Advanced Configuration and
Power Interface Specification
Revision 2.0 Errata

Compaq Computer Corporation
Intel Corporation

Microsoft Corporation

Phoenix Technologies Ltd.
Toshiba Corporation

Errata document revision 1.5
April 13, 2001

Copyright © 1996, 1997, 1998, 1999, 2000, 2001 Compag Computer Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., Toshiba Corporation
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

COMPAQ, INTEL, MICROSOFT, PHOENIX, AND TOSHIBA DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION
OF INFORMATION IN THIS SPECIFICATION. COMPAQ, INTEL, MICROSOFT, PHOENIX, AND
TOSHIBA DO NOT WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT
INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
All other product names are trademarks, registered trademarks, or service marks of their respective owners.

Affected

Revision | Change Description Sections
15 Clarified Power / Sleep button override action will cause system to enter soft- | 1.5
off state. Override action will not cause the system to reset.
Updated “SRAT” DESCRIPTION_HEADER signature reference. 525
Replaced ASL Data Type section with a new section that clarifies ASL Data | 16.2.2
Type conversions.
1.4 Corrected Figure 5-1 location of system description tables. Removed 5.1
redundant description of finding the RSDP on IA-PC systems — added
reference to other sections.
Corrected FADT Boot Architecture Flags Reserved field bit offset from 3 to 5.2.8.3
2.
Clarified _INI object evaluation — OSPM evaluates \ _SB._INI 6.5.1
Corrected ElseTerm definition. Changed CMOS RegionSpaceKeyword to 16.1.3
SystemCMOS to avoid collisions with existing ASL.
Corrected description of Mutex object. 16.2.3.3.1.14
Changed ASL CopyTerm to CopyObjectTerm to avoid collision with existing | 16.2.3.4.2.8
ASL.
1.3 Corrected location of Firmware ACPI Control Structure may exist anywhere | 5.2.9
in the system’s memory address map.
Corrected description of the Local APIC Address Override Structure. 5.2.10.11
Corrected Local SAPIC Structure’s ACPI Processor ID field length from two | 5.2.10.13
bytes to one byte to enable a correct comparison with processor term’s
ProcessorID field. Rearranged field ordering to more closely match the Local
APIC Structure.
Corrected _SCP reference section. 5.6.5
Corrected TermArg and NameTerm to reference DataObject rather than 16.1.3
DataRefObject. Added NameString to TermArg. Added missing DDBHandle
and ObjectReference to ASL type definitions.
Corrected Load and Unload operator descriptions — does not apply to 16.2.3.4.1.7,
Differentiated Definition Block 16.2.3.4.1.17
Corrected table reference. 16.2.3.4.2.37
1.2 Clarified that OSPM is only required to write non-zero values of FADT fields | 5.2.8
PSTATE_CNT and CST_CNT to the SMI Command Port. Corrected
PM1 CNT_LEN value is = 2.
Changed ASL type conversion function names to avoid collision with 16.1.3,
existing ASL (Buff >ToBuffer, DecStr>ToDecimalString, 16.2.3.4.2,
HexStr>ToHexString, Int>Tolnteger, String>ToString). 16.2.3.4.2.4,
16.2.3.4.2.10,
16.2.3.4.2.16,
16.2.3.4.2.19,
16.2.3.4.2.44
1.1 Clarified hardware interfaces may be defined as Functional Fixed Hardware 411

only when directed by the CPU manufacturer as proprietary OS support is
required that must be coordinated with the OS vendor.

Compag/Intel/Microsoft/Phoenix/Toshiba

Clarified Definition Block support expanding from 32-bit to 64-bit integers. 5.2.10, 5.2.10.1,
5.2.10.2

Local SAPIC Structure length corrected to 8 from 10 bytes. 5.2.10.13

Updated DSDT DefinitionBlock example compliance revision. 55

End value correction of event values for status bits in GPEO_BLK. 5.6.2.2

Corrected Defined Generic Object and Control Method section references. 5.6.5

Corrected Generic Register Descriptor Definition to include GAS reserved 6.4.3.7

field.

Corrected memory term’s type field from TranslationType to Type 16.1.3

Corrected Switch ACPI 1.0 translation 16.2.3.4.1.16
1.0 Initial errata document for ACPI 2.0.

Re-inserted mistakenly deleted sentence fragment. 5.2

FADT SCI_INT field - clarified to be the SCI interrupts’s Global System 5.2.8

Interrupt number when no 8259 exists in the system.

Incorrect reference to Processor declaration section. 5.2.10.5

Local APIC Address Override Structure length field corrected. 5.2.10.11

I/0 SAPIC Strucure - length field corrected, Global System Interrupt Base 5.2.10.12

and /0O SAPIC Address field descriptions expanded/clarified.

Local SAPIC Structure flags length corrected to 4 from 2. Other offsets 5.2.10.13

adjusted accordingly. Incorrect reference to Processor declaration section.

_CS4 critical thermal trip point renamed to _ HOT 124,125

Corrected Embedded Controller method name - removed trailing numbers 14.2

LNOT (Logical Not) evaluation result correction. 16.2.3.4.2.26

ASL macro for fixed 1/O port descriptor listed incorrectly in previous section.

AML Root-Path only encoding for NamePath was missing as was NullName

16.2.45,16.2.4.6

17.2.1

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that is a
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft
off or sleeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep
and one for putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one-button model or a two-button
model. The one-button model has a single button that can be used as a power button or a sleep button as
determined by user settings. The two-button model has an easily accessible sleep button and a separate
power button. In either model, an override feature that forces the machine to the soft-off stateerresets-it
without OSPM interactioneensent is also needed to deal with various rare, but problematic, situations.

2.3 Device Power State Definitions

Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as a whole is in the Working state.

Error! No text of specified style in document. 5

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:

e Power consumption. How much power the device uses.

» Device context. How much of the context of the device is retained by the hardware. The OS is
responsible for restoring any lost device context (this may be done by resetting the device).

» Device driver. What the device driver must do to restore the device to full on.

* Restore time. How long it takes to restore the device to full on.

The device power states are defined below, although very generically. Many devices do not have all four
power states defined. Devices may be capable of several different low-power modes, but if there is no user-
perceptible difference between the modes only the lowest power mode will be used. The Device Class
Power Management Specifications, included in Appendix A of this specification, describe which of these
power states are defined for a given type (class) of device and define the specific details of each power state
for that device class. For a list of the available Device Class Power Management Specifications, see
“Appendix A: Device Class Specifications.”

D3 Off
Power has been fully removed from the device. The device context is lost when this state is entered, so
the OS software will reinitialize the device when powering it back on. Since device context and power
are lost, devices in this state do not decode their address lines. Devices in this state have the longest
restore times. All classes of devices define this state.

D2
The meaning of the D2 Device State is defined by each device class. Many device classes may not
define D2. In general, D2 is expected to save more power and preserve less device context than D1 or
DO0. Buses in D2 may cause the device to lose some context (for example, by reducing power on the
bus, thus forcing the device to turn off some of its functions).

D1
The meaning of the D1 Device State is defined by each device class. Many device classes may not
define D1. In general, D1 is expected to save less power and preserve more device context than D2.

DO Fully-On
This state is assumed to be the highest level of power consumption. The device is completely active
and responsive, and is expected to remember all relevant context continuously.

Compag/Intel/Microsoft/Phoenix/Toshiba

6 Advanced Configuration and Power Interface Specification

Table 2-2 Summary of Device Power States

Power Device Context
Device State | Consumption Retained Driver Restoration
DO - Fully- As needed for All None
On operation
D1 D0>D1>D2>D3 | >D2 <D2
D2 D0>D1>D2>D3 | <D1 >D1
D3 - Off 0 None Full initialization and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long
as they can automatically transparently switch between these modes from the software, without violating
the rules for the current Dx state the device is in. Low-power modes that adversely affect performance (in
other words, low speed modes) or that are not transparent to software cannot be done automatically in
hardware; the device driver must issue commands to use these modes.

4.1.1 Functional Fixed Hardware

ACPI defines the fixed hardware low-level interfaces as a means to convey to the system OEM the
minimum interfaces necessary to achieve a level of capability and quality for motherboard configuration
and system power management. Additionally, the definition of these interfaces, as well as others defined in
this specification, conveys to OS Vendors (OSVs) developing ACPI-compatible operating systems, the
necessary interfaces that operating systems must manipulate to provide robust support for system
configuration and power management.

While the definition of low-level hardware interfaces defined by ACPI 1.0 afforded OSPM
implementations a certain level of stability, controls for existing and emerging diverse CPU architectures
cannot be accommodated by this model as they can require a sequence of hardware manipulations
intermixed with native CPU instructions to provide the ACPI-defined interface function. In this case, an
ACPI-defined fixed hardware interface can be functionally implemented by the CPU manufacturer through
an equivalent combination of both hardware and software and is defined by ACPI 2.0 as Functional Fixed
Hardware.

In 1A-32-based systems, functional fixed hardware can be accommodated in an OS independent manner by
using System Management Mode (SMM) based system firmware. Unfortunately, the nature of SMM-based
code makes this type of OS independent implementation difficult if not impossible to debug. As such, this
implementation approach is not recommended. In some cases, Functional Fixed Hardware implementations
may require coordination with other OS components. As such, an OS independent implementation may not
be viable.

OS-specific implementations of functional fixed hardware can be implemented using technical information
supplied by the CPU manufacturer. The downside of this approach is that functional fixed hardware
support must be developed for each OS. In some cases, the CPU manufacturer may provide a software
component providing this support. In other cases support for the functional fixed hardware may be
developed directly by the OS vendor.

In ACPI 2.0, the hardware register definition has been expanded to allow registers to exist in address spaces
other than the System I/O address space. This is accomplished through the specification of an address space
ID in the register definition (see section 5.2.3.1, “Generic Address Structure,” for more information).

When specifically directed by the CPU manufacturer, the system firmware may¥e define an interface as
functional fixed hardware_by supplying;-the-system-firmware-supphies a special address space identifier,
FfixedHW (0x7F), in the address space ID field for register definitions. It is emphasized that functional
fixed hardware definitions may be declared in the ACPI system firmware only as indicated by the CPU
Manufacturer for specificaffected interfaces: as the use of functional fixed hardware requires specific
coordination with the OS vendor.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 7

Only certain ACPI-defined interfaces may be implemented using functional fixed hardware and only when
the interfaces are common across machine designs for example, systems sharing a common CPU
architecture that does not support fixed hardware implementation of an ACPI-defined interface. OEMs are
cautioned not to anticipate that functional fixed hardware support will be provided by OSPM differently on
a system-by-system basis. The use of functional fixed hardware carries with it a reliance on OS specific
software that must be considered. OEMs should consult OS vendors to ensure that specific functional fixed
hardware interfaces are supported by specific operating systems.

5.10verview of the System Description Table Architecture

The Root System Description Pointer (RSDP) structure is located in the system’s memory address space
and is setup by the BIOS. This structure contains the address of the Root System Description Table
(RSDT), which references other description tables that provide data to OSPM, supplying it with knowledge
of the base system’s implementation and configuration (see Figure 5-1).

In low memory space on

16 byte boundry Located in memory space (0 - 4G)
r_lﬁ A
(1
Root System Extended System
Description Pointer Description Table

RSD PTR

Pointer J
Pointer

contents contents

Entry

Located in system's memory address space

A
(A
Root System Extended System
Description Pointer Description Table
RSD PTR
Pointer
Pointer Entry
Entry | contents contents
Entry

Figure 5-1 Root System Description Pointer and Table

All system description tables start with identical headers. The primary purpose of the system description
tables is to define for OSPM various industry-standard implementation details. Such definitions enable
various portions of these implementations to be flexible in hardware requirements and design, yet still
provide OSPM with the knowledge it needs to control hardware directly.

Compag/Intel/Microsoft/Phoenix/Toshiba

8 Advanced Configuration and Power Interface Specification

The Root System Description Table (RSDT) points to other tables in memory. Always the first table, it
points to the Fixed ACPI Description table (FADT). The data within this table includes various fixed-
length entries that describe the fixed ACPI features of the hardware. The FADT table always refers to the
Differentiated System Description Table (DSDT), which contains information and descriptions for various
system features. The relationship between these tables is shown in Figure 5-2.

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure

FACS

Wake Vector
Shared Lock

Static info

FIRM Differ_er_n_iated
DSDT | Definition
Block

BLKs

Software
—» .
Hardware —
GPx_BLK
OEM-Specific
al PM2x_BLK
Ly PM1x_BLK
Located in
port space
L)
Y
Device I/O
Device Memory
_ PCI configuration

Embedded Controller space

Figure 5-2 Description Table Structures
OSPM finds the RSDP structure as described in section 5.2.4.1 (“Finding the RSDP on IA-PC Systems”) or

section 5.2.4.2 (“Fmqu the RSDP on EFI Enabled Svstems”) sea%ehes%heie#ewng—physre%range&en

When OSPM locates the structure, it looks at the physical address for the Root System Description Table.
The Root System Description Table starts with the signature “RSDT” and contains one or more physical
pointers to other system description tables that provide various information about the system. As shown in
Figure 5-1, there is always a physical address in the Root System Description Table for the Fixed ACPI
Description table (FADT).

5.2.5 System Description Table Header

All system description tables begin with the structure shown in Table 5-4. The Signature field determines
the content of the system description table. System description table signatures defined by this specification
are listed in Table 5-5.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 9

Table 5-4 DESCRIPTION_HEADER Fields

Byte Byte
Field Length | Offset Description

Signature 4 0 The ASCII string representation of the table identifier. Notice
that if OSPM finds a signature in a table that is not listed in
Table 5-5, OSPM ignores the entire table (it is not loaded into
ACPI namespace); OSPM ignores the table even though the
values in the Length and Checksum fields are correct.

Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. This field is used to record the size of the entire
table.

Revision 1 8 The revision of the structure corresponding to the signature field
for this table. Larger revision numbers are backward compatible
to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM Table ID 8 16 An OEM-supplied string that the OEM uses to identify the
particular data table. This field is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM
Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator ID 4 28 Vendor ID of utility that created the table. For tables containing
Definition Blocks, this is the ID for the ASL Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For tables containing
Definition Blocks, this is the revision for the ASL Compiler.

For OEMSs, good design practices will ensure consistency when assigning OEMID and OEM Table ID
fields in any table. The intent of these fields is to allow for a binary control system that support services can
use. Because many support functions can be automated, it is useful when a tool can programmatically
determine which table release is a compatible and more recent revision of a prior table on the same OEMID
and OEM Table ID.

Table 5-5 contains the system description table signatures defined by this specification. These system
description tables may be defined by ACPI or reserved by ACPI and declared by other industry
specifications. This allows OS and platform specific tables to be defined and pointed to by the
RSDT/XSDT as needed. For tables defined by other industry specifications, the ACPI specification acts as
gatekeeper to avoid collisions in table signatures. Table signatures will be reserved by the ACPI promoters
and posted independently of this specification on the ACPI Web site between specification revisions with
the goal of avoiding collisions.

Compag/Intel/Microsoft/Phoenix/Toshiba

10 Advanced Configuration and Power Interface Specification

Table 5-5 DESCRIPTION_HEADER Signatures

Signature Description Reference

“APIC” Multiple APIC Description Table Section 5.2.10.4, “Multiple APIC Description
Table”

“BOOT” Simple Boot Flag Table Microsoft Simple Boot Flag Specification
http://www.microsoft.com/HWDEV/
desinit/simp_bios.htm

“DBGP” Debug Port Table Microsoft Debug Port Specification
http://www.microsoft.com/hwdev/
newPC/debugspec.htm

“DSDT” Differentiated System Description Table Section 5.2.10.1, “Differentiated System
Description Table”

“ECDT” Embedded Controller Boot Resources Table | Section 5.2.13, “Embedded Controller Boot
Resources Table”

“ETDT” Event Timer Description Table IA-PC Multimedia Timers Specification

"FACP” Fixed ACPI Description Table (FADT) Section 5.2.8, “Fixed ACPI Description
Table”

“FACS” Firmware ACPI Control Structure Section 5.2.9, “Firmware ACPI Control
Structure”

“OEMXx” OEM Specific Information Tables OEM Specific tables. All table signatures
starting with “OEM” are reserved for OEM
use.

“PSDT” Persistent System Description Table Section 5.2.10.3, “Persistent System
Description Table”

“RSDT” Root System Description Table Section 5.2.6, “Root System Description
Table”

“SBST” Smart Battery Specification Table Section 5.2 12, “Smart Battery Table”

“SLIT” System Locality Information Table http://devresource.hp.com/devresource/Docs/
TechPapers/IA64/slit.pdf

“SPCR” Serial Port Console Redirection Table Microsoft Serial Port Console Redirection
Table http://www.microsoft.com/hwdev/
download/SerialPortRedir.zip

“SRAT” Static Resource Affinity Table Interim processor-memory proximity table
http://www.microsoft.com/HWDEV/design/S
RAT .htm

“SSDT” Secondary System Description Table Section 5.2.10.2, “Secondary System
Description Table”

“SPMI” Server Platform Management Interface Table | http://devresource.hp.com/devresource/Docs/
TechPapers/| A64/hpspmi.pdf

“XSDT” Extended System Description Table Section 5.2.7, “Extended System Description

Table”

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 11

Compag/Intel/Microsoft/Phoenix/Toshiba

12 Advanced Configuration and Power Interface Specification

5.2.8 Fixed ACPI Description Table (FADT)

The Fixed ACPI Description Table (FADT) defines various fixed hardware ACPI information vital to an
ACPI-compatible OS, such as the base address for the following hardware registers blocks:
PMla_EVT_BLK, PM1b_EVT_BLK, PMla_CNT_BLK, PM1b_CNT_BLK, PM2_CNT_BLK,

PM_TMR_BLK, GPEO_BLK, and GPE1_BLK.

The FADT also has a pointer to the DSDT that contains the Differentiated Definition Block, which in turn
provides variable information to an ACPI-compatible OS concerning the base system design.

