address
spaces (configuration space, and Special Cycles).

PCI BIOS functions are specified, and should be built, to operate in all modes of the X86
architecture. This includes real-mode, 16:16 protected mode (also known as 286 protect-
mode), 16:32 protected mode (introduced with the 386), and 0:32 protected mode (also
known as "flat" mode, wherein all segments start at linear address 0 and span the entire 4
Gbyte address space).

Access to the PCI BIOS functions for 16-bit callers is provided through Interrupt 1Ah.
32-bit (ie. protect mode) access is provided by calling through a 32-bit protect mode entry
point. The PCI BIOS function code is B1h. Specific BIOS functions are invoked using a
subfunction code. A user simply sets the host processors registers for the function and
subfunction desired and calls the PCI BIOS software. Status is returned using the Carry
flag ([CF]) and registers specific to the function invoked.

Revision 2.1 PCI BIOS Specification 3

Copyright  PCI Special Interest Group

3. Assumptions and Constraints

3.1. ROM BIOS Location

The PCI BIOS functions are intended to be located within an IBM-PC compatible ROM
BIOS.

3.2. Calling Conventions

The PCI BIOS functions use the X86 CPU’s registers to pass arguments and return status.
The caller must use the appropriate subfunction code.

These routines preserve all registers and flags except those used for return parameters.
The CARRY FLAG [CF] will be altered as shown to indicate completion status. The
calling routine will be returned to with the interrupt flag unmodified and interrupts will
not be enabled during function execution. These routines are re-entrant. These routines
require 1024 bytes of stack space and the stack segment must have the same size (ie. 16-
bit or 32-bit) as the code segment.

The PCI BIOS provides a 16-bit real and protect mode interface and a 32-bit protect
mode interface. The 16-bit interface is provided through PC/AT Int 1Ah software
interrupt. The PCI BIOS Int 1Ah interface operates in either real mode, virtual-86 mode,
or 16:16 protect mode. The BIOS functions may also be accessed through the industry
standard entry point for INT 1Ah (physical address 000FFE6Eh) by simulating an INT
instruction1. The INT 1Ah entry point supports 16-bit code only. Protect mode callers of
this interface must set the CS selector base to 0F000h.

The protected mode interface supports 32-bit protect mode callers. The protected mode
PCI BIOS interface is accessed by calling (not a simulated INT) through a protected mode
entry point in the PCI BIOS. The entry point and information needed for building the
segment descriptors are provided by the BIOS32 Service Directory (see section 3.3). 32-
bit callers invoke the PCI BIOS routines using CALL FAR.

The PCI BIOS routines (for both 16-bit and 32-bit callers) must be invoked with
appropriate privilege so that interrupts can be enabled/disabled and the routines can
access IO space. Implementors of the PCI BIOS must assume that CS is execute-only
and DS is read-only.

1Note that accessing the BIOS functions through the industry standard entry point will bypass any code that
may have ’hooked’ the INT 1Ah interrupt vector.

4 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

3.3. BIOS32 Service Directory2

Detecting the absence or presence of 32-bit BIOS services with 32-bit code can be
problematic. Standard BIOS entry points cannot be called in 32-bit mode on all machines
because the platform BIOS may not support 32-bit callers. This section describes a
mechanism for detecting the presence of 32-bit BIOS services. While the mechanism
supports the detection of the PCI BIOS, it is intended to be broader in scope to allow
detection of any/all 32-bit BIOS services. The description of this mechanism, known as
BIOS32 Service Directory, is provided in three parts; the first part specifies an algorithm
for determining if the BIOS32 Service Directory exists on a platform, the second part
specifies the calling interface to the BIOS32 Service Directory, and the third part
describes how the BIOS32 Service Directory supports PCI BIOS detection.

3.3.1. Determining the existence of BIOS32 Service Directory

A BIOS which implements the BIOS32 Service Directory must embed a specific,
contiguous 16-byte data structure, beginning on a 16-byte boundary somewhere in the
physical address range 0E0000h - 0FFFFFh. A description of the fields in the data
structure are given in Table 3.1.

Offset Size Description

0 4 bytes Signature string in ASCII. The string is "_32_". This
puts an ’underscore’ at offset 0, a ’3’ at offset 1, a ’2’ at
offset 2, and another ’underscore at’ offset 3.