All fields in the FADT that provide hardware addresses provide processor-relative physical addresses.

Table 5-8 Fixed ACPI Description Table (FADT) Format

Byte Byte
Field Length | Offset Description
Header
Signature 4 0 ‘FACP’. Signature for the Fixed ACPI Description Table.
Length 4 4 Length, in bytes, of the entire FADT.
Revision 1 8 3
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 For the FADT, the table ID is the manufacture model ID.
This field must match the OEM Table ID in the RSDT.
OEM Revision 4 24 OEM revision of FADT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For tables
containing Definition Blocks, this is the ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For tables
containing Definition Blocks, this is the revision for the
ASL Compiler.
FIRMWARE_CTRL 4 36 Physical memory address (0-4 GB) of the FACS, where
OSPM and Firmware exchange control information. See
section 5.2.6, “Root System Description Table,” for a
description of the FACS.
DSDT 4 40 Physical memory address (0-4 GB) of the DSDT.
Reserved 1 44 ACPI 1.0 defined this offset as a field named

INT_MODEL, which has been eliminated in ACPI 2.0.as
operating systems to date have had no use for this field.
New systems should set this field to zero but field values of
one are also allowed to maintain compatibility with ACPI
1.0.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 13

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Byte Byte

Field Length | Offset Description

Preferred_PM_Profile 1 45 This field is set by the OEM to convey the preferred power
management profile to OSPM. OSPM can use this field to
set default power management policy parameters during OS
installation.

Field Values:
0-Unspecified
1-Desktop
2—-Mobile
3-Workstation
4—Enterprise Server
5-SOHO Server
6—Appliance PC
>6-Reserved

SCI_INT 2 46 System vector the SCI interrupt is wired to in 8259 mode.
On systems that do not contain the 8259, this field contains
the Global System interrupt number of the SCI interrupt.
OSPM is required to treat the ACPI SCI interrupt as a
sharable, level, active low interrupt.

SMI_CMD 4 48 System port address of the SMI Command Port. During
ACPI OS initialization, OSPM can determine that the ACPI
hardware registers are owned by SMI (by way of the
SCI_EN bit), in which case the ACPI OS issues the
ACPI_ENABLE command to the SMI_CMD port. The
SCI_EN bit effectively tracks the ownership of the ACPI
hardware registers. OSPM issues commands to the
SMI_CMD port synchronously from the boot processor.
This field is reserved and must be zero on system that does
not support System Management mode.

ACPI_ENABLE 1 52 The value to write to SMI_CMD to disable SMI ownership

of the ACPI hardware registers. The last action SMI does to
relinquish ownership is to set the SCI_EN bit. During the
OS initialization process, OSPM will synchronously wait
for the transfer of SMI ownership to complete, so the ACPI
system releases SMI ownership as quickly as possible. This
field is reserved and must be zero on systems that do not
support Legacy Mode.

Compag/Intel/Microsoft/Phoenix/Toshiba

14 Advanced Configuration and Power Interface Specification

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

ACPI_DISABLE

1

53

The value to write to SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
OSPM using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor. This field is
reserved and must be zero on systems that do not support
Legacy Mode.

S4BI0S_REQ

54

The value to write to SMI_CMD to enter the S4BIOS state.
The S4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in S4BIOS_F indicates
SABIOS_REQ is not supported. (See Table 5-12.)

PSTATE_CNT

55

If non-zero, this field contains tFhe value OSPM writes to
the SMI_CMD register to assume processor performance
state control responsibility.

PMla EVT BLK

56

System port address of the PM1a Event Register Block. See
section 4.7.3.1, “PML1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PMla_EVT_ BLK field.

PM1b_EVT_BLK

60

System port address of the PM1b Event Register Block. See
section 4.7.3.1, “PML1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b EVT BLK field.

PMla CNT_BLK

64

System port address of the PM1a Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This is a
required field. This field is superseded in ACPI 2.0 by the
X_PM1la_CNT_BLK field.

PM1b_CNT_BLK

68

System port address of the PM1b Control Register Block.
See section 4.7.3.2, “PM1 Control Grouping,” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM1b_CNT_BLK field.

PM2_CNT_BLK

72

System port address of the PM2 Control Register Block.
See section 4.7.3.4, “PM2 Control (PM2_CNT),” for a
hardware description layout of this register block. This field
is optional; if this register block is not supported, this field
contains zero. This field is superseded in ACPI 2.0 by the
X_PM2_CNT_BLK field.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 15

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

PM_TMR_BLK

4

76

System port address of the Power Management Timer
Control Register Block. See section 4.7.3.3, “Power
Management Timer (PM_TMR),” for a hardware
description layout of this register block. This is a required
field. This field is superseded in ACPI 2.0 by the
X_PM_TMR_BLK field.

GPEO_BLK

80

System port address of General-Purpose Event 0 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACPI 2.0 by
the X_GPEO BLK field.

GPE1_BLK

84

System port address of General-Purpose Event 1 Register
Block. See section 5.2.8, “Fixed ACPI Description Table,”
for a hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero. This field is superseded in ACP1 2.0 by
the X_GPE1 BLK field.

PM1_EVT_LEN

88

Number of bytes decoded by PM1a_EVT_BLK and, if
supported, PM1b_EVT BLK. This value is > 4.

PM1_CNT_LEN

89

Number of bytes decoded by PM1a_CNT_BLK and, if
supported, PM1b CNT BLK. This value is > 21.

PM2_CNT_LEN

90

Number of bytes decoded by PM2_CNT_BLK. Support for
the PM2 register block is optional. If supported, this value
is = 1. If not supported, this field contains zero.

PM_TMR_LEN

91

Number of bytes decoded by PM_TMR_BLK. This field’s
value must be 4.

GPEO_BLK_LEN

92

Number of bytes decoded by GPEO_BLK. The value is a
non-negative multiple of 2.

GPE1_BLK_LEN

93

Number of bytes decoded by GPE1_BLK. The value is a
non-negative multiple of 2.

GPE1_BASE

94

Offset within the ACPI general-purpose event model where
GPE1 based events start.

CST_CNT

95

If non-zero, this field contains tF+he value OSPM writes to
the SMI_CMD register to indicate OS support for the CST
object and C States Changed notification.

P LVL2 LAT

96

The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P LVL3 LAT

98

The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

Compag/Intel/Microsoft/Phoenix/Toshiba

16 Advanced Configuration and Power Interface Specification

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

FLUSH_SIZE

2

100

If WBINVD=0, the value of this field is the number of flush
strides that need to be read (using cacheable addresses) to
completely flush dirty lines from any processor’s memory
caches. Notice that the value in FLUSH_STRIDE is
typically the smallest cache line width on any of the
processor’s caches (for more information, see the
FLUSH_STRIDE field definition). If the system does not
support a method for flushing the processor’s caches, then
FLUSH_SIZE and WBINVD are set to zero. Notice that
this method of flushing the processor caches has
limitations, and WBINVD=L1 is the preferred way to flush
the processors caches. This value is typically at least 2
times the cache size. The maximum allowed value for
FLUSH_SIZE multiplied by FLUSH_STRIDE is 2 MB for
a typical maximum supported cache size of 1 MB. Larger
cache sizes are supported using WBINVD=L1.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

FLUSH_STRIDE

102

If WBINVD=0, the value of this field is the cache line
width, in bytes, of the processor’s memory caches. This
value is typically the smallest cache line width on any of
the processor’s caches. For more information, see the
description of the FLUSH_SIZE field.

This value is ignored if WBINVD=1.

This field is maintained for ACPI 1.0 processor
compatibility on existing systems. Processors in new ACPI
2.0-compatible systems are required to support the
WBINVD function and indicate this to OSPM by setting
the WBINVD field = 1.

DUTY_OFFSET

104

The zero-based index of where the processor’s duty cycle
setting is within the processor’s P_CNT register.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 17

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

DUTY_WIDTH

1

105

The bit width of the processor’s duty cycle setting value in
the P_CNT register. Each processor’s duty cycle setting
allows the software to select a nominal processor frequency
below its absolute frequency as defined by:

THTL_EN=1

BF * DC/(ZDUTY—WlDTH)
Where:

BF-Base frequency

DC-Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH value of 0 indicates that processor duty
cycle is not supported and the processor continuously runs
at its base frequency.

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm
value. If this field contains a zero, then the RTC day of the
month alarm feature is not supported. If this field has a non-
zero value, then this field contains an index into RTC RAM
space that OSPM can use to program the day of the month
alarm. See section 4.7.2.4, “Real Time Clock Alarm,” for a
description of how the hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm
value. If this field contains a zero, then the RTC month of
the year alarm feature is not supported. If this field has a
non-zero value, then this field contains an index into RTC
RAM space that OSPM can use to program the month of
the year alarm. If this feature is supported, then the

DAY _ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
a zero, then the RTC centenary feature is not supported. If
this field has a non-zero value, then this field contains an
index into RTC RAM space that OSPM can use to program
the centenary field.

IAPC_BOOT_ARCH

109

IA-PC Boot Architecture Flags. See Table 5-10 for a
description of this field.

Reserved

111

Must be 0.

Flags

112

Fixed feature flags. See Table 5-9 for a description of this
field.

Compag/Intel/Microsoft/Phoenix/Toshiba

18 Advanced Configuration and Power Interface Specification

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

RESET_REG

12

116

The address of the reset register represented in Generic
Address Structure format (See section 4.7.3.6, “Reset
Register,” for a description of the reset mechanism.)

Note: Only System I/O space, System Memory space and
PCI Configuration space (bus #0) are valid for values for
Address_Space_ID. Also, Register_Bit_ Width must be 8
and Register Bit Offset must be 0.

RESET_VALUE

128

Indicates the value to write to the RESET_REG port to
reset the system. (See section 4.7.3.6, “Reset Register,” for
a description of the reset mechanism.)

Reserved

129

Must be 0.

X_FIRMWARE_CTRL

132

64bit physical address of the FACS.

X_DSDT

140

64bit physical address of the DSDT.

X_PM1a_EVT_BLK

12

148

Extended address of the PM1a Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PML1 Event Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_EVT BLK

12

160

Extended address of the PM1b Event Register Block,
represented in Generic Address Structure format. See
section 4.7.3.1, “PM1 Event Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM1a_CNT_BLK

12

172

Extended address of the PM1a Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PML1 Control Grouping,” for a hardware
description layout of this register block. This is a required
field.

X_PM1b_CNT_BLK

12

184

Extended address of the PM1b Control Register Block,
represented in Generic Address Structure format. See
section 4.7.3.2, “PML1 Control Grouping,” for a hardware
description layout of this register block. This field is
optional; if this register block is not supported, this field
contains zero.

X_PM2_CNT_BLK

12

196

Extended address of the Power Management 2 Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.4, “PM2 Control (PM2_CNT),”
for a hardware description layout of this register block. This
field is optional; if this register block is not supported, this
field contains zero.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 19

Table 5-8 Fixed ACPI Description Table (FADT) Format (continued)

Field

Byte
Length

Byte
Offset

Description

X_PM_TMR_BLK

12

208

Extended address of the Power Management Timer Control
Register Block, represented in Generic Address Structure
format. See section 4.7.3.3, “Power Management Timer
(PM_TMR),” for a hardware description layout of this
register block. This is a required field.

X_GPEO_BLK

12

220

Extended address of the General-Purpose Event 0 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

X_GPE1_BLK

12

232

Extended address of the General-Purpose Event 1 Register
Block, represented in Generic Address Structure format.
See section 5.2.8, “Fixed ACPI Description Table,” for a
hardware description of this register block. This is an
optional field; if this register block is not supported, this
field contains zero.

5.2.8.3 IA-PC Boot Architecture Flags

This set of flags is used by an OS to guide the assumptions it can make in initializing hardware on 1A-PC
platforms. These flags are used by an OS at boot time (before the OS is capable of providing an operating
environment suitable for parsing the ACPI namespace) to determine the code paths to take during boot. In
IA-PC platforms with reduced legacy hardware, the OS can skip code paths for legacy devices if none are
present. For example, if there are no ISA devices, an OS could skip code that assumes the presence of these
devices and their associated resources. These flags are used independently of the ACPI namespace. The
presence of other devices must be described in the ACPI namespace as specified in section 6,

“Configuration.”

These flags pertain only to IA-PC platforms. On other system architectures, the entire field should be set

to 0.

Compag/Intel/Microsoft/Phoenix/Toshiba

20 Advanced Configuration and Power Interface Specification

Table 5-10 Fixed ACPI Description Table Boot Architecture Flags

BOOT_ARCH

Bit

Bit

length offset

Description

LEGACY_DEVICES

1

0

If set, indicates that the motherboard supports user-visible
devices on the LPC or ISA bus. User-visible devices are
devices that have end-user accessible connectors (for
example, LPT port), or devices for which the OS must load
a device driver so that an end-user application can use a
device. If clear, the OS may assume there are no such
devices and that all devices in the system can be detected
exclusively via industry standard device enumeration
mechanisms (including the ACPI namespace).

8042

If set, indicates that the motherboard contains support for a
port 60 and 64 based keyboard controller, usually
implemented as an 8042 or equivalent micro-controller.

Reserved

14

23

Must be 0.

5.2.9 Firmware ACPI Control Structure (FACS)

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS reserves
for ACPI usage. This structure is passed to an ACPI-compatible OS using the FADT. For more information
about the FADT FIRMWARE_CTRL field, see section 5.2.8, “Fixed ACPI Description Table (FADT).”

The BIOS aligns the FACS on a 64-byte boundary anywhere within the system’s0-4G memory address
space. The memory where the FACS structure resides must not be reported as system
AddressRangeMemory in the system address map. For example, the E820 address map reporting interface
would report the region as AddressRangeReserved. For more information about system address map
reporting interfaces, see section 15, “System Address Map Interfaces.”

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 21

5.2.10 Definition Blocks

A Definition Block consists of data in AML format (see section 5.4 “Definition Block Encoding”) and
contains information about hardware implementation details in the form of AML objects that contain data,
AML code, or other AML objects. The top-level organization of this information after a definition block is
loaded is name-tagged in a hierarchical namespace.

OSPM *“loads” or “unloads” an entire definition block as a logical unit. OSPM will load a definition block
either as a result of executing the AML Load() or LoadTable() operator or encountering a table definition
during initialization. During initialization, OSPM loads the Differentiated System Description Table
(DSDT), which contains the Differentiated Definition Block, using the DSDT pointer retrieved from the
FADT. OSPM will load other definition blocks during initialization as a result of encountering Secondary
System Description Table (SSDT) definitions in the RSDT/XSDT. The DSDT and SSDT are described in
the following sections.

As mentioned, the AML Load() and LoadTable() operators make it possible for a Definition Block to load
other Definition Blocks, either statically or dynamically, where they in turn can either define new system
attributes or, in some cases, build on prior definitions. Although this gives the hardware the ability to vary
widely in implementation, it also confines it to reasonable boundaries. In some cases, the Definition Block
format can describe only specific and well-understood variances. In other cases, it permits implementations
to be expressible only by means of a specified set of “built in” operators. For example, the Definition Block
has built in operators for 1/O space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from 1/0 space, but that is not the goal of the definition block. Such a space is usually defined as
a “built in” operator.

Compag/Intel/Microsoft/Phoenix/Toshiba

22 Advanced Configuration and Power Interface Specification

Some AML operators perform simple functions, and others encompass complex functions. The power of
the Definition block comes from its ability to allow these operations to be glued together in numerous
ways, to provide functionality to OSPM.

The AML operators defined in this specification are intended to allow many useful hardware designs to be
easily expressed, not to allow all hardware designs to be expressed.

Note: To accommodate addressing beyond 32 bits, the integer type is expanded to 64 bits in ACPI 2.0, see
section 16.2.2, “ASL Data Types”. Existing ACPI definition block implementations may contain an
inherent assumption of a 32-bit integer width. Therefore, to maintain backwards compatibility, OSPM uses
the Revision field, in the header portion of system description tables containing Definition Blocks, to
determine whether integers declared within the Definition Block are to be evaluated as 32-bit or 64-bit
values. A Revision field value greater than or equal to 2 signifies that integers declared within the
Definition Block are to be evaluated as 64-bit values. The ASL writer specifies the value for the Definition
Block table header’s Revision field via the ASL DefinitionBlockTerm’s ComplianceRevision field. See
section 16.2.3.1, “Definition Block Term”, for more information. It is the responsibility of the ASL writer
to ensure the Definition Block’s compatibility with the corresponding integer width when setting the
ComplianceRevision field.

5.2.10.1 Differentiated System Description Table (DSDT)

The Differentiated System Description Table (DSDT) is part of the system fixed description. The DSDT is
comprised of a system description table header followed by data in Definition Block format. This
Definition Block is like all other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.10, “Definition Blocks,” for a description of Definition Blocks.

Table 5-13a Differentiated System Description Table Fields (DSDT)

Byte Byte
FEield Length | Offset Description
Header
Signature 4 0 ‘DSDT.’ Signature for the Differentiated System
Description Table.
Length 4 4 Length, in bytes, of the entire DSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4, “Definition Block
Encoding”)

5.2.10.2 Secondary System Description Table (SSDT)

Secondary System Description Tables (SSDT) are a continuation of the DSDT. The SSDT is comprised of
a system description table header followed by data in Definition Block format. There can be multiple
SSDTs present. OSPM first loads theAfterthe DSDT and then loadsis-toaded; each SSDT-is-leaded. This

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 23

allows the OEM to provide the base support in one table and add smaller system options in other tables. For
example, the OEM might put dynamic object definitions into a secondary table such that the firmware can
construct the dynamic information at boot without needing to edit the static DSDT. A SSDT can only rely
on the DSDT being loaded prior to it.

Table 5-13b Secondary System Description Table Fields (SSDT)

Byte | Byte
Eield Length | Offset Description
Header
Signature 4 0 ‘SSDT.” Signature for the Secondary System Description
Table.
Length 4 4 Length, in bytes, of the entire SSDT (including the header).
Revision 1 8 2
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID
OEM Table ID 8 16 The manufacture model ID.
OEM Revision 4 24 OEM revision of DSDT for supplied OEM Table ID.
Creator ID 4 28 Vendor ID for the ASL Compiler.
Creator Revision 4 32 Revision number of the ASL Compiler.
Definition Block n 36 n bytes of AML code (see section 5.4 , “Definition Block
Encoding”)

5.2.10.5 Processor Local APIC

When using the APIC interrupt model, each processor in the system is required to have a Processor Local
APIC record and an ACPI Processor object. OSPM does not expect the information provided in this table
to be updated if the processor information changes during the lifespan of an OS boot. While in the sleeping
state, processors are not allowed to be added, removed, nor can their APIC ID or Flags change. When a
processor is not present, the Processor Local APIC information is either not reported or flagged as disabled.

Table 5-17 Processor Local APIC Structure

Byte Byte

Field Length | Offset Description

Type 1 0 0-Processor Local APIC structure

Length 1 1 8

ACPI Processor ID 1 2 The Processorld for which this processor is listed in the
ACPI Processor declaration operator. For a definition of the
Processor operator, see section 16.2.3.3.1.176, “Processor
(Declare Processor).”

APIC ID 1 3 The processor’s local APIC ID.

Flags 4 4 Local APIC flags. See Table 5-18 for a description of this
field.

Compag/Intel/Microsoft/Phoenix/Toshiba

24 Advanced Configuration and Power Interface Specification

5.2.10.11 Local APIC Address Override Structure

This optional structure supports 64-bit systems by providing an overrides of the physical address of the
local APIC in the MADT 'stable header, which is defined as a 32-bit field-using-the-Generic-Address

Structure.

If defined, OSPM must use the address specified in this structure for all local APICs (and local SAPICs),
rather than the address contained in the MADT’s table header. Only one Local APIC Address Override
Structure may be defined.

Table 5-24 Local APIC Address Override Structure

Byte Byte
Field Length | Offset Description
Type 1 0 5-Local APIC Address Override Structure
Length 1 1 126
Reserved 2 2 Reserved (must be set to zero)
Local APIC Address | 8 4 Physical address of Local APIC

5.2.10.12 I/O SAPIC Structure

The 1/0 SAPIC structure is very similar to the I/0 APIC structure. If both I/0 APIC and 1/0 SAPIC
structures exist for a specific APIC ID, the information in the 1/0O SAPIC structure must be used.

The I/O SAPIC structure uses the I/0_APIC_ID field as defined in the I/0 APIC table. The Vector_Base
field remains unchanged but has been moved. The I/0O APIC address has been deleted. A new address and
reserved field have been added.

Table 5-25 1/O SAPIC Structure
Byte Byte

Field Length | Offset Description

Type 1 0 6-1/0 SAPIC Structure

Length 1 1 1620

I/0 APIC ID 1 2 1/0 SAPIC ID

Reserved 1 3 Reserved (must be zero)

Global System 4 4 The global system interrupt number where this I/0 SAPIC’s

Interrupt Base interrupt inputs start. The number of interrupt inputs is
determined by the 1/0 SAPIC’s Max Redir Entry
register.Global-System-taterrupt Base

I/0 SAPIC Address 8 8 The 64-bit physical address to access this I/0O SAPIC. Each
1/0 SAPIC resides at a unique address.Physical-addressfor
HO-SAPIC

If defined, OSPM must use the information contained in the 1/0O SAPIC structure instead of the information
from the 1/0 APIC structure.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 25

If both 1/0 APIC and an I/O SAPIC structures exist in an MADT, the OEM/BIOS writer must prevent
“mixing” I/0 APIC and I/O SAPIC addresses. This is done by ensuring that there are at least as many 1/0
SAPIC structures as I/0 APIC structures and that every 1/0 APIC structure has a corresponding 1/0 SAPIC
structure (same APIC ID).

5.2.10.13 Local SAPIC Structure

The Processor local SAPIC structure is very similar to the processor local APIC structure. When using the
SAPIC interrupt model, each processor in the system is required to have a Processor Local SAPIC record
and an ACPI Processor object. OSPM does not expect the information provided in this table to be updated
if the processor information changes during the lifespan of an OS boot. While in the sleeping state,
processors are not allowed to be added, removed, nor can their SAPIC ID or Flags change. When a
processor is not present, the Processor Local SAPIC information is either not reported or flagged as
disabled.

Table 5-26 Processor Local SAPIC Structure

Byte Byte
Field Length | Offset Description
Type 1 0 7—Processor Local SAPIC structure
Length 1 1 128
ACPI Processor ID 12 2 The Processor Id listed in the processor object. For a

definition of the Processor object, see section
16.2.3.3.1.176, “Processor (Declare Processor).”

FlagsLocal SAPICID | 12 34 Loen SARIC tnos SeeTable B8 orndoserntionorihis
field-The processor’s local SAPIC ID

Local SAPIC EID 1 46 The processor’s local SAPIC EID

Reserved 3 Reserved (must be set to zero)

[&;]

Lecnle o 41 Fhe-processor’s-local SAPICEIBLocal SAPIC flags. See
ElBFlags Table 5-18 for a description of this field.

[ee]
+~

5.6.2.2 General-Purpose Event Handling

When OSPM receives a general-purpose event, it either passes control to an ACPl-aware driver, or uses an
OEM-supplied control method to handle the event. An OEM can implement up to 128 general-purpose
event inputs in hardware per GPE block, each as either a level or edge event. It is also possible to
implement a single 256-pin block as long as it’s the only block defined in the system.

An example of a general-purpose event is specified in section 4, “ACPI Hardware Specification,” where
EC_STS and EC_EN bits are defined to enable OSPM to communicate with an ACPl-aware embedded
controller device driver. The EC_STS bit is set when either an interface in the embedded controller space
has generated an interrupt or the embedded controller interface needs servicing. Notice that if a platform
uses an embedded controller in the ACPI environment, then the embedded controller’s SCI output must be
directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable
bits in Operational Regions (1/0 space, memory space, PCI configuration space, or embedded controller
space). For more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in
section 4.7.4.1, “General-Purpose Event Register Blocks.”

OSPM manages the bits in the GPEx blocks directly, although the source to those events is not directly
known and is connected into the system by control methods. When OSPM receives a general-purpose event
(the event is from a GPEx_BLK STS bit), OSPM does the following:

1. Disables the interrupt source (GPEx_BLK EN bit).

Compag/Intel/Microsoft/Phoenix/Toshiba

26 Advanced Configuration and Power Interface Specification

2. Ifan edge event, clears the status bit.
3. Performs one of the following:
» Dispatches to an ACPl-aware device driver.
* Queues the matching control method for execution.
* Manages a wake event using device _PRW objects.
4. If alevel event, clears the status bit.
5. Enables the interrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform
might generate by executing a control method that matches the event. For GPE events, OSPM will execute
the control method of the name _GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E” for an edge event or ‘L’ for a level
event). The event values for status bits in GPEO_BLK start at zero (_T0O0) and end at the

(GPEO_BLK LEN_/2) - 1. The event values for status bits in GPE1_BLK start at GPE1_BASE and end at
GPE1_BASE + (GPE1_BLK_LEN/2)-1. GPEO_BLK_LEN, GPE1_BASE, and GPE1_BLK_LEN are all
defined in the FADT.

For OSPM to manage the bits in the GPEx_BLK blocks directly:

* Enable bits must be read/write.

» Status bits must be latching.

e Status bits must be read/clear, and cleared by writing a “1” to the status bit.

5.5 Using the ACPI Control Method Source Language

OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL)
and use a translator to produce the byte stream encoding described in section 5.4. For example, the ASL
statements that produce the example byte stream shown in that earlier section are shown in the following
ASL example. For a full specification of the ASL statements, see section 16, “ACPI Source Language
Reference.”

/1 ASL Exanpl e
DefinitionBl ock (

"forbook.am ", /1 Qutput Filenanme

" DSDT", /1 Signature

0x102, /] DSDT Conpliance Revision
"CEM', /1 OEM D

"f orbook", /1 TABLE ID

0x1000 /1 CEM Revi si on

{ /Il start of definition block
OperationRegion(\A O System O, 0x125, 0x1)
Fiel d(\G@ O ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(_SB) { /1 start of scope
Devi ce(PCl 0) { /'l start of device

Power Resour ce(FETO, 0, 0) { /1 start of pw
Met hod(_ON) {
Store (Ones, CT01) /] assert power
Sl eep (30) /1 wait 30ms

}
Met hod(_OFF) {
Store (Zero, CT01) /] assert reset#

}
Met hod(_STA) {
Return (CT01)

}
} // end of pw
} // end of device
} // end of scope
} // end of definition block

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document.

5.6.5 Defined Generic Objects and Control Methods

The following table lists all of the generic object and control methods defined in this specification and
provides a reference to the defining section of the specification.

Table 5-43 Defined Generic Object and Control Methods

27

Object Description Reference
_Acx Thermal Zone object that returns active cooling policy threshold values in 12.31
tenths of degrees Kelvin.
_ADR Device object that evaluates to a device’s address on its parent bus. For the 6.1.1
display output device, this object returns a unique ID. (B.5.1, “_ADR -
Return the Unique ID for this Device.”)
_ALx Thermal zone object containing a list of cooling device objects. 12.32
_ALN Resource data type reserved field name 16.2.4
_ASI Resource data type reserved field name 16.2.4.16

Compag/Intel/Microsoft/Phoenix/Toshiba

28 Advanced Configuration and Power Interface Specification

Table 5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_BAS Resource data type reserved field name 16.2.4
_BBN PCI bus number setup by the BIOS 6.5.5
_BCL Returns a buffer of bytes indicating list of brightness control levels B.5.2
supported.
_BCM | Sets the brightness level of the built-in display output device. B.5.3
_BDN | Correlates a docking station between ACPI and legacy interfaces. 6.5.3
_BFS Control method executed immediately following a wake event. 7.3.1
_BIF Control Method Battery information object 11.2.2.1
_BM Resource data type reserved field name 16.2.4
_BST Control Method Battery status object 11.2.2.2
_BTP Sets Control Method Battery trip point 11.2.2.3
_CID Device identification object that evaluates to a device’s Plug and Play 6.1.2
Compatible ID list.
_CRS Device configuration object that specifies a device’s current resource 6.2.1
settings, or a control method that generates such an object.
_CRT Thermal zone object that returns critical trip point in tenths of degrees 12.3.3
Kelvin.
_CST Processor power state declaration object 8.3.2
_DCK Indicates that the device is a docking station. 6.5.2
_DCs Returns the status of the display output device. B.5.5
_DDC | Returns the EDID for the display output device B.5.4
_DDN | Object that associates a logical software name (for example, COM1) witha | 6.1.3
device.
_DEC Resource data type reserved field name 16.2.4
_DGS Control method used to query the state of the output device. B.5.6
_DIS Device configuration control method that disables a device. 6.2.2
_DMA | Object that specifies a device’s current resources for DMA transactions. 6.2.3
_DOD | Control method used to enumerate devices attached to the display adapter. B.4.2
_DOS Control method used to enable/disable display output switching. B.4.1
_DSS Control method used to set display device state. B.5.7
_Exx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.2.35:3
_EC Control Method used to define the offset address and Query value of an 13.12
SMB-HC defined within an embedded controller device.
_EDL Device removal object that returns a packaged list of devices that are 6.3.1
dependent on a device.
_EJx Device insertion/removal control method that ejects a device. 6.3.3

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document.

Table 5-43 Defined Generic Object and Control Methods (continued)

29

Object [Description Reference

_EJD Device removal object that evaluates to the name of a device object upon | 6.3.2
which a device is dependent. Whenever the named device is ejected, the
dependent device must receive an ejection notification.

_FDE Object that indicates the presence or absence of floppy disks. 10.9.1
_FDI Obiject that returns floppy drive information. 10.9.2
_FDM Control method that changes the mode of floppy drives. 10.9.3
_FIX Object used to provide correlation between the fixed hardware register 6.2.4

blocks defined in the FADT and the devices that implement these fixed
hardware registers.

_GL OS-defined Global Lock mutex object 5.7.1

_GLK Indicates the need to acquire the Global Lock, must be acquired when 6.5.7
accessing the device.

_GPD Control method that returns which VGA device will be posted at boot B.4.4

_GPE 1. General-Purpose Events root name space 5.3.14

2. Object that returns the SCI interrupt within the GPx_STS register that | 13.11
is connected to the EC.

_GRA Resource data type reserved field name. 16.2.4

_GTF IDE device control method to get the Advanced Technology Attachement | 10.8.1
(ATA) task file needed to re-initialize the drive to bootup defaults.

_GTM™M IDE device control method to get the IDE controller timing information. 10.8.2

_GTS Control method executed just prior to setting the sleep enable (SLP_EN) 7.3.3

bit.
_HE Resource data type reserved field name 16.2.4
_HID Device identification object that evaluates to a device’s Plug and Play 6.1.4
Hardware ID.

_HPP An object that specifies the Cache-line size, Latency timer, SERR enable, | 6.2.5
and PERR enable values to be used when configuring a PCI device
inserted into a hot-plug slot or initial configuration of a PCI device at
system boot.

_INI Device initialization method that performs device specific initialization. 6.5.1

_INT Resource data type reserved field name 16.2.4
_IRC Power management object that signifies the device has a significant inrush | 7.2.11

current draw.
_Lxx Control method executed as a result of a general-purpose event. 5.6.2.2,
5.6.2.2.35:3

_LCK Device insertion/removal control method that locks or unlocks a device. 6.3.4

_LEN Resource data type reserved field name 16.2.4
_LID Object that returns the status of the Lid on a mobile system. 10.3.1

_LL Resource data type reserved field name 16.2.4

Compag/Intel/Microsoft/Phoenix/Toshiba

30 Advanced Configuration and Power Interface Specification

Table 5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_MAF | Resource data type reserved field name 16.2.4
_MAT | Object evaluates to a buffer of MADT APIC Structure entries. 6.2.6
_MAX | Resource data type reserved field name 16.2.4
_MEM | Resource data type reserved field name 16.2.4
_MIF Resource data type reserved field name 16.2.4
_MIN Resource data type reserved field name 16.2.4
_MSG | System indicator control that indicates messages are waiting. 10.1.2
_OFF Power resource object that sets the resource off. 7.1.2
_ON Power resource object that sets the resource on. 7.13
_0Ss Object that evaluates to a string that identifies the operating system. 5.7.2
_PCL Power source object that contains a list of devices powered by a power 11.3.2
source.
_PCT Processor performance control object 8.3.3.1
_PIC Control method that conveys interrupt model in use to the system firmware. | 5.8.1
_PPC Control method used to determine number of performance states currently 8.3.3.3
supported by the platform.
_PR ACPI 1.0 Processor Namespace 53.1
_PRO Power management object that evaluates to the device’s power 7.2.6
requirements in the DO device state (device fully on).
_PR1 Power management object that evaluates to the device’s power 7.2.7
requirements in the D1 device state. Only devices that can achieve the
defined D1 device state according to its given device class would supply
this level.
_PR2 Power management object that evaluates to the device’s power 7.2.8
requirements in the D2 device state. Only devices that can achieve the
defined D2 device state according to its given device class would supply
this level.
_PRS Device configuration object that specifies a device’s possible resource 6.2.7
settings, or a control method that generates such an object.
_PRT An object that specifies the PCI interrupt Routing Table. 6.2.8
_PRW | Power management object that evaluates to the device’s power 7.29
requirements in order to wake the system from a system sleeping state.
_PSO Power management control method that puts the device in the DO device 7.2.1
state. (device fully on).
_Ps1 Power management control method that puts the device in the D1 device 7.2.2
state.
_PS2 Power management control method that puts the device in the D2 device 7.2.3
state.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document.