4 4 bytes Entry point for the BIOS32 Service Directory. This is
a 32-bit physical address.

8 1 byte Revision level. This version has revision level 00h.
9 1 byte Length. This field provides the length of this data

structure in paragraph (i.e. 16-byte) units. This data
structure is 16-bytes long so this field contains 01h.

0Ah 1 byte Checksum. This field is a checksum of the complete
data structure. The sum of all bytes must add up to 0.

0Bh 5 bytes Reserved. Must be zero.

Table 3.1

Clients of the BIOS32 Service Directory should determine its existence by scanning
0E0000h to 0FFFF0h looking for the ASCII signature and a valid, checksummed data
structure. If the data structure is found, the BIOS32 Service Directory can be accessed
through the entry point provided in the data structure. If the data structure is not found,
then the BIOS32 Service Directory (and also the PCI BIOS) is not supported by the
platform.

2This section describes a mechanism for detecting 32-bit BIOS services. This mechanism is being proposed
as an industry standard and is described by the document Standard BIOS 32-bit Service Directory
Proposal, Revision 0.4 May 24, 1993 available from Phoenix Technologies Ltd., Norwood, MA.

Revision 2.1 PCI BIOS Specification 5

Copyright  PCI Special Interest Group

3.3.2. Calling Interface for BIOS32 Service Directory

The BIOS32 Service Directory is accessed by doing a CALL FAR to the entry point
provided in the Service data structure (see previous section). There are several
requirements about the calling environment that must be met. The CS code segment
selector and the DS data segment selector must be set up to encompass the physical page
holding the entry point as well as the immediately following physical page. They must
also have the same base. Platform BIOS writers must assume that CS is execute-only and
DS is read-only. The SS stack segment selector must provide at least 1K of stack space.
The calling environment must also allow access to IO space.

The BIOS32 Service Directory provides a single function to determine whether a
particular 32-bit BIOS service is supported by the platform. All parameters to the
function are passed in registers. Parameter descriptions are provided below. If a
particular service is implemented in the platform BIOS, three values are returned. The
first value is the base physical address of the BIOS service. The second value is the
length of the BIOS service. These two values can be used to build the code segment
selector and data segment selector for accessing the service. The third value provides the
entry point to the BIOS service encoded as an offset from the base.

ENTRY:
[EAX] Service Identifier. This is a four character string used to

specifically identify which 32-bit BIOS Service is being
sought.

[EBX] The low order byte ([BL]) is the BIOS32 Service Directory
function selector. Currently only one function is defined
(with the encoding of zero) which returns the values
provided below.

The upper three bytes of [EBX] are reserved and must be
zero on entry.

EXIT:
[AL] Return code.

00h = Service corresponding to Service Identifier is present.
80h = Service corresponding to Service Identifier is not present
81h = Unimplemented function for BIOS Service Directory
 (i.e. BL has an unrecognized value).

[EBX] Physical address of the base of the BIOS service.
[ECX] Length of the BIOS service.
[EDX] Entry point into BIOS service. This is an offset from the base

provided in EBX.

6 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

3.4. PCI BIOS 32-bit service

The BIOS32 Service Directory may be used to detect the presence of the PCI BIOS. The
Service Identifier for the PCI BIOS is "$PCI" (049435024h).

The 32-bit PCI BIOS functions must be accessed using CALL FAR. The CS and DS
descriptors must be setup to encompass the physical addresses specified by the Base and
Length parameters returned by the BIOS32 Service Directory. The CS and DS
descriptors must have the same base. The calling environment must allow access to IO
space and provide at least 1K of stack space. Platform BIOS writers must assume that CS
is execute-only and DS is read-only.

Revision 2.1 PCI BIOS Specification 7

Copyright  PCI Special Interest Group

4. Host Interface

4.1. Identifying PCI Resources

The following group of functions allow the caller to determine first, if the PCI BIOS
support is installed, and second, if specific PCI devices are present in the system.

4.1.1. PCI BIOS Present

This function allows the caller to determine whether the PCI BIOS interface function set
is present, and what the current interface version level is. It also provides information
about what hardware mechanism for accessing configuration space is supported, and
whether or not the hardware supports generation of PCI Special Cycles.