Table 5-43 Defined Generic Object and Control Methods (continued)

31

Object Description Reference
_PS3 Power management control method that puts the device in the D3 device 7.2.4
state (device off).
_PSC Power management object that evaluates to the device’s current power 7.2.5
state.
_PSL Thermal zone object that returns list of passive cooling device objects. 12.34
_PSR Power source object that returns present power source device. 1131
_PSS Object indicates the number of supported processor performance states. 8.3.3.2
_PSv Thermal zone object that returns Passive trip point in tenths of degrees 12.35
Kelvin.
_PSW Power management control method that enables or disables the device’s 7.2.10
wake function.
_PTC Object used to define a processor throttling control register. 8.3.1
_PTS Control method used to prepare to sleep. 7.3.2
_PXM Obiject used to describe proximity domains within a machine. 6.2.9
_Qxx Embedded Controller Query control method 5.6.2.2.3
_RBO Resource data type reserved field name 16.2.4
_RBW Resource data type reserved field name 16.2.4
_REG Notifies AML code of a change in the availability of an operation region. | 6.5.4
_REV Revision of the ACPI specification that OSPM implements. 573
_RMV Device insertion/removal object that indicates that the given device is 6.3.5
removable.
_RNG Resource data type reserved field name 16.2.4
_ROM Control method used to get a copy of the display devices’ ROM data. B.4.3
_RW Resource data type reserved field name 16.2.4
_SO Power management package that defines system \ SO state mode. 7.34.1
_S1 Power management package that defines system \ S1 state mode. 7.34.2
_S2 Power management package that defines system \ S2 state mode. 7.34.3
_S3 Power management package that defines system \ S3 state mode. 7344
_S4 Power management package that defines system \ S4 state mode. 7.34.5
_S5 Power management package that defines system \ S5 state mode. 7.3.4.6
_S1D Highest D-state supported by the device in the S1 state. 7.2.12
_S2D Highest D-state supported by the device in the S2 state. 7.2.13
_S3D Highest D-state supported by the device in the S3 state. 7.2.14
_S4D Highest D-state supported by the device in the S4 state. 7.2.15
_SB System bus scope 53.1

Compag/Intel/Microsoft/Phoenix/Toshiba

32 Advanced Configuration and Power Interface Specification

Table 5-43 Defined Generic Object and Control Methods (continued)

Object | Description Reference
_SBS Smart Battery object that returns Smart Battery configuration. 11.1.2
_SCP Thermal zone object that sets user cooling policy (Active or Passive). 12.3.76
_SEG Bus identification object that evaluates to a bus’s segment number. 6.5.6
_SHR Resource data type reserved field name 16.4.2
Sl System indicators scope 5.3.1
_SIz Resource data type reserved field name 16.4.2
_SPD Control method used to update which video device will be posted at boot. | B.4.5
_SRS Device configuration control method that sets a device’s settings. 6.2.10
_SST System indicator control method that indicates the system status. 10.1.1
_STA 1. Device insertion/removal control method that returns a device’s status. 6.3.6
2. Power resource object that evaluates to the current on or off state of the | 7.1.4
Power Resource.
_STM IDE device control method used to set the IDE controller transfer timings. | 10.8.3
_STR Obiject evaluates to a Unicode string to describe a device. 6.1.5
_SUN Object that evaluates to the slot unique ID number for a slot. 6.1.6
T X Reserved for use by the ASL compiler. 16.2.1.1
_TC1 Thermal zone object that contains thermal constant for Passive cooling. 12.3.7
_TC2 Thermal zone object that contains thermal constant for Passive cooling. 12.3.8
_TMP Thermal zone object that returns current temperature in tenths of degrees 12.3.9
Kelvin.
_TRA Resource data type reserved field name 16.4.2
_TRS Resource data type reserved field name 16.4.2
_TSP Thermal zone object that contains thermal sampling period for Passive 12.3.10
cooling.
_TTP Resource data type reserved field name 16.4.2
_TYP Resource data type reserved field name 16.4.2
VA ACPI 1.0 thermal zone scope 5.3.1
_TzD Obiject evaluates to a package of device names associated with a Thermal 12.3.11
Zone.
_TzZP Thermal zone polling frequency in tenths of seconds. 12.3.12
_UID Device identification object that specifies a device’s unique persistent ID, | 6.1.7
or a control method that generates it.
_VPO Returns 32-bit integer indicating the video post options. B.4.6
_WAK | Power management control method run once system is awakened. 7.3.5

6.4.3.7 Generic Register Descriptor (Type 1, Large Item Name 0x2)

The generic register descriptor describes the location of a fixed width register within any of the ACPI-
defined address spaces.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document.

Table 6-32 Generic Register Descriptor Definition

Offset

Field Name, ASL Field Name

Definition

Byte 0

Generic register descriptor

Value = 10000010B (Type = 1, Large item name =
0x2)

Byte 1

Length, bits[7:0]

Value = 000010111008 (121)

Byte 2

Length, bits[15:8]

Value = 00000000B (0)

Byte 3

Address Space ID, _ASI

The address space where the data structure or
register exists.
Defined values are:

0-System Memory
1-System 1/O

2-PCI Configuration Space
3-Embedded Controller
4-SMBus

0x7F-Functional Fixed Hardware

Byte 4

Register Bit Width, RBW

Indicates the register width in bits.

Byte 5

Register Bit Offset, RBO

Indicates the offset to the start of the register in bits
from the Register Address.

Compag/Intel/Microsoft/Phoenix/Toshiba

33

34 Advanced Configuration and Power Interface Specification

Table 6-32 Generic Register Descriptor Definition (continued)

Offset Field Name, ASL Field Name |Definition
Byte 6 Reserved Must be 0.
Byte 76 Register Address, _ADR Register Address
bits[7:0]
Byte 87 Register Address, _ADR
bits[15:8]
Byte 98 Register Address, _ADR
bits[23:16]
Byte 109 [Register Address, _ADR
bits[31:24]
Byte 110 [Register Address, ADR
bits[39:32]
Byte 121 [Register Address, ADR
bits[47:40]
Byte 132 [Register Address, _ADR
bits[55:48]
Byte 143 [Register Address, _ADR
bits[63:56]

See section 16.2.4.16, “ASL Macro for Generic Register Descriptor,” for a description of the ASL macro
that creates a Generic Register descriptor.

6.5.1 _INI (Init)

_INI is a device initialization object that performs device specific initialization. This control method is
located under a device object and is run only when OSPM loads a description table. There are restrictions
related to when this method is called and governing writing code for this method. The _INI method must
only access Operation Regions that have been indicated to available as defined by the _REG method. The
_REG method is described in section 6.5.4, “_REG (Region).” This control method is run before _ADR,
_CID, _HID, _SUN, and _UID are run.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 35

If the STA method indicates that the device is present, OSPM will evaluate the __INI for the device (if the
_INI method exists) and will examine each of the children of the device for _INI methods. If the STA
method indicates that the device is not present, OSPM will not run the _INI and will not examine the
children of the device for _INI methods. If the device becomes present after the table has already been
loaded, OSPM will not evaluate the _INI method, nor examine the children for _INI methods.

The _INI control method is generally used to switch devices out of a legacy operating mode. For example,
B10Ses often configure CardBus controllers in a legacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

In addition to device initialization, OSPM unconditionally evaluates an INI object under the \ SB
namespace, if present, at the beginning of namespace initialization.

12.4 Thermal Zone Object Requirements

While not all thermal zone objects are required to be present in each thermal zone defined in the

namespace, OSPM levies conditional requirements for the presence of specific thermal zone objects based

on the definition of other related thermal zone objects. These requirements are outlined below:

e All thermal zones must contain the _TMP object.

» Athermal zone must define at least one trip point: _CRT, HOTES4, ACX, or PSV.

e If _ACx is defined then an associated _ALx must be defined (e.g. defining _ACO requires _ALO also
be defined).

e If _PSVis defined then either PSL or _TZD must be defined. PSL and _TZD may both be defined.

e If _PSL is defined then:

If a performance control register is defined (via either P_BLK or _PTC) for a processor defined in _PSL

then _TC1, TC2, and TSP must be defined.

If a performance control register is not defined (via either P_BLK or _PTC) for a processor defined in

_PSL then the processor must support processor performance states (in other words, the processor’s

processor object must include _PCT, PSS, and _PPC).

e If _PSVisdefined and PSL is not defined (in other words, only _TZD is defined) then at least one
device inthe _TZD device list must support device performance states.

e _SCPis optional.

e _TZD is optional outside of the _PSV requirement outlined above.

e If _HOTECS4 is defined then the system must support the S4 sleeping state.

12.5 Thermal Zone Examples

12.5.1 Example: The Basic Thermal Zone

The following ASL describes a basic configuration where the entire system is treated as a single thermal
zone. Cooling devices for this thermal zone consist of a processor and one single-speed fan. This is an
example only.

Notice that this thermal zone object (TZ0) is defined in the _SB scope. Thermal zone objects should
appear in the namespace under the portion of the system that comprises the thermal zone. For example, a
thermal zone that is isolated to a docking station should be defined within the scope of the docking station
device. Besides providing for a well-organized namespace, this configuration allows OSPM to dynamically
adjust its thermal policy as devices are added or removed from the system.

Scope(_SB) {
Processor (

CPWO,

1, /1 uni que nunber for this processor
0x110, /1 system | O address of Pblk Registers
0x06 /1 length in bytes of PBlk

) {1

Compag/Intel/Microsoft/Phoenix/Toshiba

36 Advanced Configuration and Power Interface Specification

Scope(_SB. PCl 0. | SA0) {
Devi ce(EQQ) {
Name(_HI D,

/1 current

Nane(_CRS,

El SAI D(" PNPOC09")) /1 1D for this EC
resource description for this EC

Resour ceTenpl ate() {
| (Decodel6, 0x62, 0x62, 0, 1)
| O(Decodel6, 0x66, 0x66, 0, 1)

1)

Name(_GPE, 0) /! GPE index for this EC

/Il create EC s region and field for thernal
Oper at i onRegi on(ECO, EnbeddedControl ,

support
0, OxXFF)

Fi el d(ECO, ByteAcc, Lock, Preserve) {
MODE, 1, /1 thernal policy (quiet/perform
FAN, 1, /1 fan power (on/off)
, 6, Il reserved
TMP, 8, /1 current tenp
AQO, 8, /1 active cooling tenp (fan high)
, 8, /1l reserved
PSV, 8, /'l passive cooling tenp
Hores4 8, /1 critical S4 tenp
CRT, 8 /1 critical tenp
}

/1 following is a nethod that OSPM wi | |
/it
Met hod(_Q07)

Notify (_SB. PCI 0.1 SAO. ECO. TZ0, 0x80)
} /1 end of Notify method

schedul e after

/1 fan cooling on/off - engaged at ACO tenp

Power Resour ce(PFAN, 0, 0) {
Met hod(_STA) { Return (_SB. PCI 0.1 SA0. ECO. FAN) }
Met hod(_ON) { Store (One,
Met hod(_OFF) { Store (Zero,

}

/1 Create FAN device object
Device (FAN) {
/1 Device ID for the FAN
Name(_H D, EI SAI D(" PNPOCOB"))
/1 list power resource for the fan
Nane(_PRO, Package(){PFAN})

}

/1 create a thernal
Ther mal Zone (TZ0) {
Met hod(_TMP) { Return (_SB.PC 0.1 SA0. ECO. TMP)} //
Met hod(_AQ0) { Return (_SB.PCI 0.1 SA0. ECO. ACD) } //
Nanme(_ALO, Package(){_SB. PCl 0. | SAQ. ECO. FAN}) /1
Met hod(_PSV) { Return (_SB.PCl 0.1SA0. EC0. PSV) } //
Nane(_PSL, Package (){_SB. CPU0}) /1

zone

Met hod(_HOTES4) { Return (_SB. PCl 0. | SAO. ECO. HOTES4) }

tenp
Met hod(_CRT) { Return (_SB.PCl 0.1 SA0. ECO.CRT) } //
Met hod(_SCP, 1) { Store (Argl,

Name(_TCL, 4) /1
Name(_TC2, 3) /1
Nare(_TSP, 150) 11
Narme(_TzP, 0) 11

} // end of TZ0

} // end of ECO
} // end of _SB.PClO0.|SA0 scope-

} // end of _SB scope

Compag/Intel/Microsoft/Phoenix/Toshiba

_SB. PCI 0. | SAO. ECD. FAN) }
_SB. PCI 0. | SAO. ECD. FAN) }

receives an SCl and queries the EC to receive value 7

/'l check power state
/1 turn on fan
/1 turn off fan

get current tenp

fan high tenp

fan is act cool dev
passi ve cooling tenp
passi ve cooling devices
/1 get critical $4

get critical tenp

\ _SB. PCI 0.1 SA0. ECO. MODE) } // set cooling node

bogus exanpl e const ant
bogus exanpl e const ant
passi ve sanpling = 15 sec
pol ling not required

Error! No text of specified style in document. 37

12.5.2 Example: Multiple-Speed Fans

The following ASL describes a thermal zone consisting of a processor and one dual-speed fan. As with the
previous example, this thermal zone object (TZ0) is defined in the _SB scope and represents the entire
system. This is an example only.

Scope(_SB) {
Processor (

CPUO,

1, /1 unique nunber for this processor
0x110, /1 system | O address of Pblk Registers
0x06 /1 length in bytes of PBlk

) {1}

Scope(_SB. PCl 0. | SA0) {
Devi ce(ECD) {

Name(_H D, EI SAI D(" PNPOC09")) /] IDfor this EC
/1 current resource description for this EC
Nane(_CRS,

ResourceTenpl ate() {
| O(Decodel6, 0x62, 0x62, 0, 1)
| (Decodel6, 0x66, 0x66, 0, 1)

1)
Name(_GPE, 0) /1 GPE index for this EC

/l create EC s region and field for thernal support
Oper at i onRegi on(ECO, EnbeddedControl, 0, OxFF)
Fi el d(ECO, ByteAcc, Lock, Preserve) {
MODE, , /1 thermal policy (quiet/perform
FANO, , /1 fan strength high/off
FAN1, , /1 fan strength | ow of f
, /1l reserved
, /1 current tenp

%‘
[ocieolocioold) I il o)

ACO, , /1 active cooling tenp (high)
ACL, , /1 active cooling tenp (low)
PSV, , /| passive cooling tenp
Hores4 8, /1l critical S4 tenp

CRT, 8 /1 critical tenp

}

/1l following is a nethod that OSPMw || schedule after it
/'l receives an SCl and queries the EC to receive value 7
Met hod(_Q07) {

Notify (_SB. PClI 0.1 SAO. ECO. TZ0O, 0x80)
} end of Notify nethod

/1 fan cooling node high/off - engaged at ACO tenp

Power Resour ce(FN10, 0, 0) {
Met hod(_STA) { Return (_SB. PCI 0.1 SAO. ECO. FANO) } /'l check power state
Met hod(_ON) { Store (One, _SB.PCI0.|SA0. ECO. FANO) } // turn on fan at high
Met hod(_OFF) { Store (Zero, _SB.PCl 0.1 SA0. ECO. FANO) }// turn off fan

}

/1 fan cooling node | ow of f - engaged at ACl tenp

Power Resour ce(FN11, 0, 0) {
Met hod(_STA) { Return (_SB. PCl 0.1 SAO. ECO. FAN1) } /'l check power state
Met hod(_ON) { Store (One, _SB.PCI0.1SA0. ECO. FANL) } // turn on fan at |ow
Met hod(_OFF) { Store (Zero, _SB.PClI 0.1 SA0. ECO. FAN1) }// turn off fan

Compag/Intel/Microsoft/Phoenix/Toshiba

38 Advanced Configuration and Power Interface Specification

}

Following is a single fan with two speeds. This is represented
by creating two |ogical fan devices. Wen FN2 is turned on then
the fan is at a | ow speed. Wen FNL and FN2 are both on then
the fan is at high speed.

Create FAN device object FNL

Devi ce (FN1) {

}
/1

/1 Device ID for the FAN
Name(_HI D, EI SAl D(" PNPOCOB"))
Nane(_PRO, Package(){FN10, FN11})

Create FAN devi ce object FN2

Device (FN2) {

}
11

/1 Device ID for the FAN
Nane(_HI D, ElI SAl D(" PNPOCOB"))
Nane(_PRO, Package(){FN10})

create a thernmal zone

Ther mal Zone (TZ0) {

Met hod(_TMP) { Return (_SB.PC 0.1SA0. ECO. TMP)} // get current tenp
Met hod(_ACO) { Return (_SB.PCI0.1SA0. ECO. ACO) } // fan high tenp
Met hod(_AC1) { Return (_SB.PCI0.1SA0. ECO. AC1) } // fan low tenp

Name(_ALO, Package() {_SB. PCl 0.1 SA0. ECO. FN1}) /1 active cooling (high)
Nane(_AL1, Package() {_SB. PCl 0.1 SA0. ECO. FN2}) /1 active cooling (low)

Met hod(_PSV) { Return (_SB.PC 0.1SA0. EC0. PSV) } // passive cooling tenp
Name(_PSL, Package() {_SB. CPU0O}) /'l passive cooling devices
Met hod(_HOTES4) { Return (_SB.PCl0.|SA0. ECO. HOTCS4) } // get critical S4 tenp
Met hod(_CRT) { Return (_SB.PC 0.1SA0. ECO.CRT) } // get crit. tenp

Met hod(_SCP, 1) { Store (Argl, _SB.PCl 0.1 SA0. ECO. MODE) } // set cooling node

Name(_TC1, 4) /1 bogus exanpl e const ant
Name(_TC2, 3) /1 bogus exanpl e const ant
Name(_TSP, 150) /| passive sanpling = 15 sec
Name(_TZP, 0) /1 polling not required

} // end of TZ0

} // end of ECO
/1 end of _SB.PCI0.|SA0 scope

} /1 end of _SB scope

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 39

14.2 Declaring SMBus Host Controller Objects

EC-based SMBus 1.0-compatible HCs should be modeled in the ACPI namespace as described in section
13.12, “Defining an Embedded Controller SMBus Host Controller in ACP1 Namespace.” An example
definition is given below. Using the HID value “ACP10001” identifies that this SMB-HC is implemented
on an embedded controller using the standard SMBus register set defined in section 13.9, SMBus Host
Controller Interface via Embedded Controller.”

Devi ce (SMBO)

{
Name(_HI D, "ACPI 0001") /! EC- based SMBus 1.0 conpatible Host Controller

Name(_EC3, 0x2030) /1 EC of fset 0x20, query bit 0x30

}
EC-based SMBus 2.0-compatible host controllers should be defined similarly in the name space as follows:

Devi ce (SMBO)

Name(_HI D, "ACPI 0005") /! EC- based SMBus 2.0 conpatible Host Controller
Name(_ECL, 0x2030) /1 EC offset 0x20, query bit 0x30

}

Non-EC-based SMB-HCs should be modeled in a manner similar to the EC-based SMBus HC. An
example definition is given below. These devices use a vendor-specific hardware identifier (HID) to
specify the type of SMB-HC (do not use “ACP10001” or “ACP10005”). Using a vendor-specific HID
allows the correct software to be loaded to service this segment’s SMBus address space.

Devi ce(SMBO)

Name(_HI D, "<Vendor-Specific HD>") // Vendor-Specific HD

}
Regardless of the type of hardware, some OS software element (for example, the SMBus HC
driver) must register with OSPM to support all SMBus operation regions defined for the segment.
This software allows the generic SMBus interface defined in this section to be used on a specific
hardware implementation by translating between the conceptual (for example, SMBus address
space) and physical (for example, process of writing/reading registers) models. Because of this
linkage, SMBus operation regions must be defined immediately within the scope of the
corresponding SMBus device.