ENTRY:
[AH] PCI_FUNCTION_ID
[AL] PCI_BIOS_PRESENT

EXIT:
[EDX] "PCI ", "P" in [DL], "C" in [DH], etc. There is a ’space’

character in the upper byte.
[AH] Present Status, 00h = BIOS Present IFF EDX set properly.
[AL] Hardware mechanism
[BH] Interface Level Major Version
[BL] Interface Level Minor Version
[CL] Number of last PCI bus in the system.
[CF] Present Status, set = No BIOS Present,

reset = BIOS Present IFF EDX set properly.

If the CARRY FLAG [CF] is cleared and AH is set to 00h, it is still necessary to examine
the contents of [EDX] for the presence of the string "PCI" + (trailing space) to fully
validate the presence of the PCI function set. [BX] will further indicate the version level,
with enough granularity to allow for incremental changes in the code that don’t affect the
function interface. Version numbers are stored as Binary Coded Decimal (BCD) values.
For example, Version 2.10 would be returned as a 02h in the [BH] registers and 10h in
the [BL] registers. BIOS releases of the interface following this version of the
specification will be Version 2.10 (BX = 0210h).

The value returned in [AL] identifies what specific HW characteristics the platform
supports in relation to accessing configuration space and generating PCI Special Cycles
(see Figure 1). The PCI Specification defines two HW mechanisms for accessing
configuration space. Bits 0 and 1 of the value returned in [AL] specify which mechanism
is supported by this platform. Bit 0 will be set (1) if Mechanism #1 is supported, and
reset (0) otherwise. Bit 1 will be set (1) if Mechanism #2 is supported, and reset (0)
otherwise. Bits 2,3,6 and 7 are reserved and returned as zeros.

8 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

The PCI Specification also defines HW mechanisms for generating Special Cycles. Bits
4 and 5 of the value return in [AL] specify which mechanism is supported (if any). Bit 4
will be set (1) if the platform supports Special Cycle generation based on Config
Mechanism #1, and reset (0) otherwise. Bit 5 will be set (1) if the platform supports
Special Cycle generation based on Config Mechanism #2, and reset (0) otherwise.

The value returned in [CL] specifies the number of the last PCI bus in the system. PCI
buses are numbered starting at zero and running up to the value specified in CL.

01

45

1 if Config Mechanism #1, 0 otherwise
1 if Config Mechanism #2, 0 otherwise

1 if Special Cycle supported via Config Mechanism #1, 0 otherwise

1 if Special Cycle supported via Config Mechanism #2, 0 otherwise

Figure 1. Layout of value returned in [AL]

Revision 2.1 PCI BIOS Specification 9

Copyright  PCI Special Interest Group

4.1.2. Find PCI Device

This function returns the location of PCI devices that have a specific Device ID and
Vendor ID. Given a Vendor ID, Device ID and an Index (N), the function returns the Bus
Number, Device Number, and Function Number of the Nth Device/Function whose
Vendor ID and Device ID match the input parameters.

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] FIND_PCI_DEVICE
[CX] Device ID (0...65535)
[DX] Vendor ID (0...65534)
[SI] Index (0...N)

EXIT:

[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in bottom 3 bits
[AH] Return Code:

SUCCESSFUL
DEVICE_NOT_FOUND
BAD_VENDOR_ID

[CF] Completion Status, set = error, cleared = success.

Calling software can find all devices having the same Vendor ID and Device ID by
making successive calls to this function starting with Index set to zero, and incrementing
it until the return code is ’DEVICE_NOT_FOUND’. A return code of
BAD_VENDOR_ID indicates that the passed in Vendor ID value (in [DX]) had an illegal
value of all 1’s.

Values returned by this function upon successful completion must be the actual values
used to access the PCI device if the INT 1Ah routines are by-passed in favor of the direct
I/O mechanisms described in the PCI Specification.

10 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

4.1.3. Find PCI Class Code

This function returns the location of PCI devices that have a specific Class Code. Given a
Class Code and a Index (N), the function returns the Bus Number, Device Number, and
Function Number of the Nth Device/Function whose Class Code matches the input
parameters.

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] FIND_PCI_CLASS_CODE
[ECX] Class Code (in lower three bytes)
[SI] Index (0...N)

EXIT:

[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in bottom 3 bits
[AH] Return Code:

SUCCESSFUL
DEVICE_NOT_FOUND

[CF] Completion Status, set = error, cleared = success.