16.1.3 ASL Language and Terms

ASLCode DefinitionBl ockTerm

DefinitionBl ockTerm ;= DefinitionBl ock(
AMLFi | eNane, /1 StringData
Tabl eSi gnat ure, /1 StringData
Conpl i anceRevi si on, /1 Byt eConst
CEM D, /1 StringData
Tabl el D, /1 StringData
CEMRevi si on / / DWr dConst

) {TernList}
Ter i st = Nothing | <Term TernList>
Term = (bject | TypelOpcode | Type2Opcode

Conpi lerDirective I ncl udeTerm | External Term

oj ect Li st = Nothing | <Object njectlList>
bj ect = ConpilerDirective | NanmedObject | NanmeSpaceMdifier
Dat a(bj ect BufferData | PackageData | IntegerData | StringData

Dat aRef Obj ect Dat aCbj ect | Obj ect Reference | DDBHandl e

Compag/Intel/Microsoft/Phoenix/Toshiba

40 Advanced Configuration and Power Interface Specification

Conput at i onal Dat a BufferData | IntegerData | StringData

Buf f er Dat a = Type5Cpcode | BufferTerm
PackageDat a = PackageTerm
I nt eger Dat a = Type3Opcode | Integer | ConstTerm
StringDat a = Typed4Opcode | String
NamedObj ect = BankFieldTerm | CreateBitFi el dTerm| CreateByteFieldTerm
| CreateDWordFi el dTerm | CreateFieldTerm |
CreateQMrdFi el dTerm | CreateWrdFiel dTerm |
Dat aRegi onTerm | DeviceTerm | EventTerm | FieldTerm |
I ndexFi el dTerm | MethodTerm | MitexTerm | OpRegi onTerm |
Power ResTerm | ProcessorTerm | Thermal ZoneTerm
NaneSpaceModi fi er = AliasTerm | NaneTerm | ScopeTerm
User Term = NaneString([/ NameSt ri ng=>Met hod
ArgLi st
) => Nothing | DataRef Qbject
Ar gLi st = Nothing | <TermArg ArglListTail >
ArgLi st Tai | = Nothing | <,” TermArg ArgListTail>
TermArg = Type2Opcode | DataRefCbject | ArgTerm| Local Term |
NaneStri ng
Tar get = Not hi ng | Super Nanme

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 41

TypelQpcode ;= BreakTerm | BreakPointTerm | ContinueTerm | Fatal Term |
| fEl seTerm | LoadTerm | NoOpTerm | NotifyTerm |
Rel easeTerm | ResetTerm | ReturnTerm | Signal Term |
Sl eepTerm | Stall Term| SwitchTerm | Unl oadTerm |
Whi | eTerm
/1 A TypelOpCode termcan only be used standing al one on

a
/'l line of ASL code; because these types of ternms do not
/! return a value so they cannot be used as a termin an
/'l expression.

Type2Qpcode ;= AcquireTerm | AddTerm | AndTerm | ConcatTerm |
Concat ResTerm | CondRef O Term | CopyObject Term |
DecTerm | DerefOf Term | DivideTerm |
Fi ndSet LeftBit Term | FindSetR ghtBitTerm | FronBCDTerm |
IncTerm| IndexTerm| LAndTerm | LEqual Term |
LG eaterTerm| LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term |
LoadTabl eTerm | LOrTerm| MatchTerm| M dTerm |
ModTerm | MultiplyTerm| NAndTerm | NOrTerm | NotTerm |
Obj ect TypeTerm| O Term| RefOrTerm| ShiftLeftTerm |
ShiftRight Term| SizeO'Term| StoreTerm| SubtractTerm |
ToBCDTerm | ToBufferTerm | ToDecimal StringTerm |
ToHexStringTerm | TolntegerTerm| ToStringTerm |
Wait Term | XorTerm | UserTerm
/1 A Type2Qpcode termreturns a value that can be used
/1 inan expression.

Type3Qpcode = AddTerm | AndTerm | DecTerm | DivideTerm | EISAl DTerm |
Fi ndSet LeftBit Term | Fi ndSet Ri ghtBitTerm | FronBCDTerm |
IncTerm| IndexTerm| LAndTerm | LEqual Term |
LG eaterTerm | LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term | LOrTerm |
Mat chTerm | ModTerm | MiltiplyTerm | NAndTerm |
NOrTerm | NotTerm| O Term| ShiftLeftTerm|
Shift Ri ght Term | Subtract Term | ToBCDTerm |
Tol nteger Term | Xor Term
/1 A Type3Qpcode evaluates to an Integer, can't have a
/1 destination and nust have either Type3Opcode,

/1 TypedOpcode, Type5OCpcode, Const ExprTerm | nteger,
/1 BufferTerm Package or String for all argunents.

TypedOpcode = ConcatTerm| MdTerm| ToDecinal StringTerm |
ToHexStringTerm | ToStringTerm
/'l A Typed4Qpcode evaluates to an String, can't have a
/1 destination and nust have either Type3Opcode,
/1 Type4Opcode, Type5Opcode, ConstExprTerm | nteger,
/1 BufferTerm PackageTermor String for all arguments.
Type5Qpcode ;= Concat Term | ConcatResTerm | M dTerm |
Resour ceTenpl ateTerm | ToBufferTerm | UnicodeTerm
/1 A Type5Qpcode evaluates to a BufferTerm can't
/1 have a destination and nust have either Type3QOpcode,
/1 TypedOpcode, Type5OCpcode, Const ExprTerm | nteger,
/1 BufferTerm PackageTermor String for all argunents.
Type6Qpcode = RefOF Term | DerefOF Term | IndexTerm | UserTerm
I ncl udeTerm ;= I ncl ude(
I ncFi | ePat hNanme /1 StringData
)
Ext ernal Term .= External (
Ohj Nane, // NameString
Obj Type /1 Not hing | Object TypeKeyword

Compag/Intel/Microsoft/Phoenix/Toshiba

42 Advanced Configuration and Power Interface Specification

BankFi el dTerm ;= BankFi el d(
Regi onNane, // NameSt ri ng=>Cper at i onRegi on
BankNane, // NarmeSt ri ng=>Fi el dUni t
BankVal ue, /| Ter mMAr g=>I nt eger
AccessType, /| AccessTypeKeywor d
LockRul e, /' LockRul eKeywor d
Updat eRul e /1 Updat eRul eKeywor d

) {FieldUnitList}

Compag/Intel/Microsoft/Phoenix/Toshiba

Fi el dUni t Li st
Fi el dUni t Li st Tai |

Fi el dUni t
Fi el dUnitEntry

O fset Term

AccessAsTerm

CreateBitFiel dTerm

Cr eat eByt eFi el dTerm

Cr eat eDWOr dFi el dTerm

Creat eFi el dTerm

Creat eQMor dFi el dTerm

Cr eat eWor dFi el dTerm

Dat aRegi onTerm

Devi ceTerm

Event Term

Error! No text of specified style in document. 43

Not hi ng | <Fi el dUnit

Nothing | <, FieldUnit

Fi el dUnitListTail >
Fi el dUnitListTail >

FieldUnitEntry | OffsetTerm| AccessAsTerm

<Not hi ng | NanmeSeg> ‘,’

O fset (
Byt e f set
)

AccessAs(
AccessType,
AccessAttribute

)

CreateBitField(
Sour ceBuf fer,
Bi t | ndex,
Bi t Fi el dNane
)

Cr eat eByt eFi el d(
Sour ceBuf fer,
Byt el ndex,
Byt eFi el dNane
)

Cr eat eDWor dFi el d(
Sour ceBuffer,
Byt el ndex,
DWor dFi el dNane

)

Creat eFi el d(
Sour ceBuf fer,
Bi t | ndex,
NunBits,
Fi el dName

)

Cr eat eQnor dFi el d(
Sour ceBuf fer,
Byt el ndex,
Qnor dFi el dNane
)

Cr eat eWor dFi el d(
Sour ceBuf fer,
Byt el ndex,
Wor dFi el dNane

)

Dat aTabl eRegi on(
Regi onNane,
Si gnatureString,
Cem DSt ri ng,
Qenrabl el DSt ri ng
)

Devi ce(
Devi ceNane
) {Objectlist}

Event (
Event Name
)

I nt eger

/11 ntegerData

/1 AccessTypeKeywor d

// Not hing | ByteConst Expr

/] AccessAttri bKeyword

/| Ter mMAr g=>Buf f er
/| Ter mMAr g=>I nt eger
/1 NameString

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>I nt eger
// NameStri ng

/| Ter mMAr g=>Buf f er
/| Ter mMAr g=>I nt eger
[/ NameString

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
// NameString

/| Ter mMAr g=>Buf f er
/| Ter mMAr g=>I nt eger
/1 NameString

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>I nt eger
// NameString

/1 NaneString

/Il TermArg=>String
/1l TermArg=>String
/1 TermArg=>String

// NameString

[/ NameString

Compag/Intel/Microsoft/Phoenix/Toshiba

44 Advanced Configuration and Power Interface Specification

Fi el dTerm

I ndexFi el dTerm

Met hodTer m

Mut exTer m

OpRegi onTerm

Power ResTer m

Processor Term

Ther mal ZoneTer m

AliasTerm

NameTer m

ScopeTerm

BreakTerm
Br eakPoi nt Term

Conti nueTerm

Fi el d(
Regi onNane,
AccessType,
LockRul e,
Updat eRul e

) {FieldUnitList}

;= I ndexFi el d(
I ndexNane,
Dat aNanme,
AccessType,
LockRul e,
Updat eRul e
) {FieldUnitList}

: = Met hod(
Met hodNane,
NumAr gs,
SerializeRul e,

SyncLevel
) {TernList}

c= Mut ex(
Mut exNane,
SyncLevel
)

:= OperationRegi on(
Regi onNane,
Regi onSpace,
O fset,
Length
)

: = Power Resour ce(
Resour ceNane,
Syst enlevel ,
Resour ceOr der
) {ObjectlList}

;= Processor (
Pr ocessor Nane,
Processor | D,
PBl ockAddr ess,
Pbl ockLengt h
) {Ooj ectlList}

;= Ther mal Zone(
Ther mal ZoneNare
) {Ooj ectlList}

Alias(
Sour cej ect,
Ali asbj ect

)

:= Nane(
bj ect Nane,
hj ect
)
;= Scope(
Locati on
) {ObjectlList}
1= Break
. = BreakPoi nt

;= Continue

// NameSt ri ng=>Cper at i onRegi on
/| AccessTypeKeywor d

/I LockRul eKeywor d

/ 1 Updat eRul eKeywor d

// NameSt ri ng=>Fi el dUni t
// NameSt ri ng=>Fi el dUni t
/1 AccessTypeKeywor d

/I LockRul eKeywor d

/ | Updat eRul eKeywor d

// NameString

// Not hing | ByteConst Expr
/1 Not hing |

/1 SerializeRul eKeyword

// Not hing | ByteConst Expr

// NarmeString
/ | Byt eConst Expr

// NameStri ng

!/ Regi onSpaceKeywor d
/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/1 NameString
/ | Byt eConst Expr
/1 Wor dConst Expr

// NameStri ng

/1 Byt eConst Expr

/ | DWr dConst Expr | Not hi ng (=0)
/1 Byt eConst Expr | Not hi ng (=0)

/1 NameString

/1 NameString
// NameStri ng

// NameString
/ | Dat aRef-Obj ect

// NameStri ng

Compag/Intel/Microsoft/Phoenix/Toshiba

Fat al Term

| fEl seTerm

I fTerm

El seTerm

LoadTerm

NoQpTerm

Noti fyTerm

Rel easeTerm

Reset Term

Ret urnTerm

Si gnal Term

Sl eepTerm

Stall Term

Swi tchTerm
CaseTer nii st
Def aul t Ter nLi st
CaseTerm

Def aul t Term

Unl oadTerm

Whi | eTerm

Error! No text of specified style in document. 45

Fat al (
Type,
Code,
Arg

)

I fTerm El seTerm

1f(
Predi cate
) {TernList}

/ | Byt eConst Expr
/ | DWor dConst Expr
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

Nothing | <Else {Ternlist}> | <Hself (

Predi cat e

/| Ter mAr g=>I nt eger

) {TernlList} ElseTern»

Load(
oj ect,
DDBHandl e
)

Noop

Not i fy(
oj ect,

// NameString
/| Super Nane

/ | Super Nane=>Ther nal Zone| Pr ocessor | Devi ce

Not i fi cati onVal ue

)

Rel ease(
SyncObj ect
Reset (
Syncbj ect
)
Ret ur n(
Arg
)
Si gnal (
SyncObj ect
Sl eep(
M11iSecs
)
Stall (
M croSecs
)
Swi t ch(
Predi cat e

/| Ter mMAr g=>I nt eger

/1 Super Narme

/1 Super Nare

/| Ter mMAr g=>Dat aRef (bj ect

/1 Super Nare

/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>Conput at i onal Dat a

) {CaseTernlist}
Not hi ng | CaseTerm | Default Term Defaul t Ter nLi st
CaseTer m CaseTer nii st
Not hi ng | CaseTerm | CaseTerm Defaul t Ter nlLi st
Case(
Val ue / | Dat abj ect
) {TernList}
Default {TernList}

: = Unl oad(
DDBHandl e /| Super Nane
)
= Wil e(
Predi cate /| Ter mMAr g=>I nt eger
) {TernList}

Compag/Intel/Microsoft/Phoenix/Toshiba

46 Advanced Configuration and Power Interface Specification

AcquireTerm

AddTer m

AndTer m

Concat Term

Concat ResTerm

CondRef Of Term

CopyOhj ect Term

DecTerm

Der ef OF Term

Di vi deTerm

Acqui re(
Syncbj ect
Ti meout Val ue
) => Bool ean

Add(
Addend1,
Addend2,
Resul t

) => I nteger

And(
Sour cel,
Sour ce2,
Resul t

) => Integer

Concat enat e(
Sour cel,
Sour ce2,
Resul t
) => Conput ati onal Dat a

Concat enat eResTenpl at e(
Sour cel,
Sour ce2,
Resul t

) => Buffer

CondRef O (
Sour ce,
Desti nati on
) => Bool ean

Copyhj ect (
Sour ce,
Resul t,

) => Dat aRef Obj ect

Decr enent (
Addend
) => I nteger

Der ef OF (
Sour ce

obj ect

) => Dat aRef (bj ect

Di vi de(
Di vi dend,
Di vi sor,
Remai nder,
Resul t

) => Integer

/| Super Name=>Mut ex
/1 Wor dConst Expr
/1 True means timed-out

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a
/| Tar get

/| Ter mAr g=>Buf f er
/| Ter mMAr g=>Buf f er
/| Tar get

/1 Super Nare
/| Tar get

/| Ter mAr g=>Dat aRef Cbj ect
//NaneString | Local Term |
ArgTerm

/1 Super Narme

/| Ter mMAr g=>Cbj ect Ref er ence
/1 Qoj ect Reference is an

// produced by terms such as
/11 ndex, RefOf or CondRef Of.

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Tar get

//returns Result

Compag/Intel/Microsoft/Phoenix/Toshiba

Fi ndSet LeftBit Term

Fi ndSet R ghtBi t Term

Fr onBCDTer m

I ncTerm

I ndexTer m

LAndTer m

LEqual Term

LG eater Term

LG eat er Equal Term

LLessTerm

LLessEqual Term

LNot Ter m

Error! No text of specified style in document.

;= FindSetLeftBit(
Sour ce,
Resul t
) => Integer

;= FindSetRi ghtBit(

Sour ce,
Resul t
) => I nteger
1= FronBCY(
BCDVal ue,
Resul t
) => Integer
;= I ncrenent (
Addend
) => I nteger
:= I ndex(
Sour ce,

PackageTer >
I ndex,
Desti nati on

) => bj ect Ref erence

:= LAnd(
Sour cel,
Sour ce2
) => Bool ean

;= LEqual (
Sour cel,
Sour ce2
) => Bool ean

= LGreater(
Sour cel,
Sour ce2
) => Bool ean

;= LG eat er Equal (
Sour cel,
Sour ce2

) => Bool ean

:= LLess(
Sour cel,
Sour ce2
) => Bool ean

;= LLessEqual (
Sour cel,

Sour ce2
) => Bool ean

:= LNot (
Sour ce,
) => Bool ean

/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/1 Super Nare

/] Ter mAr g=>
/< String | Buffer |

/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

47

/| Ter MAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter MAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter MAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a

/| Ter mMAr g=>Conput at i onal Dat a

Compag/Intel/Microsoft/Phoenix/Toshiba

48 Advanced Configuration and Power Interface Specification

LNot Equal Ter m

LoadTabl eTerm

LOr Term

Mat chTerm

M dTerm

ModTer m

Mul tiplyTerm

NAndTer m

NOr Term

Not Ter m

oj ect TypeTerm

LNot Equal (
Sour cel,
Sour ce2

) => Bool ean

LoadTabl e(
Si gnatureString,
Cem DSt ri ng,
Cenrabl el DSt ri ng,
Root Pat hStri ng,
Par anet er Pat hSt ri ng,
Par anmet er Dat a

Ter mAr g=>Dat aRef Obj ect

) => DDBHandl e

LO (
Sour cel,
Sour ce2
) => Bool ean

Mat ch(
Sear chPackage,
Op1,
Mat chQbj ect 1,
2,
Mat chObj ect 2,
Start| ndex

) => Ones | Integer

M d(
Sour ce,
I ndex,
Lengt h,
Resul t
) => Buffer|String

Mod(
Di vi dend,
Di vi sor,
Resul t

) => Integer

Ml tiply(
Mul ti plicand,
Ml tiplier,
Resul t
) => Integer
NAnd(
Sour cel,
Sour ce2
Resul t
) => Integer
NOr (
Sour cel,
Sour ce2
Resul t
) => I nteger
Not (
Sour ce,
Resul t
) => Integer
oj ect Type(
hj ect

) => Integer

/| Ter MAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a

/1 TermArg=>String

/1 TermArg=>String

/1l TermArg=>String

/1 Nothing | TermArg=>String
/1 Nothing | TermArg=>String
/1 Not hing |

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter MAr g=>Conput at i onal Dat a

/| Ter MAr g=>Package
/| Mat chOpKeywor d
/| Ter mMAr g=>I nt eger
/| Mat chOpKeywor d
/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/1 TermAr g=>Buffer| String
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

//returns Result

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/1 Super Nare

Compag/Intel/Microsoft/Phoenix/Toshiba

O Term

Ref OF Term

ShiftLeft Term

Shi ft Ri ght Term

Si zeOf Term

StoreTerm

Subtract Term

ToBCDTer m

ToBuf fer Term

ToDeci mal StringTerm

ToHexStringTerm

Tol nteger Term

ToStringTerm

Error! No text of specified style in document.