Calling software can find all devices having the same Class Code by making successive
calls to this function starting with Index set to zero, and incrementing it until the return
code is ’DEVICE_NOT_FOUND’.

Revision 2.1 PCI BIOS Specification 11

Copyright  PCI Special Interest Group

4.2. PCI Support Functions

The following functions provide support for several PCI specific operations.

4.2.1. Generate Special Cycle

This function allows for generation of PCI special cycles. The generated special cycle
will be broadcast on a specific PCI bus in the system.

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] GENERATE_SPECIAL_CYCLE
[BH] Bus Number (0...255)
[EDX] Special Cycle Data

EXIT:

[AH] Return Code:
SUCCESSFUL
FUNC_NOT_SUPPORTED

[CF] Completion Status, set = error, reset = success

12 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

4.2.2. Get PCI Interrupt Routing Options

Description:

Logical input parameters:
RouteBuffer Pointer to buffer data structure

This routine returns the PCI interrupt routing options available on the system
motherboard and also the current state of what interrupts are currently exclusively
assigned to PCI. Routing information is returned in a data buffer that contains an IRQ
Routing for each PCI device or slot. The format of an entry in the IRQ routing table is
shown in Table 4-1.

Two values are provided for each PCI interrupt pin in every slot. One of these values is a
bit-map that shows which of the standard AT IRQs this PCI interrupt can be routed to.
This provides the routing options for one particular PCI interrupt pin. In this bit-map, bit
0 corresponds to IRQ0, bit 1 to IRQ1, etc. A ’1’ bit in this bit-map indicates a routing is
possible; a ’0’ bit indicates no routing is possible. The second value is a ’link’ value that
provides a way of specifying which PCI interrupt pins are wire-OR’ed together on the
motherboard. Interrupt pins that are wired together must have the same ’link’ value in
their table entries. Values for the ’link’ field are arbitrary except that the value zero

indicates that the PCI interrupt pin has no connection to the interrupt controller3.

The Slot Number value at the end of the structure is used to communicate whether the
table entry is for a motherboard device or an add-in slot. For motherboard devices, Slot
Number should be set to zero. For add-in slots, Slot Number should be set to a value that
corresponds with the physical placement of the slot on the motherboard. This provides a
way to correlate physical slots with PCI Device numbers. Values (with the exception of

3This is typically used for motherboard devices who have only an IRQA# line and not IRQB#, IRQC# or
IRQD#.

Offset Size Description

0 byte PCI Bus number
1 byte PCI Device number (in upper 5 bits)
2 byte Link value for INTA#
3 word IRQ bit-map for INTA#
5 byte Link value for INTB#
6 word IRQ bit-map for INTB#
8 byte Link value for INTC#
9 word IRQ bit-map for INTC#
11 byte Link value for INTD#
12 word IRQ bit-map for INTD#
14 byte Slot Number
15 byte Reserved

Table 4-1 Layout of IRQ routing table entry.

Revision 2.1 PCI BIOS Specification 13

Copyright  PCI Special Interest Group

00h) are OEM specific.4 For end user ease-of-use, slots in the system should be clearly
labeled (e.g. solder mask, back-panel, etc.).

This routine requires one parameter, RouteBuffer, that is a far pointer to the data structure
shown below.

typedef struct
{

WORD BufferSize;
BYTE FAR * DataBuffer;

} IRQRoutingOptionsBuffer;

where

BufferSize: A word size value providing the size of the data buffer. If the
buffer is too small, the routine will return with status of
BUFFER_TOO_SMALL, and this field will be updated with the required
size. To indicate that the running PCI system does not have any PCI
devices, this function will update the BufferSize field to zero. On
successful completion this field is updated with the size (in bytes) of the
data returned.

DataBuffer: Far pointer to the buffer containing PCI interrupt routing
information for all motherboard devices and slots.

This routine also returns information about which IRQs are currently dedicated for PCI
usage. This information is returned as a bit map where a set bit indicates that the IRQ is
dedicated to PCI and not available for use by devices on other buses. Note that if an IRQ
is routed such that it can be used by PCI devices and other devices the corresponding bit
in the bit map should not be set. The function returns this information in the [BX]
register where bit 0 corresponds to IRQ0, bit 1 - IRQ1, etc. The caller must initialize
[BX] to zero before calling this routine.

4For example, a system with 4 ISA slots and 3 PCI slots arranged as 3-ISA, 3-PCI, 1-ISA may choose to
start numbering the slots at the 3-ISA end in which case the PCI slot numbers would be 4, 5 and 6. If slot
numbering started at the 1-ISA end, PCI slot numbers would be 2, 3, and 4.

14 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

ENTRY:
[AH] PCI_FUNCTION_ID
[AL] GET_IRQ_ROUTING_OPTIONS
[BX] Must be initialized to 0000h.
[DS] Segment or Selector for BIOS data.

For 16-bit code the real-mode segment or PM selector
must resolve to physical address 0F0000h and have a
limit of 64K.
For 32-bit code see section 3.4.

[ES] Segment or Selector for RouteBuffer parameter
[DI] for 16-bit code
[EDI] for 32-bit code

Offset for RouteBuffer parameter.

EXIT:
[AH] Return Code:

SUCCESSFUL
BUFFER_TOO_SMALL
FUNC_NOT_SUPPORTED

[BX] IRQ bitmap indicating which IRQs are exclusively
dedicated to PCI devices.

[CF] Completion Status, set = error, cleared = success

Revision 2.1 PCI BIOS Specification 15

Copyright  PCI Special Interest Group

4.2.3. Set PCI Hardware Interrupt

Description:

This function is intended to be used by a system-wide configuration utility or a PNP
OS. This function should never be called by device drivers or expansion ROM code.

Logical input parameters:
BusDev Bus number and device number
IntPin PCI Interrupt Pin (INTA .. INTD)
IRQNum IRQ Number (0-15)

This routine causes the specified hardware interrupt (IRQ) to be connected to the
specified interrupt pin of a PCI device. It makes the following assumptions:

1) The caller is responsible for all error checking to ensure no resource conflict
exits between the specific hardware interrupt assigned to the PCI device and any
other hardware interrupt resource in the system.

2) The caller is responsible for ensuring that the specified interrupt is configured
properly (level triggered) in the interrupt controller. If the system contains
hardware outside of the interrupt controller that controls interrupt triggering
(edge/level) then the callee (i.e.; the BIOS) is responsible for setting that
hardware to level triggered for the specified interrupt.

3) The caller is responsible for updating PCI configuration space (ie. Interrupt Line
registers) for all effected devices.

4) The caller must be aware that changing IRQ routing for one device will also
change the IRQ routing for other devices whose INTx# pins are WIRE-ORed
together (ie. they have the same link field in the Get Routing Options call).

If the requested interrupt cannot be assigned to the specified PCI device then
SET_FAILED status is returned. This routine immediately effects the interrupt routing
and does nothing to remember the routing for the next system boot.

The BusDev parameter specifies the PCI bus and device numbers for the PCI device/slot
being modified. The high-order byte of BusDev contains the PCI bus number. The
device number is provided in the top five bits of the low-order byte of BusDev. For
example, to specify device 6 on PCI bus 2 the BusDev parameter would be 0x0230.

The IntPin parameter specifies which interrupt pin (INTA#,..,INTD#) of the specified PCI
device/slot is effected by this call. A value of 0x0A corresponds to INTA#, 0x0B to INTB#,
etc.

The IRQNum parameter specifies which IRQ input is to be connected to the PCI interrupt
pin. This parameter can have values of 0..15 specifying IRQ0 thru IRQ15 respectively.

16 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

ENTRY:
[AH] PCI_FUNCTION_ID
[AL] SET_PCI_HW_INT
[CL] IntPin parameter. Valid values 0Ah..0Dh
[CH] IRQNum parameter. Valid values 0..0Fh
[BX] BusDev parameter. [BH] holds bus number, [BL]

holds Device (upper five bits) and Function (lower 3
bits) numbers.

[DS] Segment or Selector for BIOS data.
For 16-bit code the real-mode segment or PM selector
must resolve to physical address 0F0000h and have a
limit of 64K.
For 32-bit code see section 3.4.