= O (
Sour cel,
Sour ce2
Resul t
) => Integer
1= Ref OF (
bj ect
) => nj ect Ref erence
= ShiftLeft(
Sour ce,
Shi f t Count
Resul t
) => Integer
;= ShiftRi ght(
Sour ce,
Shi f t Count
Resul t
) => Integer
1= SizeO (
Dat a(hj ect

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Super Nane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

|/ Super Name=>St r i ng| Buf f er | Package

) => I nteger

= Store(
Sour ce,
Desti nation
) => Dat aRef Obj ect

:= Subtract(
Addend1l,
Addend2,
Resul t

) => Integer

;= ToBCY(

Val ue,
Resul t
) => I nteger

:= ToBuffer(

Dat a,
Resul t

) => Conput ati onal Dat a

:= ToDeci nal String(
Dat a,
Resul t
) => String

:= ToHexString(
Dat a,
Resul t
) => String

1= Tol nteger (
Dat a,
Resul t
) => Integer

1= ToString(
Sour ce,
Lengt h,
Resul t
) => String

/| Ter mAr g=>Dat aRef Cbj ect
/1 Super Nare

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter mMAr g=>I nt eger
/| Tar get

/| Ter Mr g=>Conput at i onal Dat a
/| Tar get

/| Ter Mr g=>Conput at i onal Dat a
/| Tar get

/| Ter mMAr g=>Conput at i onal Dat a
/| Tar get

/| Ter mMAr g=>Conput at i onal Dat a
/| Tar get

/| Ter mMAr g=>Buf f er
/1 Not hing | Ter mAr g=>I nt eger
/| Tar get

Compag/Intel/Microsoft/Phoenix/Toshiba

49

50 Advanced Configuration and Power Interface Specification

Wai t Term

XOr Term

oj ect TypeKeywor d

AccessTypeKeywor d

AccessAttri bKeyword

= Wit (
Syncbj ect /| Super Name=>Event
Ti meout Val ue /| Ter mMAr g=>I nt eger
) => Bool ean /1 True means timed-out
= XO (
Sour cel, /| Ter mMAr g=>I nt eger
Sour ce2 /| Ter mMAr g=>I nt eger
Resul t /| Tar get

) => I nteger

;= UnknownCbj | IntCbj | StrOoj | BuffObj | PkgOoj |
FieldUnitQoj | DeviceCbj | EventObj | Methodoj |
Mit exCbj | OpRegi onObj | Power ResObj | Thernal ZoneObj |
Buf f Fi el dObj | DDBHandl eQbj

AnyAcc | ByteAcc | WordAcc | DwerdAcc | QuwérdAcc |

Buf f er Acc

= SMBQui ck | SMBSendReceive | SMBByte | SMBWrd | SMBBI ock
| SMBProcesscCal |
/1 Note: AccessAttri bKeywords are for SMBus BufferAcc
only.

Compag/Intel/Microsoft/Phoenix/Toshiba

LockRul eKeywor d

Updat eRul eKeywor d

Regi onSpaceKeywor d

Addr essSpaceKeywor d
User Def Regi onSpace

Seri al i zeRul eKeywor d

Mat chOpKeywor d

DVATy peKeywor d
BusMast er Keywor d
Xf er TypeKeywor d

Resour ceTypeKeywor d

M nKeywor d
MaxKeywor d
DecodeKeywor d
RangeTypeKeywor d
Menily peKeywor d
ReadW it eKeywor d

I nt errupt TypeKeywor d

I nt errupt Level

Error! No text of specified style in document. 51

Lock | NoLock
Preserve | WiteAsOnes | WiteAsZeros

User Def Regi onSpace | Systeml O | System\venory |

PCl _Config | EnbeddedControl | SMBus | SystenCMOS |
Pci Bar Tar get

Regi onSpaceKeyword | FFi xedHW

I nt eger Dat a=>0x80- Oxf f

Serialized | NotSerialized
MIR| MEQ| ME | M.T | ME | MaT

Conpatibility | TypeA | TypeB | TypeF
BusMast er | Not BusMaster
Transfer8 | Transferl1l6 | Transfer8_16

Resour ceConsuner | ResourceProducer

M nFi xed | M nNot Fi xed

MaxFi xed | MaxNot Fi xed

SubDecode | PosDecode

| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange

Cacheable | WiteConmbining | Prefetchable | NonCacheabl e
ReadWite | ReadOnly

Edge | Level

ActiveH gh | ActivelLow

Shar eTypeKeywor d Shared | Excl usive

| ODecodeKeywor d Decodel6 | DecodelO

TypeKeywor d TypeTransl ation | TypeStatic

Transl ati onKeywor d SparseTransl ation | DenseTransl ation

Addr essKeywor d Addr essRangeMenory | AddressRangeReserved |
Addr essRangeNVS | Addr essRangeACPI

Super Nanme = NanmeString | ArgTerm| Local Term| DebugTerm |
Type6Opcode | User Term

ArgTerm = Arg0 | Argl | Arg2 | Arg3 | Argd | Args | Arg6

Local Term = Local 0 | Locall | Local2 | Local3 | Local4 | Local5 |
Local 6 | Local 7

DebugTerm = Debug

LeadDi gi t Char ='1r-'9

Cct al Di gi t Char ='0-'7

HexDi gi t Char =DigitChar | ‘A-'F | ‘a-‘f’

I nt eger = Deci mal Const | COctal Const | HexConst

Deci mal Const = LeadDi gi t Char | <Deci mal Const DigitChar>

Cct al Const ='0" | <Cctal Const Cctal Di gitChar>

HexConst = <0Ox HexDigitChar> | <0X HexDigitChar> | <HexConst
HexDi gi t Char >

Byt eConst = | nt eger =>0x00- Oxf f

Wor dConst = | nt eger =>0x0000- Oxf f f f

DWor dConst = | nt eger =>0x00000000- Oxffffffff

QMor dConst = | nt eger =>0x0000000000000000- Oxffffffffffffffff

DDBHandl e = I nteger

hj ect Ref erence = | nteger

String = Asci i Char Li st

Asci i Char Li st = Nothing | <EscapeSeq Ascii Charlist> | <AsciiChar
Asci i Char Li st >

Asci i Char 0x01-0x21 | 0x23-0x5B | Ox5D 0x7F

EscapeSeq Si npl eEscapeSeq | Cctal EscapeSeq | HexEscapeSeq

Si npl eEscapeSeq
Cct al EscapeSeq

Cct al Di gi t Char
HexEscapeSeq

Nul | Char
Const Term

VNt P Ya] \b | N A | Nr Nt] Vv | W
\ CctalDigit |

\ OctalDigit CctalDigit |

\ OctalDigit CctalDigit CctalDigit

B O T e I I I S N R I &
\ X HexDi gi t Char |

\ x HexDi gi t Char HexDi gi t Char

0x00

Zero | One | Ones | Revision

Compag/Intel/Microsoft/Phoenix/Toshiba

52 Advanced Configuration and Power Interface Specification

Bool ean = True | Fal se
True = Ones
Fal se = Zero

Compag/Intel/Microsoft/Phoenix/Toshiba

Byt eConst Expr
Wor dConst Expr
Dwor dConst Expr
Qnor dConst Expr
Const Expr Term

Buf f er Term

Byt eLi st
Byt eLi st Tai |

DWor dLi st
DWor dLi st Tai |

PackageTer m

Packageli st
Packageli st Tai |
PackageEl enment

El SAl DTer m

Resour ceTenpl at eTerm

Uni codeTer m

Resour ceMacr oLi st
Resour ceMacroTerm

DVATer m

Error! No text of specified style in document.

<Type3Opcode | ConstExprTerm | |nteger> => ByteConst
<Type3Opcode | ConstExprTerm | |nteger> => WordConst
<Type3Opcode | Const ExprTerm | |nteger> => DWr dConst
<Type3Opcode Const Expr Term | | nteger> => QWrdConst
Zero | One | Ones

Buf f er (
Buf f Si ze /1 Not hing |
/| Ter mMAr g=>I nt eger

) {StringData | ByteList}

Not hi ng | <ByteConst Expr Byteli st Tail >
Not hing | <',’ ByteConst Expr BytelistTail>

Not hi ng | <DwWbr dConst Expr DWor dLi st Tai | >
Not hing | <',’ DwrdConst Expr DWordLi st Tail >

Package(

NunEl enent s /1 Not hing |
/| Byt eConst Expr |
/| Ter mMAr g=>I nt eger

) {Packageli st}

Not hi ng | <PackageEl ement Packageli st Tai |l >
Not hing | <',’ PackageEl enent Packageli st Tail >
Dat aCbj ect | NaneString

El SAI I(
El SAI DSt ri ng
) => DWwordConst

/1 StringData

Resour ceTenpl at e() {ResourceMacroList} => Buffer

Uni code(
ASClI | String /1 StringData
) => Buffer

Not hi ng | <Resour ceMacroTer m Resour ceMacr oLi st >
DMATerm | DWordl OTerm | DwordMenoryTerm |
EndDependent FnTerm | Fi xedl OTerm | InterruptTerm |
| OTerm | | RQNoFl agsTerm | | RQTerm | Menory24Term |
Menor y32Fi xedTerm | Menory32Term | Qwordl OTerm |

53

QnordMenoryTerm | Regi sterTerm | Start Dependent FnTerm |

St art Dependent FnNoPri Term | Vendor LongTerm |
Vendor Short Term | Wor dBusNunmber Term | Wordl OTer m

DIVA(
DVATYpe, / | DMATypeKeyword (_TYP)
BusMast er, / I BusMast er Keyword (_BM
Xf er Type, /1 Xf er TypeKeyword (_SI 2)

Resour ceTag
) {ByteList}

//Nothing | NameString
//List of channels (0-7)

Compag/Intel/Microsoft/Phoenix/Toshiba

54 Advanced Configuration and Power Interface Specification

DWor dI OTer m ;= Dwordl

Resour ceType, /1 Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d

M nType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)

MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)

Decode, /1 Not hi ng (PosDecode) |
/ | DecodeKeywor d (_DEC)

RangeType, // Not hing (EntireRange) |

/1 RangeTypeKeywor d (_RNG
AddressGranul arity, / | DWr dConst Expr (_GRA)

M nAddr ess, /| DWor dConst Expr (_MN)
MaxAddr ess, /| DWor dConst Expr (_MAX)
Transl ati on, / | DWor dConst Expr (_TRA)
Addr essLen, / | DWr dConst Expr (_LEN)
ResSour cel ndex, // Not hing | ByteConst Expr
ResSour ce, //Nothing | StringData
Resour ceTag /I Nothing | NaneString
Type /1 Nothing | TypeKeyword
Transl ati onType /1 Not hing |

Tr ansl at i onKeywor d

)

DWor dMvenoryTer m ;= DWor dMenor y(
Resour ceType, // Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d
Decode, /1 Not hi ng (PosDecode) |
/ | DecodeKeywor d (_DEC)
M nType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_MAF)
Menily pe, /1 Not hi ng (NonCacheabl e) |
/| MenTypeKeyword (_MEM
ReadW it eType, /! ReadW it eKeyword (_RW
AddressGranul arity, /| DWor dConst Expr (_GRA)
M nAddr ess, /| DWor dConst Expr (_MN)
MaxAddr ess, /| DWr dConst Expr (_MAX)
Transl ati on, /| DWor dConst Expr (_TRA)
Addr essLen, /| DWor dConst Expr (_LEN)
ResSour cel ndex, // Not hing | ByteConst Expr
ResSour ce, /I Nothing | StringData
Resour ceTag /I Nothing | NaneString
Addr essRange // Not hing | AddressKeyword
(_MrP)
FranstatienType // Not hi ng |

FranstationTypeKeyword (_TTP)
)

EndDependent Fn()

EndDependent FnTer m

Fi xedl OTer m = Fi xedl (
Addr essBase, /1 Wor dConst Expr (_BAS)
RangelLen, /1 Byt eConst Expr (_LEN)
Resour ceTag /I Nothing | NaneString

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 55

Interrupt Term := Interrupt(
Resour ceType, /1 Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d
I nt errupt Type, /11 nterrupt TypeKeyword
11 (_LL, _HE)
InterruptLevel , /1l nterrupt Level Keyword
/1 (_LL, _HE)
Shar eType, /1 Not hi ng (Excl usi ve)
/| Shar eTypeKeyword (_SHR)
ResSour cel ndex, // Not hing | ByteConst Expr
ResSour ce, /I Nothing | StringData
Resour ceTag /I Nothing | NaneString
) {DwérdList} //list of interrupts (_INT)

Compag/Intel/Microsoft/Phoenix/Toshiba

56 Advanced Configuration and Power Interface Specification

| OTerm

| RQNoFI agsTerm

| RQTerm

Menory24Ter m

Menor y32Fi xedTer m

Menory32Ter m

QMor dl OTer m

I

)

| CDecode,

M nAddr ess,
MaxAddr ess,
Al'i gnnent ,
RangelLen,
Resour ceTag

| RQNoFIl ags(

Resour ceTag

) {ByteList}

IR

I nterrupt Type,
InterruptLevel ,
Shar eType,

Resour ceTag

) {ByteList}

Menor y24(

)

ReadW it eType,

M nAddr ess[23: 8],
MaxAddr ess[23: 8],
Ali gnnent,
RangelLen,

Resour ceTag

Menor y32Fi xed(

)

ReadW it eType,
Addr essBase,
RangelLen,
Resour ceTag

Menor y32(

)

ReadW i t eType,
M nAddr ess,
MaxAddr ess,
Ali gnnment,
RangelLen,
Resour ceTag

Quordl

Resour ceType,
M nType,
MaxType,
Decode,
RangeType,

AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ati on,

Addr esslLen,

ResSour cel ndex,
ResSour ce,

Resour ceTag

Type

Transl ati onType

/11 ODecodeKeywor d (_DEC)
/1 WordConst Expr (_MN)
/1 Wor dConst Expr (_MAX)
/1 Byt eConst Expr (_ALN)
/] Byt eConst Expr (_LEN)
/I Nothing | NaneString

/I Nothing | NaneString
//1ist of interrupts (0-15)

/11 nterrupt TypeKeyword

/1 (_LL, _HE)
/1l nterrupt Level Keyword
11 (_LL, _HE)

/1 Not hi ng (Excl usi ve)

/| Shar eTypeKeyword (_SHR)
// Nothing | NameString
//list of interrupts (0-15)

/1 ReadW it eKeyword (_RW
/1 WordConst Expr (_MN)
/1 Wor dConst Expr (_MAX)
/1 Wor dConst Expr (_ALN)
/1 Wor dConst Expr (_LEN)
// Nothing | NameString

// ReadW it eKeyword (_RW
/ | DWor dConst Expr (_BAS)
/ | DWor dConst Expr (_LEN)
/I Nothing | NaneString

/! ReadW it eKeyword (_RW
/| DWor dConst Expr (_MN)
/| DWor dConst Expr (_MAX)
/ | DWr dConst Expr (_ALN)
/ | DWr dConst Expr (_LEN)
// Nothing | NameString

/1 Not hi ng (Resour ceConsuner) |
/ | Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_MAF)

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

/1 Not hi ng (EntireRange) |
/I RangeTypeKeyword (_RNG
/1 Qnor dConst Expr (_GRA)
/1 QordConst Expr (_M N)
/1 Qor dConst Expr (_MAX)
/1 QMor dConst Expr (_TRA)
/1 Qnor dConst Expr (_LEN)
/1 Not hing | ByteConst Expr
/I Nothing | StringData

// Nothing | NameString

/1 Not hing | TypeKeyword
/1 Not hing |

Transl at i onKeywor d)

Compag/Intel/Microsoft/Phoenix/Toshiba

Qnor dMenoryTer m

Regi st er Term

St art Dependent FnTer m

St art Dependent FNNoPri Term

Vendor LongTer m

Vendor Short Term

Wor dBusNunber Term

Error! No text of specified style in document. 57

;= Quor dMenor y(
Resour ceType,

Decode,

M nType,
MaxType,
MenType,

ReadW it eType,
AddressGranul arity,
M nAddr ess,
MaxAddr ess,
Transl ati on,
Addr esslLen,
ResSour cel ndex,
ResSour ce,
Resour ceTag
Addr essRange
(_MIP)
FranstatienType

)

;= Register(
Addr essSpacel D,
Regi st er Bi t Wdt h,
Regi ster O f set,
Regi st er Addr ess,
)

St art Dependent Fn(
ConpatPriority,
Per f RobustPriority

) {ResourceMacrolist}

/1 Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

/1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)

/1 Not hi ng (NonCacheabl e) |
/| MenTypeKeyword (_MEM

/! ReadW it eKeyword (_RW
/1 Qhor dConst Expr (_GRA)

/1 QMordConst Expr (_MN)

/1 Qor dConst Expr (_MAX)

/1 Qor dConst Expr (_TRA)

/| Qnor dConst Expr (_LEN)

// Not hing | ByteConst Expr
/I Nothing | StringData

/I Nothing | NaneString

// Not hing | AddressKeyword

/1 Not hing |
Franstati-onTypeKeywor d
(_TTP)

/| Addr essSpaceKeyword (_ASI)
/1 Byt eConst Expr (_RBW

/1 Byt eConst Expr (_RBO

/1 Qor dConst Expr (_ADR)

/1 Byt eConst Expr (0-2)
/1 Byt eConst Expr (0-2)

: =St art Dependent FnNoPri () {ResourceMacroli st}

Vendor Long(
Resour ceTag
) {ByteList}

Vendor Short (
Resour ceTag
) {ByteList}

Wor dBusNunber (
Resour ceType,

M nType,
MaxType,
Decode,

AddressGranul arity,
M nAddr ess,

MaxAddr ess,

Transl ati on,

Addr esslLen,

ResSour cel ndex,
ResSour ce,

Resour ceTag

/I Nothing | NaneString

/I Nothing | NaneString
//up to 7 bytes

/1 Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

/1 Wor dConst Expr (_GRA)

[/ WordConst Expr (_MN)

/1 Wor dConst Expr (_MAX)

/1 Wor dConst Expr (_TRA)

/1 Wor dConst Expr (_LEN)

/1 Not hing | ByteConst Expr
/I Nothing | StringData

// Nothing | NameString

Compag/Intel/Microsoft/Phoenix/Toshiba

58 Advanced Configuration and Power Interface Specification

Wor dl OTer m = Wordl
Resour ceType,

M nType,
MaxType,
Decode,
RangeType,

AddressG anul arity,
M nAddr ess,

MaxAddr ess,

Transl ati on,

Addr essLen,

ResSour cel ndex,
ResSour ce,

Resour ceTag

Type

Transl ati onType

/1 Not hi ng (Resour ceConsuner) |
/| Resour ceTypeKeywor d

/1 Not hi ng (M nNot Fi xed) |
/1 M nKeyword (_MF)

/1 Not hi ng (MaxNot Fi xed) |
/1 MaxKeywor d (_IAF)

/1 Not hi ng (PosDecode) |

/ | DecodeKeywor d (_DEC)

/1 Not hi ng (EntireRange) |
/I RangeTypeKeyword (_RNG
/1 Wor dConst Expr _CGRA)

/1 WrdConst Expr (_MN)

/1 Wor dConst Expr (_MAX)

/1 Wor dConst Expr (_TRA)

/1 Wor dConst Expr (_LEN)

/1 Not hing | ByteConst Expr
/I Nothing | StringData

/I Nothing | NaneString

/I Nothing | TypeKeyword
/1 Not hing |

Transl ati onKeywor d

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 59

Fable 16-4—ASL DataTFypes
Default
Source | Destination

of a-Method’s-execution when-used-as | Buffer Buffer
nitiali | _
. Package Package
bbB DDB-Handle
Handle
Object Object Reference
Reference

Compag/Intel/Microsoft/Phoenix/Toshiba

60 Advanced Configuration and Power Interface Specification

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 61

TobledEd—ASL Dote s Leantinuady
Dot
Seolres Deciinalien
Conversion | Conversion
Collection-of ASL objects | Package Package All-contents of the package are
S E s boses FomRevce-Cennnicathe
Fanmrbom-fupte DEEL senresnr-sesodlniathe
package:
Bit-aligned .,a.uablel an | tntege Hateger III § ell Heges eﬁquues_ II oFe b. |’ts_
address space Buffer . - . |
significant bits first. 1 the
; .
thtege ’(.g' the-Jast piece o the
H-the-Field H te-ge II'I Ia-n_e-lge 4p) 'S.SI ate
treated as-a Strng . . . - 9 -
Eution - |Itte [".Stla tag .Mﬁt e .I"ISt'
hitis Iess_t an-eight bits. the
.“ el up.pe; bits ° Ilelae craractes
| ight bits_then-t
Buffer H the buffer requires-more bits
han the size of ol it
i i i 1
wittten-to t.e I |e|e|_u Hrlowel
Shike I'.'St e Htegel (,9.
the-ast piece ok the integerH
b. |el_;e HB)I 'S s_nlallm g." elqual_
. | ‘ -
WH-t-ten—. O

Compag/Intel/Microsoft/Phoenix/Toshiba

62 Advanced Configuration and Power Interface Specification

Tobledbd—ASL Dotn Thuses Leantinuady
Dot
Seolres Deciinalien
Conversion | Conversion
Data Type | Description (Operand) e What Happens
using-CreateBitField; Buff size-of the buffer field-itiszero-
Compatibility Note:Newin
LR O e behovies i ho L
I this buffer-is smaller than the
extended. 1f-the buffer-is larger
the-upper bits are truncated.
— = s Buffor m
2o of 1 tror field it
. .
el;;te 'dl ed .” E eﬁ bbllle FIFS IE;.glell
ibil : .
Handle |
Event Event Nothing None Generates-an-error.
Mutex Mutex Nothing None Generates-an-error.
Region
Power Power Resource Nothing Nonhe Soncrloson-onen
Resource
Processor Processor Nothing Nonhe Soncrlosn-onen
Thermal Thermal Zone Nothing None Generates-an-error.
Zone

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 63

Table-16-4 -ASL Data Types-{continued)
Dot
Soner Destination
Conversion | Conversion
Data Type | Description (Operand) | From— What Happens
FF_'F o will
Retastve: LeReREEDR

Butiprield | Disgloyedaso-headesimal
eegos
ODB Tavedindlodi
ZoreCRe, | RlgoeseRsEs Integer None GCannot-be-a-destination-

16.2.2 ASL Data Types

ASL provides a wide variety of data types and operators that manipulate data. It also provides mechanisms

for both explicit and implicit conversion between the data types when used with ASL operators.

The table below describes each of the available data types.

Table 16-4 Summary of ASL Data Types

ASL Data Type

Description

[Uninitialized] No assigned type or value. This is the type of all control method LocalX variables
and unused ArgX variables at the beginning of method execution, as well as all
uninitialized Package elements. Uninitialized objects must be initialized (via Store
or CopyObiject) before they may be used as source operands in ASL expressions.

Buffer An array of bytes. Uninitialized elements are zero by default.

Compag/Intel/Microsoft/Phoenix/Toshiba

64 Advanced Configuration and Power Interface Specification

ASL Data Type Description

Buffer Field Portion of a buffer created using CreateBitField, CreateByteField,
CreateWordField, CreateQWordField, CreateField, or returned by the Index
operator.

DDB Handle Definition block handle returned by the Load operator

Debug Object Debug output object. Formats an object and prints it to the system debug port. Has
no effect if debugging is not active.

Device Device or bus object

Event Event synchronization object

Field Unit (within an | Portion of an address space, bit-aligned and of one-bit granularity. Created using
Operation Region) Field, BankField, or IndexField.

Integer An n-bit little-endian unsigned integer. In ACPI 1.0 this was at least 32-bits. In
ACPI 2.0 this is at least 64.bits.

Integer Constant Created by the ASL terms “Zero”, “One”, “Ones”, and “Revision”.

Method Control Method (Executable AML function)

Mutex Mutex synchronization object

Object Reference Reference to an object created using the RefOf operator

Operation Region Operation Region (A region within an Address Space)

Package Collection of ASL objects with a fixed number of elements (up to 255).
Power Resource Power Resource description object

Processor Processor description object

String Null-terminated ASCII string with up to 200 characters.

Thermal Zone Thermal Zone description object

Compatibility Note: The ability to store and manipulate object references is new in ACPI 2.0. In ACPI 1.0
references could not be stored in variables, passed as parameters or returned from functions.

16.2.2.1 Data Type Conversion Overview

ASL provides two mechanisms to convert objects from one data type to another data type at run-time
(during execution of the AML interpreter). The first mechanism, Explicit Data Type Conversion, allows
the use of explicit ASL operators to convert an object to a different data type. The second mechanism,
Implicit Data Type Conversion, is invoked by the AML interpreter when it is necessary to convert a data
object to an expected data type before it is used or stored.

Both of these mechanisms are described in detail in the sections that follow.

16.2.2.2 Explicit Data Type Conversions

The following ASL operators are provided to explicitly convert an object from one data type to another:
e FromBCD — Convert an Integer to a BCD Integer

e ToBCD — Convert a BCD Integer to a standard binary Integer.

e ToBuffer — Convert an Integer, String, or Buffer to an object of type Buffer

e ToDecimalString — Convert an Integer, String, or Buffer to an object of type String. The string
contains the ASCII representation of the decimal value of the source operand.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 65

» ToHexString — Convert an Integer, String, or Buffer to an object of type String. The string contains
the ASCII representation of the hexadecimal value of the source operand.

* Tolnteger — Convert an Integer, String, or Buffer to an object of type Integer.
e ToString — Convert a Buffer to an object of type String.

The following ASL operators are provided to copy and transfer objects:

e CopyObject — Explicitly store a copy of the operand object to the target name. No implicit type
conversion is performed. (This operator is used to avoid the implicit conversion inherent in the ASL
Store operator.)

e Store — Store a copy of the operand object to the target name. Implicit conversion is performed if the
target name is of a fixed data type (see below). However, Stores to method locals and arguments do
not perform implicit conversion and are therefore the same as using CopyObiject.

16.2.2.3 Implicit Data Type Conversions

Automatic or Implicit type conversions can take place at two different times during the execution of an
ASL operator. First, it may be necessary to convert one or more of the source operands to the data type(s)
expected by the ASL operator. Second, the result of the operation may require conversion before it is stored
into the destination. (Many of the ASL operators can store their result optionally into an object specified
by the last parameter. In these operators, if the destination is specified, the action is exactly as if a Store
operator had been used to place the result in the destination.)

Such data conversions are performed by an AML interpreter during execution of AML code and are known
collectively as Implicit Operand Conversions. As described briefly above, there are two different types of
implicit operand conversion:

1. Conversion of a source operand from a mismatched data type to the correct data type required by an
ASL operator, called Implicit Source Conversion. This conversion occurs when a source operand
must be converted to the operand type expected by the operator. Any or all of the source operands
may be converted in this manner before the execution of the ASL operator can proceed.

2. Conversion of the result of an operation to the existing type of a target operand before it is stored into
the target operand, called Implicit Result Conversion. This conversion occurs when the target is a
fixed type such as a named object or a field. When storing to a method Local or Arg, no conversion is
required because these data types are of variable type (the store simply overwrites any existing object
and the existing type).

16.2.2.3.1 Implicit Source Operand Conversion

During the execution of an ASL operator, each source operand is processed by the AML interpreter as
follows:

» |fthe operand is of the type expected by the operator, no conversion is necessary.
o |If the operand type is incorrect, attempt to convert it to the proper type.

* For the Concatenate operator, the data type of the first operand dictates both the required type of the
second operand and the type of the result object. (The second operator is converted, if necessary, to
match the type of the first operand.)

» |f conversion is impossible, abort the running control method and issue a fatal error.

An implicit source conversion will be attempted anytime a source operand contains a data type that is
different that the type expected by the operator. For example:

Store (“5678”, Locall)
Add (0x1234, Local 1, BUF1)

In the Add statement above, Locall contains a String object and must undergo conversion to an Integer
object before the Add operation can proceed.

Compag/Intel/Microsoft/Phoenix/Toshiba

66 Advanced Configuration and Power Interface Specification

In some cases, the operator may take more than one type of operand (such as Integer and String). In this
case, depending on the type of the operand, the highest priority conversion is applied. Table 16-4 describes
the source operand conversions available. For example:

Store (Buffer(1){}, Local0)

Name (ABCD, Buffer(10){1,2,3,4,5,6,7,8,9,0})

CreateDWordFi el d (ABCD, 2, XYZ)

Name (MNOP, " 1234")

Concat enate (XYZ, MNCP, Local 0)

The Concatenate operator can take an Integer, Buffer or String for its first two parameters and the type of
the first parameter determines how the second parameter will be converted. In this example, the first
parameter is of type Buffer Field (from the CreateDWordField operator). What should it be converted to:
Integer, Buffer or String? According to Table 16-4, the highest priority conversion is to Integer. Therefore,
both of the following objects will be converted to Integers:

XYZ (0x05040302)
MNOP (0x31, 0x32, 0x33, 0x34)

And will then joined together and the resulting type and value will be:
Buf fer (0x02, 0x03 , 0x04, 0x05, 0x31, 0x32, 0x33, 0x34).

16.2.2.3.2 Implicit Result Object Conversion
For all ASL operators that generate and store a result value (including the Store operator), the result object
is processed and stored by the AML interpreter as follows:

o |fthe ASL operator is one of the explicit conversion operators (ToString, Tolnteger, etc., and the
CopyObject operator), no conversion is performed. (In other words, the result object is stored directly
to the target and completely overwrites any existing object already stored at the target.)

o |Ifthe target is a method local or argument (LocalX or ArgX), no conversion is performed and the
result is stored directly to the target.

o Ifthe target is a fixed type such as a named object or field object, an attempt is made to convert the
source to the existing target type before storing.

» |f conversion is impossible, abort the running control method and issue a fatal error.

An implicit result conversion can occur anytime the result of an operator is stored into an object that is of a
fixed type. For example:

Nanme (BUF1, Buffer(10))
Add (0x1234, O0x789A, BUF1)

Since BUF1 is a named object of fixed type Buffer, the Integer result of the Add operation must be
converted to a Buffer before it is stored into BUF1.

16.2.2.4 Data Types and Type Conversions

The following table lists the available ASL data types and the available data type conversions (if any) for
each. The entry for each data type is fully cross-referenced, showing both the types to which the object
may be converted as well as all other types that may be converted to the data type.

The allowable conversions apply to both explicit and implicit conversions.

Table 16-4a Data Types and Type Conversions

Can be implicitly or explicitly converted | Can be implicitly or explicitly
ASL Data Type to these Data Types: (In priority order) | converted from these Data Types:
[Uninitialized] None. Causes a fatal error when used as a Integer, String, Buffer, Package,

source operand in any ASL statement. DDB Handle, Object Reference
Buffer Integer, String, Debug Object Integer, String

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 67

ASL Data Type

Can be implicitly or explicitly converted

Can be implicitly or explicitly

to these Data Types: (In priority order)

converted from these Data Types:

Buffer Field Integer, Buffer, String, Debug Object Integer, Buffer, String
DDB Handle Integer, Debug Object Integer

Debug Object

None. Causes a fatal error when used as a

Integer, String, Buffer, Package,

source operand in any ASL statement.

Field Unit, Buffer Field, DDB
Handle

Device

None

None

Event

None

None

Field Unit (within an

Integer, Buffer, String, Debug Object

Operation Region)

Integer, Buffer, String

Integer

Buffer, Buffer Field, DDB Handle, Field

Buffer, String

Unit, String, Debug Object

Integer Constant

Integer, Debug Object

None. Also, storing any object to a
constant is a no-op, not an error.

Method None None
Mutex None None
Object Reference None None
Operation Region None None
Package Debug Object None
String Integer, Buffer, Debug Obiject Integer, Buffer
Power Resource None None
Processor None None
Thermal Zone None None

16.2.2.5 Data Type Conversion Rules

The following table presents the detailed data conversion rules for each of the allowable data type

conversions. These conversion rules are implemented by the AML Interpreter and apply to all conversion

types — explicit conversions, implicit source conversions, and implicit result conversions.

Compag/Intel/Microsoft/Phoenix/Toshiba

68 Advanced Configuration and Power Interface Specification

Table 16-4b Object Conversion Rules

To convert To an object

from an of this Data This action is performed by the AML Interpreter:

object of this Type P Y p :

Data Type

Buffer Buffer Field The contents of the buffer are copied to the Buffer Field. If the buffer is
smaller than the size of the buffer field, it is zero extended. If the buffer
is larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object | Each buffer byte is displayed as hexadecimal integer, delimited by
spaces and/or commas.

Field Unit The entire contents of the buffer are copied to the Field Unit. If the
buffer is larger (in bits) than the size of the Field Unit, it is broken into
pieces and completely written to the Field Unit, lower chunks first. If the
integer (or the last piece of the integer, if broken up) is smaller or equal
in size to the Field Unit, then it is zero extended before being written.

Integer The contents of the buffer are copied to the Integer, starting with the
least-significant bit and continuing until the buffer has been completely
copied — up to the maximum number of bits in an Integer (64 in ACPI
2.0).

String The entire contents of the buffer are converted to a string of two-
character hexadecimal numbers, each separated by a space. A fatal error
is generated if greater than two hundred ASCII characters are created.

Buffer Field [See Rule] If the Buffer Field is smaller than or equal to the size of an Integer (in
bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. (See the conversion rules for the Integer and Buffer data types.)

Debug Object | Each byte is displayed as hexadecimal integer , delimited by spaces

and/or commas

DDB Handle [See Rule] The object is treated as an Integer (See conversion rules for the Integer
data type.)

Field Unit [See Rule] If the Field Unit is smaller than or equal to the size of an Integer (in

bits), it will be treated as an Integer. Otherwise, it will be treated as a
Buffer. (See the conversion rules for the Integer and Buffer data types.)

Debug Object

Each byte is displayed as hexadecimal integer , delimited by spaces

and/or commas

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 69

To convert To an object

from an of this Data This action is performed by the AML Interpreter:

object of this Type D Y D -

Data Type

Integer Buffer The Integer overwrites the entire Buffer object. If the integer requires
more bits than the size of the Buffer, then the integer is truncated before
being copied to the Buffer. If the integer contains fewer bits than the
size of the buffer, the Integer is zero-extended to fill the entire buffer

Buffer Field The Integer overwrites the entire Buffer Field. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.
Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object | Displayed as a hexadecimal integer.

Field Unit The Integer overwrites the entire Field Unit. If the integer is smaller
than the size of the buffer field, it is zero-extended. If the integer is
larger than the size of the buffer field, the upper bits are truncated.

String Creates an ASCII hexadecimal string.

Package Package All existing contents (if any) of the target package are deleted, and the
contents of the source package are copied into the target package. (In
other words, overwrites the same as any other object.)

Debug Object | Each element of the package is displayed based on its type.