EXIT:
[AH] Return Code:

SUCCESSFUL
SET_FAILED
FUNC_NOT_SUPPORTED

[CF] Completion Status, set = error, cleared = success

Revision 2.1 PCI BIOS Specification 17

Copyright  PCI Special Interest Group

4.3. Accessing Configuration Space

4.3.1. Read Configuration Byte

This function allows reading individual bytes from the configuration space of a specific
device.

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] READ_CONFIG_BYTE
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0...255)

EXIT:

[CL] Byte Read
[AH] Return Code:

SUCCESSFUL
[CF] Completion Status, set = error, reset = success

18 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

4.3.2. Read Configuration Word

This function allows reading individual words from the configuration space of a specific
device. The Register Number parameter must be a multiple of two (i.e., bit 0 must be set
to 0).

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] READ_CONFIG_WORD
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0,2,4,...254)

EXIT:

[CX] Word Read
[AH] Return Code:

SUCCESSFUL
BAD_REGISTER_NUMBER

[CF] Completion Status, set = error, reset = success

Revision 2.1 PCI BIOS Specification 19

Copyright  PCI Special Interest Group

4.3.3. Read Configuration Dword

This function allows reading individual dwords from the configuration space of a specific
device. The Register Number parameter must be a multiple of four (i.e., bits 0 and 1
must be set to 0).

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] READ_CONFIG_DWORD
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0,4,8,...252)

EXIT:

[ECX] Dword read.
[AH] Return Code:

SUCCESSFUL
BAD_REGISTER_NUMBER

[CF] Completion Status, set = error, reset = success

20 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

4.3.4. Write Configuration Byte

This function allows writing individual bytes to the configuration space of a specific
device.

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] WRITE_CONFIG_BYTE
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0...255)
[CL] Byte Value to Write

EXIT:

[AH] Return Code:
SUCCESSFUL

[CF] Completion Status, set = error, reset = success

Revision 2.1 PCI BIOS Specification 21

Copyright  PCI Special Interest Group

4.3.5. Write Configuration Word

This function allows writing individual words from the configuration space of a specific
device. The Register Number parameter must be a multiple of two (i.e., bit 0 must be set
to 0).

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] WRITE_CONFIG_WORD
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0,2,4,...254)
[CX] Word Value to Write

EXIT:

[AH] Return Code:
SUCCESSFUL
BAD_REGISTER_NUMBER

[CF] Completion Status, set = error, reset = success

22 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

4.3.6. Write Configuration Dword

This function allows writing individual dwords from the configuration space of a specific
device. The Register Number parameter must be a multiple of four (i.e., bits 0 and 1
must be set to 0).

ENTRY:

[AH] PCI_FUNCTION_ID
[AL] WRITE_CONFIG_DWORD
[BH] Bus Number (0...255)
[BL] Device Number in upper 5 bits,

Function Number in lower 3 bits
[DI] Register Number (0,4,8,...252)
[ECX] Dword value to write.

EXIT:

[AH] Return Code:
SUCCESSFUL
BAD_REGISTER_NUMBER

[CF] Completion Status, set = error, reset = success

Revision 2.1 PCI BIOS Specification 23

Copyright  PCI Special Interest Group

APPENDIX A: Function List

FUNCTION AH AL

PCI_FUNCTION_ID B1h

PCI_BIOS_PRESENT 01h

FIND_PCI_DEVICE 02h

FIND_PCI_CLASS_CODE 03h

GENERATE_SPECIAL_CYCLE 06h

READ_CONFIG_BYTE 08h

READ_CONFIG_WORD 09h

READ_CONFIG_DWORD 0Ah

WRITE_CONFIG_BYTE 0Bh

WRITE_CONFIG_WORD 0Ch

WRITE_CONFIG_DWORD 0Dh

GET_IRQ_ROUTING_OPTIONS 0Eh

SET_PCI_IRQ 0Fh

24 PCI BIOS Specification Revision 2.1

Copyright  PCI Special Interest Group

APPENDIX B: Return Code List

RETURN CODES AH

SUCCESSFUL 00h

FUNC_NOT_SUPPORTED 81h

BAD_VENDOR_ID 83h

DEVICE_NOT_FOUND 86h

BAD_REGISTER_NUMBER 87h

SET_FAILED 88h

BUFFER_TOO_SMALL 89h

	Return to Contents