String Buffer The string is treated as a Buffer, with each ASCII character copied to

one Buffer byte. If the string is longer than the buffer, it is truncated. If
the string is shorter than the buffer, the buffer size is reduced

Buffer Field

The string is treated as a buffer. If this buffer is smaller than the size of

the buffer field, it is zero extended. If the buffer is larger than the size of
the buffer field, the upper bits are truncated.

Compatibility Note: This conversion is new in ACPI 2.0. The behavior
in ACPI 1.0 was undefined.

Debug Object

Each byte displayed as an ASCII character

Field Unit Each character of the string is written, starting with the first, to the Field
Unit. If the Field Unit is less than eight bits, then the upper bits of each
character are lost. If the Field Unit is greater than eight bits, then the
additional bits are zeroed.

Integer The ASCII string is interpreted as a hexadecimal constant. Starts with

the first hexadecimal ASCII character (‘0°-‘9”, “‘A’-‘F’, ‘a’, ‘f’) and ends
with the first non-hexadecimal character.

16.2.2.6 Rules for Storing and Copying Objects

The table below lists the actions performed when storing objects to different types of named targets. ASL

provides the following types of “store” operations:

* The Store operator is used to explicitly store an object to a location, with implicit conversion support

of the source object.

Compag/Intel/Microsoft/Phoenix/Toshiba

70 Advanced Configuration and Power Interface Specification

* Many of the ASL operators can store their result optionally into an object specified by the last
parameter. In these operators, if the destination is specified, the action is exactly as if a Store operator
had been used to place the result in the destination.

* The CopyObject operator is used to explicitly store a copy of an object to a location, with no implicit
conversion support.

Table 16-4c__ Object Storing and Copying Rules

When Storing an This action is performed by the This action is performed by the
object of any data Store operator or any ASL CopyObiject operator:
type to this type of operator with a Target operand:

Target location

Method ArgX The object is copied to the destination with no conversion applied, with one
variable exception. If the ArgX contains an Object Reference, an automatic de-reference

occurs and the object is copied to the target of the Object Reference instead of
overwriting the contents of ArgX

Method LocalX The object is copied to the destination with no conversion applied. Even if

variable LocalX contains an Object Reference, it is overwritten.

Field Unit or Buffer The object is copied to the Fields permanently retain their type and

Field destination after implicit result cannot be changed. Therefore,
conversion is applied CopyObject can only be used to copy an

object of type Integer or Buffer to fields.

Named data object The object is copied to the The object and type are copied to the

destination after implicit result named location.

conversion is applied to match the
existing type of the named location

16.2.3.3.1.14 Mutex (Declare Synchronization/Mutex Object)

Mit exTer m c= Mut ex(
Mut exNane, // NameStri ng
SyncLevel /1 Byt eConst Expr

)
Creates a data mutex synchronization object named MutexName, with level from 0 to 15 specified by

SyncLevel. A-Synclevel of nalows n+1-mutex-owners

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadlocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired. The SyncLevel
parameter declares the logical nesting level of the synchronization object. All Acquire terms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer
to a synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top-level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested. Fhe-SyneLevel-check-is-net

na orn \ /] a\ A alV.ViaTa) alla' allla na ng

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 71

The SyncLevel of a thread before acqumng any mutexes is zero. The SyncLeveI of the Global Lock (\ GL)
is zero. A-method-m . v

spoetio:
16.2.3.4.1.7 Load (Load Bitferentiated-Definition Block)
LoadTerm ;= Load(
oj ect, // NameString
DDBHandl e /| Super Nane

)

Performs a run-time load of a Definition Block. The Object parameter can either refer to an operation
region field or an operation region directly. If the object is an operation region, the operation region must
be in SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type
SSDT-e+RPSBT. The Definition Block must be totally contained within the supplied operation region or
operation region field. OSPM reads tFhis table is-read-into memory, the checksum is verified, and then it is
loaded into the ACPI namespace. The DDBHandle parameter is the handle to the Differentiating Definition
Block that can be used to unload the Definition Block at a future time.

The OS can also check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default namespace location to load the Definition Block is relative to the current namespace. The new
Definition Block can override this by specifying absolute names or by adjusting the namespace location
using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

16.2.3.4.1.16 Switch — Select Code To Execute Based On Expression

Swi t ch(

Predi cate /| Conput at i onal Dat a
) {CaseTernli st}
Not hi ng | CaseTerm | CaseTerm Def aul t Ter nli st

Swi tchTerm

Def aul t Ter nLi st

CaseTer nli st Not hi ng | CaseTerm CaseTernlist | DefaultTerm
Def aul t Ter mLi st
CaseTerm Case(Dat atbj ect) {TernList}

Def aul t Term Default {Ternlist}

The Switch, Case and Default statements help simplify the creation of conditional and branching code.
The Switch statement transfers control to a statement within its body.

If the Case value is an Integer, Buffer or String, then control passes to the statement that matches the value
of Switch(Predicate). If the Case value is a Package, then control passes if any member of the package
matches the Switch(Predicate). The Switch CaseTermList can include any number of Case instances, but
no two Case values (or members of a value, if value is a Package) within the same Switch statement can
contain the same value.

Execution of the statement body begins at the selected statement’s TermList and proceeds until the end of
the body or until an ExitSwitch (or other valid Exitx) statement transfers control out of the body.

Use of the Switch statement usually looks something like this:

Compag/Intel/Microsoft/Phoenix/Toshiba

72 Advanced Configuration and Power Interface Specification

Switch (expression)

{
Case (value) {
Statenments executed if Lequal (expression, value)
Case (Package() {val ue,val ue,value}) {
Statenments executed if Lequal (expression, any val ue in package)
Defaul t {
statements executed if expression does not equal
any case constant-expression
}
}

The Default statement is executed if no Case value matches the value of switch (expression). If the
Default statement is omitted, and no Case match is found, none of the statements in the Switch body are
executed. There can be at most one Default statement. The Default statement need not come at the end; it
can appear anywhere in the body of the Switch statement.

A Case or Default term can only appear inside a Switch statement. Switch statements can be nested.

Compatibility Note: The Switch, Case, and Default terms are new to ACPI 2.0. However, their
implementation is backward compatible with ACPI 1.0 AML interpreters.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 73

Compiler Note: The following example demonstrates how the Switch statement should be translated into
ACPI 1.0-compatible AML.:

Swi tch (Add(ABCD(), 1)

Case(1) {
.statementsl...

}
Case(Package() {4,5,6}) {
.statenments2...

}
Defaul t {
.Sstatenents3...

}
}

is translated as:

Wi | e(OneZere)
{
Nane(_T_I,0) /1l Create Integer tenporary variable for result
St or e(Add(ABCD(), 1), _T_I)
If (LEqual (_T_1,1)) {
.statementsl...

}

El se {

I f (LNot Equal (Mat ch(Package() {4,5,6}, MEQ _T_I, MIR, 0, 0), Ones)) {
.statenments2...

}

El se {
.Sstatenents3...

}

}

Br eak

}

Note: If the compiler is unable to determine the type of the expression, then it should generate a warning
and assume integer type. The warning should indicate that the ASL should use one of the type conversion
operators (Int, Buff, DecStr or HexStr). For example:

Swi t ch(ABCI()) /1 Can’t determine the type because nethods can return anything.
{

..case statenents...

}
will generate a warning and the following code:

Narme(_T_I, 0)
Store(ABCD(), _T_I)

To remove the warning, the code should be:
Swi t ch(1nt (ABCD()))

..case statenents...

}
16.2.3.4.1.17 Unload (Unload Bitferentiated-Definition Block)
Unl oadTer m ;= Unl oad(

DDBHandl e /| Ter mMAr g=>DDBHandl e
)

Performs a run-time unload of a Definition Block that was loaded using a Load term. Loading or unloading
a Definition Block is a synchronous operation, and no control method execution occurs during the function.
On completion of the Unload operation, the Definition Block has been unloaded (all the namespace objects
created as a result of the corresponding Load operation will be removed from the namespace).

Compag/Intel/Microsoft/Phoenix/Toshiba

74 Advanced Configuration and Power Interface Specification

16.2.3.4.2Type 2 Opcodes

Type2Qpcode = AcquireTerm | AddTerm | AndTerm | ConcatTerm |
Concat eResTerm | CondRef O Term | DecTerm| Deref O Term |
Di videTerm | FindSetlLeftBitTerm | FindSetRightBitTerm |
FromBCDTerm | IncTerm | IndexTerm | LAndTerm |
LEqual Term | LG eaterTerm| LG eaterEqual Term |
LLessTerm | LLessEqual Term | LNot Term | LNot Equal Term |
LoadTabl eTerm | LOrTerm| MatchTerm | MdTerm |
ModTerm | MultiplyTerm| NAndTerm | NOrTerm | NotTerm |
oj ect TypeTerm | O Term| RefOfFTerm | ShiftLeftTerm |
ShiftRight Term| SizeO'Term| StoreTerm| SubtractTerm |
ToBCDTerm | ToBufferTerm | ToDecimal StringTerm |
ToHexStringTerm | TolntegerTerm| ToStringTerm |

Wait Term | XorTerm | UserTerm

The ASL terms for Type 2 Opcodes are listed in the following table.
Table 16-9 Type 2 Opcodes

ASL Statement Description

Acquire Acquire a mutex

Add Add two values

And Bitwise And

Concatenate Concatenate two strings, integers or buffers
ConcatenateResTemplate Concatenate two resource templates
CondRefOf Conditional reference to an object
Decrement Decrement a value

DerefOf Dereference an object reference

Divide Divide

FindSetLeftBit Index of first least significant bit set
FindSetRightBit Index of first most significant bit set
FromBCD Convert from BCD to numeric

Increment Increment a value

Index Reference the nth element/byte/character of a package, buffer or string
LANnd Logical And

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document.

Table 16-9 Type 2 Opcodes (continued)

75

ASL Statement Description

LEqual Logical Equal

LGreater Logical Greater

LGreaterEqual Logical Not less

LLess Logical Less

LLessEqual Logical Not greater

LNot Logical Not

LNotEqual Logical Not equal

LoadTable Load Table from RSDT/XSDT
LOr Logical Or

Match Search for match in package array
Mid Returns a portion of buffer or string
Mod Modulo

Multiply Multiply

NAnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

RefOf Reference to an object

ShiftLeft Shift value left

ShiftRight Shift value right

SizeOf Get the size of a buffer, string, or package
Store Store value

Subtract Subtract values

ToBCD Convert numeric to BCD
ToBuffer Convert data type to buffer

ToDecimalString

Convert data type to decimal string

ToHexString Convert data type to hexadecimal string
Tolnteger Convert data type to integer

ToString Copy ASCII string from buffer

Wait Wait

Xor Bitwise Xor

Compag/Intel/Microsoft/Phoenix/Toshiba

76 Advanced Configuration and Power Interface Specification

16.2.3.4.2.4 ToBuffer (Convert Data Type to Buffer)

ToBuffer Term := ToBuffer(
Dat a, /| Ter mMAr g=>Conput at i onal Dat a
Resul t /| Tar get
) => Buffer

Data must be evaluated to integer, string, or buffer. Data is then converted to buffer type and the result is
optionally stored into Result. If Data was an integer, it is converted into 4 bytes of buffer, taking the least
significant type of integer as the first byte of buffer. If Data is a buffer, no conversion is performed.

16.2.3.4.2.8 CopyObject —(Copy Object)

CopyQbj ect Term 1= CopyObj ect (
Sour ce, /1 Super Name=>Dat aRef Obj ect
Desti nati on // NameString | Local Term |

/1 ArgTerm
) => Dat aRef (bj ect

Converts the contents of the Source to a DataRefObject using the conversion rules in 16.2.2 and then copies
the results without conversion to the object referred to by Destination. If Destination is already an
initialized object of type DataRefObject, the original contents of Destination are discarded and replaced
with Source. Otherwise, a fatal error is generated.

Compatibility Note: The CopyObject operator is new in ACPI 2.0.

16.2.3.4.2.10 ToDecimalString (Convert Data Type to Decimal String)

ToDeci nal StringTerm := ToDeci mal String(
Dat a, /| Ter Mr g=>Conput at i onal Dat a
Resul t /| Tar get
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a decimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of decimal values separated by commas.

16.2.3.4.2.16 ToHexString (Convert Data Type to Hexadecimal String)

ToHexStringTerm := ToHexString(
Dat a, /| Ter Mr g=>Conput at i onal Dat a
Resul t /| Tar get
) => String

Data must be evaluated to integer, string, or buffer. Data is then converted to a hexadecimal string, and the
result is optionally stored into Result. If Data is already a string, no action is performed. If Data is a buffer,
it is converted to a string of hexadecimal values separated by commas.

16.2.3.4.2.19 Tolnteger (Convert Data Type to Integer)

Tol nteger Term 1= Tol nteger (
Dat a, /| Ter Mr g=>Conput at i onal Dat a
Resul t /| Tar get

) => Integer

Data must be evaluated to integer, string, or buffer. Data is then converted to integer type and the result is
optionally stored into Result. If Data was a string, it must be either a decimal or hexadecimal numeric
string (in other words, prefixed by “0x™) and the value must not exceed the maximum of an integer value. If
the value is exceeding the maximum, the result of the conversion is unpredictable. If Data was a Buffer, the
first 8 bytes of the buffer are converted to an integer, taking the first byte as the least significant byte of the
integer.

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 77

16.2.3.4.2.26 LNot (Logical Not)

LNot Term := LNot (
Sour ce, /| Ter mMAr g=>I nt eger
) => Bool ean

Sourcel is evaluated as an integer. If the value is ren-zero True is returned; otherwise, False is
returned.

16.2.3.4.2.37 ObjectType (Object Type)

Obj ect TypeTerm ;= Obj ect Type(
hj ect /1 Super Nare
) => Integer

The execution result of this operation is an integer that has the numeric value of the object type for Object.
The object type codes are listed in Table 16-124. Notice that if this operation is performed on an object
reference such as one produced by the Alias, Index, or RefOf statements, the object type of the base object
is returned. For typeless objects such as pre-defined scope names (in other words, \ SB, _GPE, and so on),
the type value 0 (Uninitialized) is returned.

16.2.3.4.2.44 ToString (Create ASCII String From Buffer)

ToStringTerm := ToString(
Sour ce, /| Ter mMAr g=>Buf f er
Lengt h, /1 Not hing | TermArg=>I nt eger
Resul t /| Tar get
) => String

Source is evaluated as a buffer. Starting with the first byte, the contents of the buffer are copied into the
string until the number of characters specified by Length is reached. If Length is not specified or is Ones,
then the contents of the buffer are copied until a null (0) character is found. In any case, a fatal error will be
generated if the number of characters copied exceeds 200 (not including the terminating null). The result is
copied into the Result.

16.2.4.5 ASL Macro for I/O Port Descriptor

The following macro generates a short 1/O descriptor:

o

Decodel6 | DecodelO, /1 _DEC

Wor dConst Expr, /1 _MN, Address m nimum

Wor dConst Expr, /1 _MAX, Address nax

Byt eConst Expr, /1 _ALN, Base alignnent

Byt eConst Expr /1l _LEN, Range |length

NameString | Nothing /1 A nanme to refer back to this resource
)

Compag/Intel/Microsoft/Phoenix/Toshiba

78 Advanced Configuration and Power Interface Specification

16.2.4.6 ASL Macro for Fixed I/O Port Descriptor

The following macro generates a short Fixed 1/0O descriptor:

Fi xedl

Wor dConst Expr,

// _BAS, Address base

Byt eConst Expr

// _LEN, Range length

NaneString |

/! A nane to refer back to this resource

)

16.2.4.7 ASL Macro for Short Vendor-Defined Descriptor

The following macro generates a short Vendor-Defined descriptor:

Vendor Short (
NameString |
)

{
Byt eConst Expr [,

/1 A name to refer back to this resource

Byt eConst Expr ...] /1 List of bytes, up to 7 bytes

17.2.1 Name Objects Encoding

LeadNaneChar

Di gi t Char
NaneChar

Root Char

Par ent Pr ef i xChar

‘A7
-

NaneSeg

NameStri ng
Prefi xPat h
NanePat h

Dual NanePat h
Dual NanePr ef i x
Mul t i NanmePat h
Mul ti NamePr ef i x
SegCount

Si npl eNane
Super Nane
Nul | Nane

A7
Y
Di gi t Char | LeadNaneChar
0

C AT

0x41- 0x5a
Ox5f
0x30- 0x39
0x5c¢
0Ox5e

<LeadNanmeChar NameChar NameChar NameChar >

/1 Notice that NameSegs shorter than 4 characters are
/1 filled with trailing *_’s.

<Root Char NanePat h> | <PrefixPath NanmePat h>

Nothing | <~ PrefixPath>

NameSeg | Dual NamePath | Ml ti NanePath | Nul | Nane

Dual NanePr ef i x NaneSeg NaneSeg

= Ox2e
= Mul ti NanePrefix SegCount NaneSeg(SegCount)
= Ox2f
= ByteData
/'l SegCount can be from1l to 255.

/1 Mul ti NamePrefix(35) => 0x2f 0x23
/1 and followi ng by 35 NaneSegs.

/1 So, the total encoding |ength

Il will be 1 + 1 + 35%4 = 142.

/1 Notice that:

/1 Dual NanePref i x NaneSeg NaneSeg
/1 has a snuller encoding than the
/'l equival ent encoding of:

/1 Mul ti NamePrefi x(2) NameSeg NameSeg
NaneString | Arglbj | Local Obj

Si npl eNanme | DebugObj | Type6Opcode
0x00

Compag/Intel/Microsoft/Phoenix/Toshiba

Error! No text of specified style in document. 79

Tar get ;= SuperNane | Nul | Nane

Compag/Intel/Microsoft/Phoenix/Toshiba

80 Advanced Configuration and Power Interface Specification

Compag/Intel/Microsoft/Phoenix/Toshiba

